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Abstract: The cost, time and scope of a construction project are key parameters for its success. Thus,
predicting these indices is indispensable. Correct and accurate prediction of cost throughout the
progress of a project gives project managers the chance to identify projects that need revision in
their schedules in order to result in the maximum benefit. The aim of this study is to minimize the
shortcomings of the Earned Value Management (EVM) method using an Artificial Neural Network
(ANN) and multiple regression analysis in order to predict project cost indices more precisely. A total
of 50 road construction projects in Fars Province, Iran, were selected for analysis in this research.
An ANN model was used to predict the projects’ cost performance indices, thereby creating a more
accurate symmetry between the predicted and actual cost by considering factors that influence project
success. The input data of the ANN model were analysed in MATLAB software. A multiple regression
model was also used as another analytical tool to validate the outcome of the ANN. The results
showed that the ANN model resulted in a lower Mean Squared Error (MSE) and a greater correlation
coefficient than both the traditional EVM model and the multiple regression model.

Keywords: symmetry; earned value management (EVM); artificial neural networks (ANNs); multiple
regression analysis; road industry

1. Introduction

The number of road construction projects is increasing dramatically every year. Although project
management is being more expertly implemented, there are still problems associated with cost overruns
in projects [1]. One of the factors that increases the capital output ratio for a country’s economy is
cost overrun. Estimating the cost of projects has always been a crucial, demanding and sophisticated
challenge [2,3]. Cost estimation is a process in which the total cost of a project is predicted based on
the existing information [4]. Generally, cost estimation is conducted in order to set the initial budget
of a project, which will ideally produce symmetry between the initial estimation and the subsequent
actual cost [1]. Cost estimation presents some difficulties, such as the initial information required, the
small number of databases available for road construction project costs, the low efficiency of existing
cost estimation methods and the existence of uncertainties [5].

Earned Value Management (EVM) is a tool to help with controlling the progress of a project. EVM
is able to illustrate the current status of projects, as well as measuring current variances [6]. To assess
the progress of projects, EVM exploits three constraints: time, scope and cost. Moreover, EVM is able
to predict the future parameters of projects, including the final cost, based on existing data [7–9]. This
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comprehensive management approach has been widely used in numerous studies and in different
fields [10–14].

Artificial Neural Networks (ANNs) are an effective tool that imitates the human mind for
application in various problems [15]. The first application of ANNs in construction activities took place
in the late 1980s [16]. Adeli (2001) published the first scientific article regarding the use of ANNs in the
construction industry [17]. ANNs are widely used in various stages of a project, including design,
construction, maintenance, renovation and destruction [18]. Some examples of the use of ANNs are
presented in the following.

Albino and Garavelli (1998) applied a neural network in order to rank subcontractors in
construction firms [19]. Leung et al. (2001) exploited ANNs to predict the hoisting times of
tower cranes [20]. Cheung et al. (2006) forecasted the performance of projects using neural
networks [21]. Vouk et al. (2011) analyzed the economy of wastewater systems using neural
networks [22]. Mucenski et al. (2013) estimated the recycling capacity of multistorey buildings using
ANNs [23]. Chaphalkar et al. (2015) used a multilayer perceptron neural network in order to forecast
the outcome of construction dispute claims [24]. Golanaraghi et al. (2019) predicted formwork labor
productivity using an ANN [25]. Tijanic et al. (2019) used an ANN in order to predict costs in road
construction [26]. Readers are referred to References [27–36] for further uses of ANNs for various
applications in the construction industry, as well as in other fields of science.

Cost, time and quality are the three components of success in a construction project. In other
words, a project in which construction is finished within the predicted cost, to the required quality
and within the forecasted time can be called a successful project [37]. The cost of construction projects
usually deviates from the initial estimation due to a variety of factors [38]. In other words, the costs
in construction projects do not usually remain the same as they were predicted to be before the
construction phase. Cost increases are normal, as can be seen in most projects [39]. According to the
available literature, not many projects are finished within the forecasted cost. A lot of construction
projects face both delays and cost overruns [40]. Flyvbejerg et al. illustrated that cost underestimation
happens dramatically more frequently than cost overestimation [41]. Iran is a developing country,
and cost overruns are common in such countries. For instance, Heravi and Mohammadian (2019)
investigated 72 construction projects in Iran based on both their documentation and their actual
performance. They concluded that larger projects faced higher cost overruns and delays [42]. Although
EVM is able to illustrate the degree to which delays and cost shortages exist in a project on the basis
of the project’s previous data, it cannot provide an accurate prediction of the future status of the
project [8,9].

