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Abstract: We have used the fluorescence detection of phase transformation dynamics of organic
compounds by photochemical methods to observe a real-time symmetry breaking process. The organic
fluorescent molecules vary the fluorescence spectra depending on molecular aggregated states,
implying fluorescence spectroscopy can be applied to probe the evolution of the molecular-assembling
process. As an example, the amorphous-to-crystal phase transformation and crystallization with
symmetry breaking at droplet during the solvent evaporation of mechanofluorochromic molecules
are represented in this review.
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1. Introduction

The phenomena of phase transformation with structural changes are important as both basic
findings and applications for materials science. Studies have been focused on thermodynamics for
the macroscopic phase or phase transition dynamics based on computer simulations. Based on the
molecular science of chemistry, various phase transformation dynamics are needed to understand
the variety depending on the molecular individuality and to develop smart materials. We have been
utilizing fluorescence spectroscopy to clarify phase transformation dynamics of organic fluorescent
molecules, which relies on the molecular aggregated state. Therefore, fluorescence spectroscopy can
be applied to probe the process of molecular assembly. As an example, Yu et al. [1] demonstrated
the fluorescence visualization of an amorphous-to-crystalline transformation in situ microscopic
observation of the crystallization of molecules in microparticles through fluorescence color changes.
Heterogeneous crystallization of amorphous microparticles was clearly observed by this method.
This study can provide a picture based on real-time detection of the crystallization kinetics that occur
spontaneously by external stimuli, such as mechanochromic behavior and solid–solid transitions.

Based on this research report on the phase transition phenomenon evaluation by fluorescence
detection, we utilized mechanofluorochromic molecules to evaluate the transition state dynamics
during the amorphous-to-crystal phase transition process. In addition, by utilizing this knowledge,
we have started research on the solvent evaporative crystallization process of organic fluorescent
molecules, which will be reviewed.

2. Thermodynamic Evaluation of Amorphous-to-Crystal Phase Transformation Process by
Fluorescence Spectral Changes

A number of molecules have been reported that exhibit emission color changes due to the
mechanical stimulation of organic solids, namely mechanofluorochromism effects, over the past
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decade. [2,3] Mechanochromic phenomena are generally based on the electronic state modulation
caused by the change of the intermolecular interaction due to the change of the intermolecular
distance by the mechanical stimulation of the solid. In particular, the fluorescence color changes
are ascribed to the amorphous-to-crystal phase transformation. The dibenzoylmethane boron
difluoride complex (BF2DBM) exhibits a fluorescence spectral change by smearing in the solid
state, depending on its concentration of the doped in the polymer films [4–7]. Fraser et al. first reported
the reversible mechanofluorochromic behavior of the 4-tert-butyl-4′-methoxydibenzoylmethane (trade
name: avobenzone) boron difluoride complex solid based on the amorphous-to-crystal phase
transformation [8]. The emission color significantly shifts to the longer wavelength (red) region
upon smearing the samples. The samples then spontaneously return back to the original fluorescence
with the elapse of time under ambient temperature. In this section, we review the quantitative
evaluation of the thermodynamic parameters for a thermally backward reaction after smearing to
probe the fluorescence change.

The molecular structures of BF2DBM derivatives are shown in Figure 1. These compounds
were synthesized according to a previous report [8]. The sample used for mechanochromic studies
was prepared by dropping a 2.0 × 10−3 mol·dm−3 dichloromethane solution onto a paraffin-coated
weighing paper with a pipette, and then the solvent-evaporated BF2DBM derivatives on the weighing
papers were rubbed with a spatula to apply a mechanical perturbation. The fluorescence spectra and
their spectral changes were monitored on a Shimadzu RF-5300PC fluorescence spectrophotometer.
The temperature controller was home-made and was combined with a rubber heater (Hakko Co. Ltd.,
Nagano, Japan) and a digital temperature controller (Omron E5CN-QT).
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observations indicated that the yellow fluorescent amorphous state was changed to green emission 
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Figure 1. Molecular structures of BF2DBM derivatives.

