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Abstract: To effectively organize design elements in virtual reality (VR) scene design and provide
evaluation methods for the design process, we built a user image space cognitive model. This involved
perceptual engineering methods and optimization of the VR interface. First, we studied the coupling
of user cognition and design features in the VR system via the Kansei Engineering (KE) method.
The quantitative theory I and KE model regression analysis were used to analyze the design elements
of the VR system’s human–computer interaction interface. Combined with the complex network
method, we summarized the relationship between design features and analyzed the important design
features that affect users’ perceptual imagery. Then, based on the characteristics of machine learning,
we used a convolutional neural network (CNN) to predict and analyze the user’s perceptual imagery
in the VR system, to provide assistance for the design optimization of the VR system design. Finally,
we verified the validity and feasibility of the solution by combining it with the human–machine
interface design of the VR system. We conducted a feasibility analysis of the KE model, in which the
similarity between the multivariate regression analysis of the VR intention space and the experimental
test was approximately 97% and the error was very small; thus, the VR intention space model
was well correlated. The Mean Square Error (MSE) of the convolutional neural network (CNN)
prediction model was calculated with a measured value of 0.0074, and the MSE value was less than
0.01. The results show that this method can improve the effectiveness and feasibility of the design
scheme. Designers use important design feature elements to assist in VR system optimization design
and use CNN machine learning methods to predict user image values in VR systems and improve the
design efficiency. Facing the same design task requirements in VR system interfaces, the traditional
design scheme was compared with the scheme optimized by this method. The results showed that
the design scheme optimized by this method better fits the user’s perceptual imagery index, and thus
the user’s task operation experience was better.

Keywords: virtual reality interface; Kansei Engineering; perceptual cognitive prediction

1. Introduction

The application of virtual reality (VR) has developed substantially in the field of information
visualization with the potential advantages of immersive experience. Natural interaction VR systems
have a profound correlation with the user’s intention perception [1]. VR systems have the characteristics
of imagination, interaction, and immersion, and are widely used in the military, manufacturing, medical,
education, and many other fields. However, for a long time, the research on the interactive interface
design of the user experience has mainly focused on usability, and few interactive interface designs have
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taken satisfying users’ hidden emotional demands into consideration. Currently, users are increasingly
emphasizing the emotional experience resulting from the interactive interface. The coincidence between
the interactive interface design and the user’s perceptual imagery preference has become an important
factor to attract users and ensure user stickiness.

In the task context of VR systems, the coupling relationship between multi-channel visual
expression of information resources and users’ cognitive needs is an important part of studying the VR
system user experience. However, the perceptual cognition of users in the field of VR systems is still
not fully understood, and, moreover, the match of the VR system and user image is also challenging
in application [2,3]. The operation mode, which is based on the VR digital man–machine interface,
is widely used in the field of control systems. Effectively meeting the physiological and psychological
needs of users is an important task in the development process.

It is important to optimize the design features of virtual reality according to the users’ physiological
and psychological needs. For VR technology, the simulation of the man–machine layout design of a
VR system is constrained by man–machine characteristics, such as human physiology, psychology,
and cognition [4,5]. According to the needs of users, designers rearrange the combination of design
elements to optimize the VR system interface, thus improving user comfort and work efficiency [6].

Shi et al. [7] realized the effective interaction between patients and rehabilitation equipment by VR
and proposed an interface to improve the interaction experience and patient interest, and meet users’
rehabilitation needs. Liu et al. [8] and Intraub et al. [9] used statistical analysis methods to establish
the cognitive basis of virtual interfaces and investigated whether vision produced greater spatial
perception extension than touch in virtual reality space. For the interface visualization measurement
and evaluation, Lu et al. [10] demonstrated that the objective discrimination and prediction of the mental
load of the cockpit display interface of an aircraft can also be comprehensively adopted in physiological
measurement technology with the subjective evaluation and performance evaluation methods.

Yan et al. [11] studied the influence of the user interface layout on users’ psychological load by
analyzing the operators in emergency operation procedures of nuclear power plants. In the space
field, the visualization method of data analysis should be optimized and set according to the cognitive
psychology of users [12–16]. Akyeampong et al. [17] used Task Load Index (NASA-TLX) to evaluate
the hydraulic excavator Human Machine Interface (HMI)and proposed an innovative HMI solution
that reduced the mental and physical load on the operator. Therefore, as seen in previous studies,
when optimizing a VR system, it is necessary to analyze the physiological and psychological needs of
users, which can assist designers to build VR system interfaces and scenes with better experiences.