EVM results are obtained during and after the implementation phase. Thus, having the ability
to predict the future situation of the project during the implementation phase could be very useful
for project managers. The novelty of this study is in using an ANN, a tool that possesses the ability
to learn from existing data in order to effectively predict the future status, in order to obtain more
precise future predictions [25]. In this way, hazardous situations are less likely to happen, as they
will have been forecasted before their occurrence. There are few previous research studies that have
attempted to address the deficiency of the earned value management system in accurately predicting a
project’s future status. Moreover, as mentioned before, construction projects usually face time and
cost overruns, making it a permanent issue for all project managers [37]. For instance, Moura et al.
conducted a research study and concluded that construction projects experienced cost overruns of
20.4% to 44.7% in comparison to the initial cost estimation [43]. Thus, the significance of this study is
in enabling project managers to use ANNs instead of the traditional EVM method in order to predict a
project’s future status more accurately and to fill the mentioned gaps in the body of knowledge. In the
current study, we chose to investigate road construction projects in Fars Province, Iran, as a case study.
The findings of this study will help road construction industry members to predict cost indices more
precisely in their projects.
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2. Methodology

The methodology of the current study was determined according to the research aim. The
main purpose of this research was to improve the prediction of the traditional EVM system in
Fars road construction projects using an artificial neural network, as well as comparing it with a
multiple regression model. The abovementioned main aim can be divided into three stages. Firstly,
factors affecting the earned value of Fars road construction projects were determined using the existing
literature. An artificial neural network was built in MATLAB, and the identified factors were introduced
to the ANN model. In the next stage, the identified factors were prioritized in MATLAB using the
ANN model. Finally, multiple regression was used as the analyzing tool, and the obtained results were
compared with the ANN model. The abovementioned stages are summarized in Figure 1.
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2.1. Predicting Earned Value Using Artificial Neural Network

Intelligent dynamic systems, such as ANNs, have been under researchers’ focus recently [44–51].
ANNs are able to identify the relationship among data by analyzing them and to then exploit this
relationship in further analyses [52]. In fact, these computational intelligence-based systems attempt to
model the neurosynaptic structure of the brain and are able to contribute to estimation, prediction and
categorization problems effectively [53]. Generally, ANNs consist of three layers, namely, the input,
hidden and output layers. Each of the abovementioned layers possesses its own neurons. It is important
to mention that the number of hidden layers may be more than one according to the problem. In the
current study, a multilayer perceptron network was used.

2.1.1. Input Data

Variables affecting the status of the project must be identified in order to investigate its future
status. In fact, these variables are the input data of the artificial neural network. In this study, 14
factors affecting a project’s success were identified by investigating the existing literature, including
books, journal papers and documents from the Fars State Road Administration. Due to the high
sensitivity of this paper’s topic, the authors were not able to reduce the abovementioned number of
factors. Some of the variables possessed numerical values, such as inflation rate. The inflation rate was
derived from the Central Bank of Iran. However, there were variables that were not numerical, such as
the qualification of the project management team. The abovementioned data were then quantified
by scoring the variables from 1 to 5, where 1 and 5 stand for the worst and best status of a variable,
respectively. In order to make it clearer, the qualitive status of a variable and its corresponding
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quantitative value are illustrated in Table 1. Ten questionnaires were filled out by experts for each
project. Thus, 500 questionnaires were used for data gathering.

Table 1. Qualitive status of a variable and its corresponding value for analysis.