Figure 2 shows fluorescence spectra of powder abBF2 on weighing paper at 303 K, the spectra of
which were normalized at the maximum value. The fluorescence of abBF2 showed a blue emission
and the peak was located at 460 nm. The fluorescence spectrum originated from a dendric solid
as previously reported [8]. A new fluorescence band built up around 500 nm with a shoulder at
550 nm after smearing with a spatula, suggesting the generation of the amorphous phase of abBF2 [8].
The intensity around 550 nm was increased with increasing smearing time and applied force [9].
With the elapse of time, the intensity over 530 nm was decreased. After 1030 min, the emissive color
appeared green under the UV lamp and the fluorescence peaks were around 460 nm and 500 nm.
These observations indicated that the yellow fluorescent amorphous state was changed to green
emission at room temperature, demonstrating that abBF2 has a mechanofluorochromic property due
to the thermally backward reaction.
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Figure 2. Fluorescence spectra of abBF2 excited with 370 nm at 303 K before and time evolution after
the smearing.

In order to quantify the thermally backward reaction kinetics after smearing, we measured
the intensity change of abBF2 fluorescence as a function of time. Figure 3 shows a kinetic trace of
fluorescence intensity at 550 nm excited with 370 nm by temperature. The fluorescence intensity
steeply decreased with elapsed time, obeying first-order kinetics with a double-exponential decay
function. The rate constants were determined by least-squares fitting, assuming exponential decay of
two components (faster (kF) and slower (kS)) based on first-order kinetics of the thermally backward
reaction. Both rate constants increased with increasing temperature.
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Figure 3. Changes in fluorescence intensity of abBF2 as a function of time after smearing at (a) 296 K,
(b) 303 K, and (c) 313 K monitored at 550 nm. The best-fitting curves based on a double-exponential
decay function are indicated by solid lines.

From the temperature dependence of the rate constant, the activation parameter of the
amorphous–crystal phase transition of the BF2DBM derivatives can be determined [9,10].
First, the activation parameters of the reaction can be estimated by Arrhenius plots, which are
based on the rate law of the reaction: k = Aexp(−Ea/RT) can be calculated and the activation parameters
estimated, where A, Ea, R, and T are the pre-exponential factor, activation energy, gas constant,
and temperature, respectively. Figure 4a is the Arrhenius plot of rate constants of abBF2, with the
line determined by least-squares fitting. The activation energies of enthalpy (∆H‡) and entropy (∆S‡)
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for the thermally backward reaction of abBF2 were also evaluated by the Eyring plot as shown in
Figure 4b, the equation of which is k = (kBT/h)exp(∆S‡/R)exp(−∆H‡/RT), where kB is the Boltzmann
constant. The calculated results are listed in Table 1. The thermodynamic parameters relate to the
thermally backward reaction of abBF2 originating from the amorphous–crystal phase transformation.
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Table 1. Thermodynamic parameters of BF2DBM derivatives at the transition state. A, Ea, ∆H‡, and ∆S‡

are the pre-exponential factor, activation energy, activation energies of enthalpy, and activation energies
of entropy, respectively.

Component Ea/kJ·mol−1 A/s −1 ∆H‡/kJ·mol−1 ∆S‡/J·K−1·mol−1

abBF2 Faster 45.8 1.05 × 106 43.2 −104
Slower 27.2 3.00 × 101 24.6 −191

2aBF2 Faster 44.1 2.36 × 105 41.6 −116
Slower 33.6 2.82 × 102 31.1 −172

2bBF2 Faster 23.1 2.65 × 101 20.5 −192
Slower 33.6 2.70 × 10−1 14.5 −230

2cBF2 Faster 25.8 3.44 × 101 23.2 −190
Slower 23.5 8.62 × 10−1 21.9 −221

2dBF2 Faster 21.6 2.06 × 101 19.0 −194
Slower 23.5 7.37 × 100 20.9 −203

Next, thermodynamic parameters for the substituent effects were investigated. Based on the Ea