As users’ perceptual cognition is typically implicit, designers are required to identify and analyze
users’ needs to design a virtual reality interactive system that meets the users’ cognition and expectations.
The Kansei Engineering (KE) method plays an important role in mining users’ perceptual needs in
the field of digital interface and user emotional interaction. Using the KE method, scholars combine
perceptual cognition with rational analysis, which plays a positive role in the optimal design of
product systems and assisting designers to make design decisions. The authors in [18,19] proposed a
new ontological engineering method to support perceptual thinking, which formed part of the early
discussion on the application of perceptual engineering. The relationship between users and systems
can be quickly analyzed by KE; then, the production systems can be optimized and the optimal product
matching can be selected. KE can also assist in design decisions [20,21]. The KE system, which is based
on rough set probability statistics, can realize the automatic generation of Kansei needs.

Chanyachatchawan [22] optimized the KE system and improved the decision efficiency using
fuzzy hierarchy and probability statistics. Hasegawa et al. [23] collected digital physiological data sets
through a brain–computer interface, expanding the application of KE in product system configuration
and improving the accuracy of design decisions. KE is employed in the acquirement of user satisfaction
and product generation [24]. For example, Tama et al. [25] and Chen et al. [26] used the KE and Carnot
model to study the relationship between Kansei words and design elements, providing analysis data
and text sets for product system optimization. The use of KE also contributes to the optimal design of
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Color, Material& Finishing (CMF) elements, such as the material color of products [27,28]. Therefore,
the KE method can be used in VR system optimization, and the application of the KE method in the
VR field can be expanded using the research in this paper.

Because the user’s perceptual cognition is subjective, the combination with rational data analysis
can improve the scientific basis and accuracy of the research. Users, designers, and products can
be organically combined using the KE method, thus boosting user satisfaction and design efficiency.
Wu et al. [29] and Xue et al. [30] proposed a comprehensive decision system for design. The importance
of each design element in the system can be quantified based on the user’s perceptions, combined with
evaluation and analysis methods, such as fuzzy computing and quantitative analysis. Quan et al. [31]
proposed a Kansei engineering-based grey relational analysis and techniques for order preference by
similarity to ideal solution (KE-GAR-TOPSIS), which relies on the KE method combined with grey
relational analysis and sequential preference. The method of mining information and text from big
data promotes the accuracy and objectivity of user perceptual image and evaluation data collection.
Chiu et al. [32] developed a case-based online customer review analysis method and extracted customer
preferences using the integration of text mining and KE. Based on the correlation analysis of design
elements under the implicit requirements of users, the complex network method can provide a better
research direction. Gao et al. [33] studied the design elements related to knowledge innovation and
green economy behavior using a complex network. Li et al. [34] adopted a complex network in
advanced manufacturing systems, thus addressing design element layout problems of the system.

To improve the efficiency of system design based on users’ perceptual cognition, the prediction of
users’ perceptual imagery combined with intelligent algorithms has become an important research
topic. Su et al. [35] and Li et al. [36] proposed an evaluation structure based on convolutional neural
networks to eliminate the differences of individual evaluation criteria in product attributes and improve
the evaluation efficiency. Diego [37] developed a modeling method of consumer emotion feedback via
a neural network that is suitable for product form design. Therefore, rational data analysis methods
should be used to analyze the influence of the combination of different design elements on user
perceptual imagery and to explore the correlation of design elements to achieve the purpose of aided
design, thus saving the time and cost of preliminary investigation and analysis.

In the above research, there are few in-depth discussions and studies starting from the emotional
interaction between users and VR system interfaces. There is also a lack of dynamic feedback
mechanisms between resource elements and users’ cognitive imagery, in addition to a shortage
of analysis of the relationship between users’ emotional imagery and VR information interfaces.
Furthermore, there is little research on applying the prediction characteristics of CNN machine learning
to VR system optimization. Therefore, this study adopted a research method that combines the
VR system interface with KE to analyze user satisfaction. The KE model was established based on
regression analysis to deconstruct the design element features. Then, the key design elements were
analyzed, and the user perceptual imagery value was predicted using a CNN, to optimize the design
of the VR system interface.

2. Theoretical and Numerical Model

2.1. Theoretical Framework

As shown in Figure 1, the research framework of VR interface optimization was performed with
four steps, which are based on KE theory.