Qualitive Status Quantitative Value

Critical 1
Very unsuitable 2

Unsuitable 3
Suitable 4

Very Suitable 5

Using Microsoft Project files of the studied projects, the Cost Performance Index (CPI) of each
project was extracted. Then, using Microsoft Excel, Mean Squared Error (MSE) was calculated. This
error was used to compare the results of the ANN, multiple regression and the traditional EVM method.
The BOX-COX method was used in order to normalize data using SPSS software. Then, the obtained
data were exported to MATLAB software for further stages. CPI and MSE formulas are presented as
follows [1,8,54,55]:

MSE =

∑
(desired output− predicted output)2

no o f data
(1)

CPI =
BCWP
ACWP

(2)

where BCWP and ACWP stand for the actual cost of the work performed and the budgeted cost of the
work performed, respectively.

2.1.2. Architecture of the Network

In this stage, the network’s architecture must be determined. In order to do so, the number of
input, hidden and output layers should be specified [15]. In this study, an MLP (Multilayer perceptron)
network is used in which the output of each layer is considered the input vector for the next layer.
Each layer’s neurons have connections with the previous layer’s neurons. Each neuron’s duty is to
calculate the net layer’s weight and pass data through a function called the transfer function. Sigmoid
Tangent is regarded as one of the most useful functions in this case and has been widely used by
experts [56–61]. Thus, the abovementioned function was used as the transfer function. The final
network in this research constitutes a multilayer perceptron neural network with 14 input variables in
an input layer, a hidden layer and an output layer. The schematic structure of the designed neural
network is illustrated in Figure 2.

2.2. Determination and Prioritization of Factors Using ANN

After training the network, output coefficients of introduced variables can be extracted from
MATLAB software. As the artificial neural network considers all the introduced factors important, the
prioritization of factors is conducted according to the coefficients.
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2.3. Earned Value Prediction Using Multiple Regression Method

The correlation among dependent and independent variables can be determined using the multiple
regression method [62]. There are four methods to enter input data into the model. These methods are
the entering method (direct method), backward method, forward method and step-wise method [63].
In this study, the direct entering method was selected to be exploited. The linear relationship among
the variables is illustrated below:

yi = b0 + b1xi1 + · · ·+ bpxip + ei (3)

where p is the number of predictions, b j is the value of the jth coefficient, xi j is the ith value of the jth
prediction, and ei is the error of the ith value. Furthermore, the matrix form of the model is presented
as follows:

Y = Xβ+ ε (4)

where β is the vector of regression coefficients, ε is the matrix of fitting errors, Y is the vector of the
dependent variable, and X is the matrix of independent variables.

In order to determine and rank factors affecting the earned value of the studied projects, outputs
of SPSS analyses were used. Variables with a significance of less than 0.05 were selected as effective
factors. Furthermore, according to their significance value, variables were prioritized.

Finally, the ANN and the multiple regression model were compared according to the correlation
coefficient and mean squared error of each model. The model possessing the higher correlation
coefficient, as well as the lower MSE, was introduced as the preferable model [64].
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2.4. Data Collection

In order to collect data, information regarding 50 road construction projects in Fars Province was
extracted from documents. Then, besides other literature sources, data were turned into matrices
and analyzed. As all factors affecting the cost of the abovementioned projects had to be considered,
14 factors were finally selected.

3. Results and Discussion

3.1. Predicting Earned Value Using Artificial Neural Network

3.1.1. Gathering the MLP Network’s Data

Data regarding road construction projects in Fars Province from 2010 to 2020 were gathered by
conducting a vast study on documents from Fars Road Administration. Then, data were turned into
matrices. In order to determine the best pattern of network input, all the probable factors affecting
the cost of projects were determined. Thus, as input, 14 neurons were formed. These neurons were
the identified factors, namely, “Payment status (F1)”, “Climate (F2)”, “Conflicts (F3)”, “Plans (F4)”,
“Accessibility of materials and appliances (F5)”, “Fortuitous events (F6)”, “Delivery of land (F7)”,
“Minor contractors (F8)”, “Project schedule (F9)”, “Qualification of project management team (F10)”,
“Inflation rate (F11)”, “Risk management (F12)”, “Relationship among project’s parties (F13)” and
“Initial geotechnical studies (F14)”. Moreover, the output layer of the ANN was determined, i.e., the
cost performance index of the projects.