values for kF, the backward reaction for BF2DBM derivatives could be classified into two categories:
category a (abBF2 and 2aBF2), and category b (2bBF2, 2cBF2, and 2dBF2). The kF values for category a
compounds are larger than those of category b. These results suggest that the methoxy group, which is
a common substituent in category a, influences the thermally backward reaction. The pre-exponential
factor (A values) of kF is much larger than that of kS, suggesting that the reaction frequency of kS is
small. Therefore, only the kF values will be discussed here. The estimated activation energies of entropy
∆S‡ values are negative, therefore suggesting that the order of the transition state (activated) complex
is higher than that of the amorphous state just after mechanical perturbation. The thermodynamic
parameters are derived from the phase transition from amorphous to crystalline with symmetry
breaking by the thermally backward reaction, which is described below [8]. Transition state formation
is influenced by any substituent and controls activation energies of enthalpy (∆H‡) and ∆S‡. The ∆H‡

values for kF (∆HF
‡) and activation energy (Ea) are similar to category a species. These values are then

found to be twice those estimated from category b. All ∆H‡ values are greater than the energy from van
der Waals interactions (generally 1 kJ·mol−1), and comparable to hydrogen bond interactions (about
17–63 kJ·mol−1). It is indicated that hydrogen-bonding is dominant for intermolecular interactions to
form transition states (activated complex) [11]. These estimates indicate that the existence of a methoxy
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group in category a correlates with the ∆HF
‡ values, which is likely to correspond to the excess energy

produced by the cleavage of the C(arene)–H···O(methoxy) bond [8,12]. The S‡ values for kF (∆S‡F) of
categories a and b are about −110 J·K−1

·mol−1 and −190 J·K−1
·mol−1, respectively, suggesting that the

activation complexes of category b are a higher barrier than in category a. The Gibbs energy barriers
(∆G‡) of BF2DBM at 303 K were within the range of 74.8–80.8 kJ·mol−1. Although similar for all BF2DBM
series reported here in this study, ∆H‡ and ∆S‡ around room temperature depended strongly on the
substituents. Furthermore, there is no significant effect on of ∆H‡ on ∆G‡ in the room temperature range.
According to these findings, the important driving force of the activation complex formation is not only
∆H‡ but also ∆S‡, therefore we concluded that the substituents exert entropic control in the solid-phase
reaction because of the excess energy from the breakage of the C(arene)–H· · ·O(methoxy) bond in
category a [8,12]. Therefore, we propose that the substituent-dependent change in ∆S‡ is also common
to the mechanofluorochromic behavior of BF2DBM derivatives based on the amorphous–crystalline
phase transition and it is one of the important parameters in molecular design.

Next, we acquired differential scanning calorimetry (DSC) curves to clarify the thermodynamic
parameters for the crystallization process. The melting points (Tm) estimated from endothermic peaks
of 2aBF2, 2bBF2, 2cBF2, and 2dBF2 are 508 K, 545 K, 486 K, and 477 K, respectively. Exothermic peaks
correspond to the crystallization temperature (Tc) as listed in Table 2 We estimated the enthalpy (∆Hc)
and entropy (∆Sc) of crystallization by using ∆Hc = T∆Sc from the peak area of the DSC curves.
The ∆Hc value is related to intermolecular interactions. In order to evaluate the intermolecular
interaction, we compared the existence of short contact regions smaller than the sum of van der Waals
radii of neighboring molecules from the results of X-ray structure analysis of BF2DBM crystals [8,13–15].
Difluoride interacts with two phenyl rings of other molecules. Short contact with the boron difluoride
coordinate does not only occur with the two phenyl rings, but also with the methoxy group in the
case of abBF2 and 2aBF2. Notably, ∆Sc is strongly affected by the intermolecular interaction with the
methoxy group; we concluded this interaction priority promotes crystal reformation and enables it to
contribute to rotational motion around the C−O group in addition to the C(arene)−H···F interaction [16].
Sket et al. reported that a BF2DBM derivative with a methoxy group has two crystal polymorphisms
because the rotational energy of the C−O bond of the methoxy group is a relatively low energy
barrier [17]. The degree of freedom of molecular motion of the BF2DBM derivative is enhanced by
the methoxy group, suggesting that the entropy values become large. The intermolecular interaction,
depending on the substituents, is consistent with thermodynamic parameters. External stimuli may
promote the entropic term and the activation of rotational motion around the C−O bonds will enable
control of the crystal formation process.