(1) The mapping space model of the VR system users’ hidden requirements and design features is
established. First, the characteristics of the design resources in the VR system and the cognitive
behavior of the users in VR system are carefully investigated. Then, the mapping relationship
between the explicit coding of the VR system information and the invisible cognition is analyzed.
Thereby, the cognitive image resource space of VR system of users can be built. Therefore,
the cognitive image resource space of the user’s VR system can be established to establish
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the foundation for the efficient matching of design element variables and the user’s invisible
cognitive needs.

(2) A multi-dimensional correlation model of design elements driven by hidden requirements is
established to analyze the importance of different design elements in the VR system. The
quantitative theory I is adopted to determine the approximate functional relationship between
qualitative project group variables and quantitative benchmark variables. A functional KE model
based on regression analysis is established, and the design elements of VR human-computer
interaction interface are analyzed. Combining the analysis results with complex network
verification, the importance of the VR interface design elements can be analyzed, and the key
design element nodes that affect users’ hidden cognition can be obtained, thus assisting designers
to accurately design VR systems.

(3) A convolution neural network (CNN), a machine learning method, is used to predict the user
image of the VR system interface. The nonlinear expression variable relationship between VR
interface design elements and user perceptual cognitive images can be explained based on the
characteristics of the neural network. Then, the user’s perceptual imagery can assist in the
establishment of the VR system with high-accuracy. The VR system design scheme can be used to
predict user satisfaction through machine learning, which can shorten the design time and reduce
the design cost on the basis of meeting user needs.

(4) In instance validation, the design elements of the interface are classified according to the attributes.
The quantitative analysis of the potential correlation between users’ subjective perception and
interface design is conducted, which provides a reference for the VR interface design and
evaluation. Then, a data set is collected by experiments, which can predict users’ perception
and cognitive needs. Thereby, the guiding opinions are drawn up. The virtual reality system
designed by the traditional design method is compared with the optimization method proposed
in this paper to verify the effectiveness of the method.

Figure 1. The theoretical framework diagram.

2.2. Kansei Engineering Theory

Visual information presentation based on digital VR system interfaces has been widely used in
many fields. Effective information transmission on the basis of meeting users’ hidden needs is an
important task faced by designers in the development process. In a VR system, users rely on their
sense of sight, hearing, and touch to obtain information of the system operation via the VR interface.
Then, quick decisions can be made by the brain, and manipulation signals are transmitted to the system
via the motor organs [38]. Therefore, a good adaptation relationship between the user and the virtual
display interface of the system is needed. Subjective feelings, such as aesthetics, comprehensibility,
and operability of the man–machine interface, are influenced by people’s preferences, knowledge,
and experience. A better interaction design should involve the satisfaction of user needs and an
effective image of the interface.
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Effectively meeting the physiological and psychological needs of users is an important task for
designers in the development process. Therefore, mining and analyzing users’ hidden needs can
improve the interactions with the VR system interface.

The KE method makes an important contribution in the field of mining users’ perceptual needs.
The term “emotional engineering” was first coined by Kenichi Yamamoto in 1986 at the University
of Michigan. The central idea is to translate users’ perceptual needs and imagery into quantitative
data by analyzing their perceptual imagery. Obtaining perceptual words for the user evaluation of
design features plays a decisive role in perceptual engineering research [39,40]. Cong et al. [41] and
Wang et al. [42] studied the intelligent service system and captured users’ emotional images using
perceptual vocabulary mining. Chiu et al. [43] extracted customer preferences using the integration
of text mining and KE, and committed to realizing conceptual data-driven design automation and
successfully identified future trends. The focus of KE research is to accurately understand the user’s
perception of a product and to establish a link between perception and product design elements.

The general research of KE includes the following steps. First, the collection of typical samples of
the interface and screen. Secondly, the collection of perceptual image words. Thirdly, the establishment
of a system for evaluating perceptual indicators. Perceptual images are a mixture of users’ preferences,
concepts, judgments, and attitudes towards things. In addition, the method of investigation of the
relationship between the virtual reality interface and Kansei image is mainly quantitative theory I,
which is widely used and practical. Quantitative theory is a branch of multivariate analysis in which
quantitative variables are converted into qualitative variables.