3.1.2. Normalizing Data

Using SPSS software, data were normalized in a range between −1 and 1. It seems necessary
to mention that the ANN’s output can be returned to the initial format using the reverse algorithm.
Normalized data are illustrated in Table 2.

Table 2. Normalized ANN input data.

Project
No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 0.70 0.90 0.50 0.50 0.63 0.63 0.63 0.70 0.50 0.70 0.21 0.70 0.70 0.70
2 0.30 0.90 0.10 0.70 0.90 0.63 0.37 0.50 0.90 0.90 0.61 0.30 0.90 0.70
3 0.70 0.63 0.10 0.70 0.63 0.90 0.10 0.90 0.90 0.70 0.31 0.70 0.70 0.90
4 0.30 0.10 0.30 0.50 0.37 0.37 0.63 0.50 0.70 0.30 0.49 0.50 0.50 0.90
5 0.10 0.37 0.70 0.10 0.10 0.63 0.37 0.90 0.90 0.70 0.31 0.70 0.70 0.70
6 0.10 0.10 0.70 0.50 0.37 0.63 0.37 0.90 0.30 0.50 0.49 0.50 0.30 0.90
7 0.70 0.63 0.30 0.70 0.37 0.37 0.63 0.30 0.10 0.30 0.39 0.10 0.50 0.30
8 0.70 0.37 0.90 0.30 0.90 0.10 0.90 0.10 0.10 0.70 0.39 0.30 0.70 0.30
9 0.50 0.10 0.10 0.50 0.37 0.90 0.63 0.30 0.70 0.70 0.90 0.50 0.90 0.70

10 0.50 0.37 0.70 0.10 0.37 0.63 0.10 0.50 0.10 0.70 0.39 0.70 0.30 0.70
11 0.10 0.37 0.10 0.90 0.90 0.37 0.63 0.50 0.90 0.90 0.49 0.70 0.50 0.70
12 0.50 0.10 0.30 0.70 0.10 0.37 0.10 0.30 0.90 0.70 0.31 0.30 0.50 0.50
13 0.10 0.90 0.10 0.70 0.63 0.63 0.63 0.50 0.30 0.70 0.31 0.90 0.10 0.50
14 0.70 0.63 0.70 0.90 0.10 0.37 0.63 0.10 0.50 0.90 0.49 0.30 0.30 0.90
15 0.50 0.37 0.70 0.30 0.37 0.90 0.37 0.70 0.50 0.50 0.49 0.90 0.10 0.10
16 0.70 0.10 0.50 0.90 0.90 0.37 0.37 0.90 0.90 0.50 0.49 0.30 0.70 0.70
17 0.50 0.37 0.50 0.90 0.63 0.90 0.10 0.50 0.10 0.50 0.77 0.30 0.10 0.10
18 0.90 0.90 0.50 0.30 0.10 0.63 0.90 0.90 0.70 0.90 0.49 0.50 0.70 0.30
19 0.30 0.37 0.50 0.70 0.63 0.63 0.90 0.90 0.50 0.50 0.77 0.30 0.50 0.10
20 0.90 0.37 0.70 0.30 0.37 0.90 0.37 0.50 0.70 0.30 0.19 0.70 0.30 0.90
21 0.70 0.90 0.50 0.90 0.63 0.63 0.90 0.70 0.30 0.30 0.31 0.10 0.10 0.70
22 0.70 0.37 0.70 0.50 0.63 0.63 0.90 0.10 0.50 0.70 0.12 0.90 0.70 0.30
23 0.90 0.90 0.50 0.50 0.63 0.37 0.90 0.90 0.50 0.90 0.39 0.70 0.50 0.50
24 0.90 0.37 0.70 0.70 0.63 0.63 0.63 0.70 0.90 0.90 0.39 0.90 0.50 0.50
25 0.90 0.37 0.50 0.30 0.90 0.90 0.37 0.70 0.70 0.30 0.49 0.50 0.70 0.30
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Table 2. Cont.