Table 2. Thermodynamic parameters concerning the crystallization. Tc, ∆Hc, and ∆Sc are crystallization
temperature, the enthalpy of crystallization, and entropy of crystallization, respectively.

Tc/K ∆Hc/kJ·mol−1 ∆Sc/J·K−1·mol−1

abBF2 445 −33.8 −76.0
2aBF2 495 −33.5 −67.7
2bBF2 519 −25.8 −49.8
2cBF2 437 −13.6 −31.1
2dBF2 461 −11.6 −25.2

Crystallization Gibbs energy (∆Gc) of the BF2DBM derivative was then estimated by ∆Gc = ∆Hc

− T∆Sc. The ∆Gc values at 303 K are −10.8, −13.0, −10.7, −4.2, and −4.0 kJ·mol−1 for abBF2, 2aBF2,
2bBF2, 2cBF2, and 2dBF2, respectively, and it can be placed in the following order: 2cBF2 ≈ 2dBF2

> 2bBF2 ≈ abBF2 ≈ 2aBF2. This order is different from the order of ∆Hc and ∆Sc. To discuss this
order, the stacking properties of BF2DBM derivatives were compared [14,15]. On the basis of X-ray
crystallography, the overlap between adjacent molecules with plane–plane orientation in the crystal
can be classified into two groups: the overlap between benzene (B) and dihydrodioxaborinine (D) rings
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(B-on-D overlap) or two benzene rings (B-on-B overlap), depending on the substituents [15]. As shown
in the inset of Figure 5, abBF2, 2aBF2, and 2bBF2 are packed in the B-on-D type, while those in 2cBF2

and 2dBF2 are packed in the B-on-B type in the crystal. These findings suggest that ∆Gc depends on
the molecular packing form in the crystal and is regulated by a balance between the ∆Hc and ∆Sc

values. Higher degrees of overlap are proposed to result in stronger intermolecular interactions (π–π
interaction), which enables us to interpret the fluorescence properties of BF2DBM derivatives in the
solid state [5,14,15].
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Figure 5. The reaction coordinate diagrams and thermodynamic parameters at 303 K of thermally
backward reaction coordinates of BF2DBM derivatives and the molecular packing obtained by X-ray
crystallography. ∆E, ∆H‡, ∆S‡, ∆G‡, ∆Hc, ∆Sc, ∆Gc and T are the energy of the system, activation
energies of enthalpy, activation energies of entropy, Gibbs energy of the transition state, the enthalpy of
crystallization, entropy of crystallization, and crystallization Gibbs energy, respectively

Based on these findings, Figure 5 presents a scheme of the reaction coordinates of the
amorphous-to-crystal transformation of BF2DBM derivatives. These values of thermodynamic
parameters are estimated at 303 K. Although the values of ∆G‡ were similar for all BF2DBM derivatives
at 303 K, ∆H‡ and ∆S‡ differ depending on the substituents. We show that the substituents of the
BF2DBM derivatives not only change the energy barrier of the system, but also affect the rate of the
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thermally backward reaction by compensating between enthalpy and entropy terms. The formation of
the transition state is governed by the entropy term associated with C(arene)–H· · ·O(methoxy).