Project
No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

26 0.90 0.90 0.50 0.90 0.63 0.63 0.90 0.90 0.30 0.70 0.19 0.50 0.50 0.50
27 0.10 0.10 0.50 0.70 0.63 0.63 0.37 0.30 0.50 0.70 0.49 0.70 0.90 0.50
28 0.10 0.63 0.50 0.70 0.10 0.63 0.37 0.90 0.70 0.10 0.10 0.30 0.50 0.50
29 0.50 0.63 0.90 0.30 0.90 0.90 0.90 0.50 0.30 0.50 0.10 0.50 0.70 0.10
30 0.10 0.37 0.30 0.50 0.37 0.63 0.37 0.10 0.50 0.50 0.49 0.30 0.90 0.30
31 0.50 0.10 0.70 0.70 0.63 0.37 0.90 0.70 0.30 0.30 0.61 0.30 0.10 0.90
32 0.50 0.37 0.30 0.30 0.37 0.90 0.90 0.50 0.70 0.30 0.49 0.10 0.30 0.50
33 0.10 0.63 0.50 0.70 0.10 0.90 0.10 0.90 0.90 0.30 0.16 0.50 0.30 0.10
34 0.50 0.37 0.50 0.50 0.90 0.63 0.63 0.70 0.30 0.90 0.49 0.30 0.90 0.50
35 0.90 0.10 0.10 0.50 0.63 0.37 0.63 0.70 0.70 0.70 0.12 0.90 0.50 0.70
36 0.30 0.37 0.70 0.70 0.37 0.90 0.63 0.30 0.70 0.50 0.49 0.50 0.50 0.10
37 0.10 0.63 0.10 0.50 0.90 0.37 0.37 0.70 0.30 0.50 0.90 0.90 0.90 0.30
38 0.30 0.90 0.30 0.90 0.63 0.63 0.63 0.50 0.70 0.70 0.39 0.70 0.90 0.10
39 0.30 0.90 0.50 0.50 0.37 0.90 0.63 0.90 0.30 0.50 0.31 0.10 0.10 0.30
40 0.70 0.10 0.50 0.10 0.90 0.90 0.37 0.90 0.90 0.70 0.49 0.90 0.50 0.30
41 0.70 0.63 0.30 0.50 0.37 0.63 0.90 0.50 0.70 0.30 0.78 0.30 0.70 0.50
42 0.30 0.90 0.50 0.30 0.10 0.63 0.10 0.50 0.30 0.30 0.78 0.50 0.10 0.30
43 0.70 0.10 0.10 0.30 0.37 0.90 0.63 0.10 0.70 0.30 0.49 0.70 0.70 0.90
44 0.50 0.37 0.90 0.70 0.63 0.90 0.37 0.50 0.30 0.30 0.39 0.10 0.50 0.50
45 0.30 0.37 0.10 0.30 0.37 0.63 0.63 0.90 0.50 0.70 0.10 0.70 0.50 0.90
46 0.90 0.63 0.70 0.10 0.37 0.37 0.63 0.90 0.70 0.50 0.39 0.50 0.30 0.10
47 0.30 0.37 0.10 0.50 0.37 0.90 0.63 0.50 0.70 0.10 0.21 0.30 0.70 0.50
48 0.10 0.37 0.30 0.50 0.63 0.37 0.37 0.30 0.90 0.90 0.49 0.30 0.90 0.30
49 0.90 0.37 0.30 0.70 0.37 0.90 0.37 0.50 0.70 0.90 0.31 0.30 0.90 0.50
50 0.10 0.63 0.10 0.30 0.90 0.63 0.90 0.30 0.50 0.70 0.90 0.70 0.50 0.10

3.1.3. Determining Hidden Layers of ANN

It is best for the number of hidden layers to be as low as possible. One hidden layer is initially
considered for an ANN. Then, after training the ANN, the number of layers will be increased if the
output is not suitable. Furthermore, there are a number of functions that can be used to produce
the network’s outcome. In this study, the Sigmoid Tangent function was exploited. The network
introduced into MATLAB software included 14 neurons in its input layer and 3 neurons in its hidden
layer. The structure of the network is illustrated in Figure 3.
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30 0.10 0.37 0.30 0.50 0.37 0.63 0.37 0.10 0.50 0.50 0.49 0.30 0.90 0.30 
31 0.50 0.10 0.70 0.70 0.63 0.37 0.90 0.70 0.30 0.30 0.61 0.30 0.10 0.90 
32 0.50 0.37 0.30 0.30 0.37 0.90 0.90 0.50 0.70 0.30 0.49 0.10 0.30 0.50 
33 0.10 0.63 0.50 0.70 0.10 0.90 0.10 0.90 0.90 0.30 0.16 0.50 0.30 0.10 
34 0.50 0.37 0.50 0.50 0.90 0.63 0.63 0.70 0.30 0.90 0.49 0.30 0.90 0.50 
35 0.90 0.10 0.10 0.50 0.63 0.37 0.63 0.70 0.70 0.70 0.12 0.90 0.50 0.70 
36 0.30 0.37 0.70 0.70 0.37 0.90 0.63 0.30 0.70 0.50 0.49 0.50 0.50 0.10 
37 0.10 0.63 0.10 0.50 0.90 0.37 0.37 0.70 0.30 0.50 0.90 0.90 0.90 0.30 
38 0.30 0.90 0.30 0.90 0.63 0.63 0.63 0.50 0.70 0.70 0.39 0.70 0.90 0.10 
39 0.30 0.90 0.50 0.50 0.37 0.90 0.63 0.90 0.30 0.50 0.31 0.10 0.10 0.30 
40 0.70 0.10 0.50 0.10 0.90 0.90 0.37 0.90 0.90 0.70 0.49 0.90 0.50 0.30 
41 0.70 0.63 0.30 0.50 0.37 0.63 0.90 0.50 0.70 0.30 0.78 0.30 0.70 0.50 
42 0.30 0.90 0.50 0.30 0.10 0.63 0.10 0.50 0.30 0.30 0.78 0.50 0.10 0.30 
43 0.70 0.10 0.10 0.30 0.37 0.90 0.63 0.10 0.70 0.30 0.49 0.70 0.70 0.90 
44 0.50 0.37 0.90 0.70 0.63 0.90 0.37 0.50 0.30 0.30 0.39 0.10 0.50 0.50 
45 0.30 0.37 0.10 0.30 0.37 0.63 0.63 0.90 0.50 0.70 0.10 0.70 0.50 0.90 
46 0.90 0.63 0.70 0.10 0.37 0.37 0.63 0.90 0.70 0.50 0.39 0.50 0.30 0.10 
47 0.30 0.37 0.10 0.50 0.37 0.90 0.63 0.50 0.70 0.10 0.21 0.30 0.70 0.50 
48 0.10 0.37 0.30 0.50 0.63 0.37 0.37 0.30 0.90 0.90 0.49 0.30 0.90 0.30 
49 0.90 0.37 0.30 0.70 0.37 0.90 0.37 0.50 0.70 0.90 0.31 0.30 0.90 0.50 
50 0.10 0.63 0.10 0.30 0.90 0.63 0.90 0.30 0.50 0.70 0.90 0.70 0.50 0.10 

3.1.3. Determining Hidden Layers of ANN 

It is best for the number of hidden layers to be as low as possible. One hidden layer is initially 
considered for an ANN. Then, after training the ANN, the number of layers will be increased if the 
output is not suitable. Furthermore, there are a number of functions that can be used to produce the 
network’s outcome. In this study, the Sigmoid Tangent function was exploited. The network 
introduced into MATLAB software included 14 neurons in its input layer and 3 neurons in its hidden 
layer. The structure of the network is illustrated in Figure 3. 

 
Figure 3. ANN introduced into MATLAB. Figure 3. ANN introduced into MATLAB.