In summary, the thermodynamic parameters for the thermally backward reaction in the
amorphous-to-crystal phase transformation of BF2DBM derivatives were strongly dependent on
the substituents which affect not only the mode of molecular packing or stacking in the crystals,
but also the thermodynamic parameters in the transition states. Thermodynamic studies based on
the fluorescence changes will be significant to design organic molecules. We also think that the
amorphous-to-crystal transformation correlates with the crystal growth process from the melt states.

3. Fluorescence Visualization of the Solvent Evaporative Crystallization Process via the
Mutual State

Based on the findings from the amorphous-crystal phase transition observed by fluorescence
change, we have probed the crystallization process from solution, particularly evaporative
crystallization, which will be summarized in this section. We have utilized 2bBF2 (Figure 4a) solution for
the fluorescence observation during solvent evaporation [13]. The detection of the amorphous-like state
before crystallization based on the fluorescence color change means that visualization of the two-step
nucleation model can be achieved. Yu et al. recently reported that monitored amorphous-to-crystalline
phase transition processes were observed in real-time based on fluorescence color changes [1].

The fluorescence images of 2bBF2 in dilute solution, crystalline and amorphous states is purple,
blue and green-orange, respectively, which are shown in Figure 6b–d. The fluorescence spectra
previously reported [13] showed sharp peaks at 413 nm, 430 nm, and 460 nm, which are attributed
to the vibrational structure of the monomer fluorescence. The emission of the crystal was observed
at 445 nm and 470 nm, and in the amorphous state at around 550 nm. The two phases (crystal and
amorphous) can be characterized by X-ray diffraction measurements, meaning that molecular forms
and the aggregation states can be distinguished by the fluorescence color [13].
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Figure 6. (a) Molecular structure of 2bBF2. Fluorescence images of 2bBF2 in (b) 1,2-dichloromethane,
(c) crystalline state, and (d) amorphous state under 365 nm UV irradiation.

Next, we attempted to measure the fluorescence color and spectral changes during evaporative
crystallization from solution. The observation of the molecular assembly state by fluorescence change
can be used to identify liquid clusters proposed in the two-step nucleation mechanism. Figure 7a shows
captured images from a video taken under UV irradiation during the solvent evaporation from
3.1 × 10−2 mol·dm−3 2bBF2 in a 1,2-dichloroethane droplet. This video was uploaded in the supporting
information of a previous report [13]. The fluorescence color of the droplet is purple just after dropping.
The emission color changes to orange from the edge of the droplet, and at about 32 s, the entire
droplet turns orange. A doughnut-shaped droplet with orange emission formed with a decreasing
purple emission region. When evaporation of the solvent was completed, the entire region turned
to blue emission, and some of the region showed orange emission. This orange emission was not
observed even in a highly concentrated solution of 2bBF2; it is exhibited only in a supersaturated
droplet during the evaporation. We measured fluorescence spectral changes as a function of time
as shown in Figure 7b. The fluorescence spectrum acquired just after dropping corresponds to the
monomer emission. The peak around 550 nm monotonically increased with decreasing monomer
peaks. Finally, the peaks at 445 nm and 470 nm appeared due to the crystalline state. The series of
fluorescence spectral changes correspond to the fluorescence color change observed in the images taken
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under UV irradiation. Based on the fluorescence properties of 2bBF2, we can explain the molecular
assembly by evaporative crystallization from solution. The crystal of 2bBF2 generated from solution
by way of the amorphous-like state was found.
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Figure 7. (a) Fluorescence images of 2bBF2 in 1,2-dichloroethane droplet (diameter is approximately 5
mm) during evaporation under 365 nm UV irradiation. (b) Fluorescence spectral changes of 2bBF2

during solvent evaporation.

In order to analyze the fluorescence change, we simulated the fluorescence spectra by non-linear
least-squares fitting based on six Gaussians [13]. Figure 8a shows the relative abundances by the
spectral fitting as a function of time. The initial monomer fraction (0.9) monotonically decreased during
the solvent evaporation, whereas the amorphous fraction was increased up to 95 s. The abundance
was about 0.6 at 95 s, which then decreased dramatically. After 95 s, the fraction of the crystal
suddenly increased with the decreasing amorphous state. It is indicated that the crystal can be
formed from the isolated monomer state via the amorphous-like state, showing a hierarchical change
such as a consecutive reaction. We have proposed the scheme of evaporative crystallization of
molecular-assembling process, shown in Figure 8b.