3.1.4. Training of the ANN

The introduced network in this study is an MLP network with back propagation error. The
selected training function for the network was the Levenberg–Marquardt function due to its ability to
converge fast. The transfer function was selected by trial and error, until the MSE reached the lowest
value in both the training set and testing set. The data set was randomly divided into three groups.
Seventy percent of the data was used for acquisition of the network, fifteen percent was used for testing
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the data, and fifteen percent was used for validation. The settings of the training ANN in MATLAB
are demonstrated in Figure 4. The number of epochs was selected as 1000. As a result, the network
reached its lowest acquisition error after 15 epochs. The network’s gradient function performance,
MSE graph and regression graphs are shown in Figures 5–7, respectively.
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As a sample, one of the studied project’s Status Curve (S-Curve) was drawn using the trained ANN
and was compared with the traditional EVM’s S-Curve. Improvement of the S-Curve is clearly seen in
the figures below. Figures 8 and 9 illustrate the traditional model and ANN’s S-Curves, respectively.
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3.2. Determination and Prioritization of Factors Affecting Earned Value in the ANN

After training of the ANN in MATLAB, each variable is given a unique coefficient. Coefficients
for the identified factors are illustrated in Table 3.

According to the factors’ coefficients, the ANN’s function to predict the aim is obtained as follows:

n = (0.81)F1 +(0.65)F2− (0.58)F3 + (0.42)F4 + (0.4)F5 + (0.38)F6− (0.33)F7
+(0.24)F8 + (0.21)F9 + (0.2)F10 + (0.14)F11 + (0.12)F12
+(0.1)F13− (0.017)F14

(5)

Then, the final equation is obtained as follows:

CPI = tan sig(n) =
2

1 + exp(−2n)
(6)
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Table 3. Prioritization and importance coefficients of the study factors using ANN.

Priority Sign Factor Factor’s Coefficient

1 F1 Project Schedule 0.81
2 F2 Payment status 0.65
3 F3 Inflation rate −0.58
4 F4 Fortuitous events 0.42
5 F5 Qualification of project management team 0.4
6 F6 Delivery of land 0.38
7 F7 Conflicts −0.33
8 F8 Climate 0.24
9 F9 Minor contractors 0.21
10 F10 Plans 0.20
11 F11 Relationship among project’s parties 0.14
12 F12 Risk management 0.12
13 F13 Accessibility of materials and appliances 0.1
14 F14 Initial geotechnical studies −0.017

3.3. Determination and Prioritization of Factors Affecting Earned Value Using Multiple Regression Method and
Comparison with the ANN Model for Data Validation

3.3.1. Investigating the Condition of Using Multiple Regression Analysis

In this stage, SPSS software was exploited. The first condition if using linear regression is having
normal data of earned value. Thus, a Kolmogorov–Smirnov test was conducted on the data in order to
determine whether they were normal. The results illustrated that the data were not normal. Table 4
and Figure 10 illustrate the information regarding the abovementioned test.

Table 4. Kolmogorov–Smirnov test for initial data.

Tests of Normality

Kolmogorov–Smirnov

Statistic df Sig.

CPI 0.519 51 0.000
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3.3.2. Analysis of Multiple Regression Model

Data analysis was conducted in order to validate the ANN results by comparing them with
the multiple regression results. The correlation coefficient and determination coefficient of this
study’s fitted multiple regression were 0.864 and 0.747, respectively. This means that about 74% of
the dependent variable’s variance is determined according to the model’s independent variables.
Information regarding the mentioned coefficients and the model analysis results is illustrated in
Tables 5 and 6, respectively.

Table 5. Determination and correlation coefficients of the multiple regression model.

Model R R Square Adjusted R Square

1 0.864 0.747 0.646

Table 6. Multiple regression model’s results.