According to the observation of fluorescence changes during the solvent evaporative crystallization
of 2bBF2, it was confirmed that the fluorescence color changed from purple to blue via orange,
corresponding to the formation of crystals from monomers through amorphous-like states in the
crystallization process. These findings suggested that the amorphous-like state is transiently formed
prior to the crystal formation. Observation of the amorphous-like aggregates in the mutual step
suggests the existence of a mutual state prior to the crystallization existing in the supersaturated region
during the solvent evaporation. In the present case, the orange emission from the amorphous-like
species implies the presence of liquid-like clusters with highly-dense aggregates, which was proposed
in the two-step nucleation model for the crystallization. The existence of the liquid-like cluster
before nucleation is a key factor for the two-step nucleation model, which has been established based
on NMR spectroscopy [18,19], electron microscopy [20], induction time of crystal formation [21],
and non-photochemical laser induced crystallization [22]. The relative abundance changes over time
of the molecular form of 2bBF2 with solvent evaporation clearly reveal that the formation of the
amorphous-like states works as a precursor to nucleation. We have verified that the fluorescence
visualization during solvent evaporative crystallization agrees with the previously known two-step
model for crystal formation [23,24]. In conclusion, we have achieved fluorescence visualization of the
existence of the nucleation precursor (highly dense liquid-like cluster state) proposed by the two-step
nucleation model [13].
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Figure 8. (a) Temporal changes in the relative abundance of monomers, amorphous-like, and crystalline
states, which was calculated from fluorescence spectral analysis assuming six Gaussians. (b) Scheme of
molecular assembly process based on fluorescence spectral changes.

4. Optical and Viscoelastic Properties of the Mutual State during the Phase Transformation

Many reports support the two-step nucleation model, in which the intermediate phase plays an
important role in the crystal formation process [25,26]. Tsarfati et al. mentioned that the crystallization
pathway involves three main steps. The three steps are i: initial densification from the solvent-rich
precursor, ii: early ordering, and iii: concurrent evolution of order and morphology [27]. This finding
implies that the liquid-like cluster state contains the solvent in the solution. However, it is not clear
whether the orange emission of BF2DBM is in a state containing a solvent as a highly dense aggregate or
in an amorphous state as a solid aggregate. Therefore, in order to clarify the state of orange emission as
an intermediate phase before nucleation, we focused on the real-time change of optical and viscoelastic
properties of the droplet during evaporation crystallization [28].

The fluorescence images and polarized optical image were simultaneously observed during
the solvent evaporation with (upper side) and without (lower side) UV irradiation as shown in
Figure 9. The droplet was put in the two polarizers arranged by the cross-Nicol condition. The upper
images of the droplet correspond to the fluorescence color, which is purple just after the dropping.
No transparency in the image without UV irradiation indicates that the crystalline region in the droplet
of 2bBF2 solution is absent. The fluorescence color changed from purple to orange over time. After 60 s,
birefringence was observed in the polarized optical image without UV irradiation. The texture in the
image indicates the formation of a crystalline state. Compared with both images with and without
UV irradiation, particularly at 85 s, no birefringence was observed in the orange emission region,
suggesting the optically isotropic phase, which can be identical to the liquid-like cluster state, as an
intermediate proposed in the two-step nucleation model.