Factor Sign
Unstandardized Coefficients

Sig
Standardized Coefficients

B Std. Error β

(Constant) −4.999 1.154 0.000
Payment status F2 0.155 0.065 0.022 0.230

Climate F8 0.098 0.098 0.324 0.105
Conflicts F7 0.201 0.084 0.023 0.254

Plans F10 0.263 0.081 0.003 0.321
Accessibility of materials and appliances F13 −0.031 0.105 0.766 −0.032

Fortuitous events F4 −0.031 0.113 0.784 −0.026
Delivery of land F6 0.062 0.096 0.523 0.062

Minor contractors F9 0.208 0.072 0.007 0.283
Project schedule F1 0.238 0.084 0.008 0.311

Qualification of project management team F5 0.060 0.089 0.505 0.072
Inflation rate F3 −0.029 0.014 0.040 −0.206

Risk management F12 0.259 0.081 0.003 0.333
Relationship among project’s parties F11 0.222 0.082 0.011 0.297

Initial geotechnical studies F14 0.061 0.072 0.400 0.085

In Table 6, B and β stand for unstandardized coefficients and standardized coefficients, respectively.
Although it is easier to write the multiple regression model’s equation using unstandardized coefficients,
using standardized coefficients enables researchers to compare variables more easily. In other words,
a higher value of the coefficient means that the variable can predict the outcome more effectively.
According to the results, “Risk management”, “Plans”, “Project schedule”, “Relationship among
project’s parties” and “Conflicts” are the most important factors.

In this study, an artificial neural network model for road construction projects was used in order
to improve the prediction of the earned value. Moreover, a multiple regression model was used to
validate the ANN results. The ANN and multiple regression models’ calculated mean squared errors
and the real values of projects are illustrated in Table 7. As it is easily seen, both the ANN model and
the multiple regression model possess low errors. Moreover, the ANN model not only had the lowest
error, but also possessed the most effective prediction coefficient.

Table 7. Comparison of the ANN and multiple regression models.

MSE R Model

0.0152 0.727 Traditional EVM
0.00206 0.896 ANN

0.012 0.864 Multiple regression
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4. Conclusions

Perceptron neural networks, especially multilayer perceptron networks, are considered to be some
of the best neural networks. In this study, it was observed that these networks were able to perform a
non-linear mapping with desirable accuracy by selecting a suitable number of layers and neurons. As
these neural networks possess the two main features of experimental data-based learning and parallel
generalization ability, they are highly suitable for sophisticated systems that are impossible or difficult
to model. Artificial neural networks are more accurate in comparison to other methods due to their
usage of proven mathematical formulas possessing the lowest possible errors. One of the aspects that
limit the usage of artificial neural networks is the difficulty faced when training them. These networks
produce better results when they receive a large group of data. However, adjusting the parameters of
network training is a difficult task that requires experience and a lot of trial and error. Furthermore,
convergence to an incorrect answer, keeping internal information instead of learning it, and requiring
a lot of time for training are other difficulties associated with using artificial neural networks.

In this research, two different models, i.e., an artificial neural network model and a multiple
regression model, were designed and analyzed in order to improve the traditional earned value
management system. The latter model was used as a validation test for the ANN model. Road
construction projects in Fars Province, Iran, between 2010 and 2020 were investigated as a case study.
Fourteen factors affecting the earned value of these projects were identified. According to the ANN
results, “Project plan”, “Payment status”, “Inflation rate”, “Fortuitous events” and “Qualification
of project management team” with coefficients of 0.81, 0.65, −0.58, 0.42 and 0.4 were the top five
influencing factors, respectively. On the other hand, according to the multiple regression model
results, “Risk management”, “Plans”, “Project schedule”, “Relationship among project’s parties” and
“Conflicts” with standardized coefficients of 0.333, 0.321, 0.311, 0.297 and 0.254, respectively, were the
most important factors. A comparison of the two models illustrated that both models result in better
results in comparison to the traditional EVM method. Moreover, the ANN model with an MSE of
0.00206 and an R value of 0.896 was selected as the best model.

The methods used in this study could also be used to tackle other problems in the construction
industry. The results obtained in this study will help road construction industry members to predict the
earned value of future projects more precisely. ANN models are highly recommended by the authors
for use in other construction problems. Furthermore, it is suggested that prospective researchers
focus on more complex construction projects in order to investigate the performance criteria more
deeply [65].
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