We adapted the quartz crystal microbalance (QCM) in order to evaluate the mass and the
viscoelastic changes based on the changes of the resonance frequency of quartz (∆f ) and resistance
(∆R) from the adsorption onto the quartz substrate in real-time [29]. QCM was also adapted to the
monitoring of the deposited film thickness in the vacuum deposition process. We attempted to use
it to investigate the dynamic viscoelastic property changes for the evaporative crystallization of the
2bBF2 droplet. Figure 10a shows the results of the QCM measurement (∆f and ∆R changes) after the
dropping of the 2bBF2 solution on the Au electrode as functions of time. As an overall tendency, the ∆f
and ∆R values changed in two steps during the evaporative crystallization. It is possible to identify the
three main stages concerning the fluorescence changes of 2bBF2: purple to blue via orange emission.
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We estimated the mass change (∆m) of the 2bBF2 droplet during the solvent evaporation on the
Au electrode by the Sauerbrey equation [30]. ∆m evolution during solvent evaporation is shown
in Figure 10b. Just after dropping, ∆m was 2 µg until 80 s, a value comparable with that for the
1,2-dichroloethane solvent only. ∆m temporarily decreased to 7.3 µg and then reached 15 µg at 95 s
from 80 to 86 s. The increase in ∆m is ascribed to the adsorption and precipitation of 2bBF2 onto the
Au electrode.
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Figure 9. Images of the 2bBF2 in 1,2-dichroloethane droplet under the cross-Nicol condition with and
without UV irradiation during the solvent evaporation. From [31]; reprinted with permission from the
Chemical Society of Japan.
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Figure 10. Time courses of (a) the resonance frequency of quartz (∆f ) and resistance (∆R) monitored
by quartz crystal microbalance (QCM), (b) the mass change calculated by the Sauerbrey equation,
and (c) −∆f /∆R during the solvent evaporation of 2bBF2. The background color indicates the
corresponding fluorescence changes during the solvent evaporation of the droplet. From [31]; reprinted
with permission from the Chemical Society of Japan.
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The QCM results can be used to evaluate not only the ∆m, but also the viscoelastic properties
of the adsorbed materials. Kanazawa et al. [31] and Muramatsu et al. [32] reported that the viscosity
coefficient can be estimated based on the ∆f and ∆R. However, it is complicated to evaluate both the
viscosity and elasticity separately in the viscoelastic medium, because ∆f depends on both the ∆m and
viscosity. The ratio −∆f /∆R was proposed by Kubono et al. to semi-quantitatively separate the viscosity
and elasticity [33]. The−∆f /∆R value of only solvent is about 5.5. Figure 10c shows the time evolution of
the −∆f /∆R value after the dropping of 2bBF2 solution. From just after dropping until 70 s, the −∆f /∆R
value was maintained at 5.5. From 70 to 86 s, −∆f /∆R temporarily increased to 9.2 at 84 s, which
most probably originated from the artifact due to the adhesion of the aggregates. It then recovered
to 5.5 until 112 s, suggesting that the amorphous-like state as an intermediate has a similar viscosity
to the solution. Finally, the −∆f /∆R value increased to 9.2, which is ascribed to the transformation
to elastic crystals. The condensed monomer molecules in the solution form an amorphous-like state
with an optically isotropic and viscous fluid. Then it adsorbs onto the substrate as a liquid-like cluster.
The ∆m continually increases with time, which can be explained by the dissolved monomer molecules
being further adsorbed onto the amorphous-like aggregates with increasing solution concentration.
The polarized optical images and QCM measurements reveal that the intermediate liquid-like cluster
state has high viscosity through solvent evaporation, but nevertheless the emission color is similar to
that of the amorphous solid.

5. Summary

Our group has examined the fluorescence detection of phase transformation dynamics with
symmetry breaking of organic compounds by photochemical methods. The phase transformation
process was confirmed based on the fluorescence color change in real-time. In particular, the intermediate
state (the liquid-like cluster) was visualized during the evaporative crystallization for the first time.
Since this method can be carried out with a fluorescence microscope or a general optical system, it is
advantageous that the experimental apparatus is relatively inexpensive. To clarify the inhomogeneity
and propagation of the phase transformation process in real-time symmetry breaking, we will utilize a
time- and space-resolved phase transformation detection system based on the hyperspectral camera
imaging of the fluorescence spectra.
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