The quantitative theory I is used to determine the approximate functional relationship between
qualitative project group variables and quantitative benchmark variables, and the dependent variables
are predicted by multiple regression analysis and mathematical models. The cognitive space of the
perceptual image is constructed using a cognitive experiment of the perceptual image, and the mapping
model between interactive interface design variables and the perceptual image is realized using the
mathematical model equation method. The effectiveness of the model is further verified by the T-test
method. In addition, the correlations between design elements are further analyzed using complex
networks, and the network of VR system scenario resource elements is established using complex
network theory as a guide. Thus, we analyzed the dynamic changes in the organization structure and
interaction between user imagery and design elements.

Therefore, in this paper, we established a relationship model between users’ implicit cognitive
needs and VR system design elements, clarified the importance ranking of VR system interface
design elements that affect user cognition, and obtained optimization information of aided design.
The optimization design of a VR system based on user information mining is realized, thus promoting
the optimization design of a VR system to develop in a direction more in line with user cognition.

2.3. Theory of VR Information Interface Prediction Model

To improve the design efficiency of a VR system, machine learning prediction methods can be used
to predict whether the design scheme meets the cognitive needs of users and to assist the designer to
make more decisions, and improve the design efficiency and the accuracy of the scheme. Convolution
neural networks (CNNs) are used to predict the user intention value of the user cognitive intention
prediction model of VR interface systems. A convolutional neural network, based on the method of
user quantitative evaluation of user usage data, is established and includes the mapping between user
perception evaluation and product performance [44,45]. The CNN evaluates the emotional images in
user decision making, which is of great significance to improve user satisfaction and design quality [46].
A CNN is an artificial neural network that senses the information features. CNN data processing
adopts the method of local connection and sharing weights, obtains information representation from
the original data through a pooling layer, and automatically extracts local features of the data, thus
establishing feature vectors.
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For the process of information in the convolution layer, the convolution processing is:

xl
j = f

∑
i∈M j

xl−1
i ∗ kl

i j + bl
j

 (1)

where l is the layer l network; bl
j is the biased function; kl

i j is the weight matrix; xl
j is the layer l output;

xl−1
i is the layer l input; Mj is the l − 1 convolution region of layer j characteristic graph; f (·) is an

active function.
The activation function of the CNN is given as:

f (x) = max(0, x) (2)

xi+1 = f (βdown(xi) + b) (3)

yk = f
(
ωkxk−1 + bk

)
(4)

where xi is the input, xi+1 is the output, β is the multiplicative bias, b is additive bias, xk−1 is the input
of the full connection layer, yk is the output of the full connection layer, ωk is the weight coefficient, bk

is the additive bias, k is the serial number of the network layer. In the full connection layer, the Softmax
activation function is always employed for the multi-classification prediction.

The nonlinear characteristics of a CNN can be applied to the interface design optimization and
decision making of VR systems. In Figure 2, the task flow of the predictive model is presented. This task
flow processes the interactive selection of resource features and the evaluation of perceptual imagery.
The scheme target of the VR system interface works as the input, and then matches and selects the VR
interface elements with the perceptual imagery vocabulary. Then, the VR perceptual imagery space
is established via KE. According to the model of regression analysis function, a numerical model is
established and the important design elements and the knowledge points are analyzed. Combined
with complex network analysis and design elements, important design element nodes are obtained to
assist designers in the VR system interface design optimization. In addition, the CNN can carefully
check whether the built plan meets the cognitive requirements and design principle constraints to help
design decisions. Thus, if the design principles are met, the scheme is saved and implemented.

Figure 2. Task flow chart of user image prediction model. Virtual reality (VR) and convolutional neural
network (CNN).
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3. Spatial Intention Analysis of VR System Information Interface Based on the KE Method

3.1. Sample Selection and Semantic Selection of VR System Interface

The KE method holds that, to properly evaluate a system or product, the evaluation variables
should be adjusted according to the users’ psychological changes and the Kansei Engineering (KE)
method. For the investigation of perceptual images of products, the research samples and target
images should be selected [41]. The main research point of the KE method is to map users’ subjective
feelings to explicit design elements [42]. The purpose of this method is to match users’ emotional needs
with the overall environment of the VR system, thus improving users’ satisfaction. As presented in
Figure 3, 16 VR interfaces with similar influence factors were selected, and an interface case base was
constructed. The effects of VR interface design elements on perceptual images are discussed below.

After the deconstruction of modeling elements of the interface sample, the visual features of
the VR interactive interface can be given, such as image elements, the layout of functional operation
area, visual graphic area, color, font, elements, and interface transparency. Subjective images exist
in different combinations of design elements, and users can judge perceptual images through design
elements. These elements come from the layout of the function operation area, browsing order, visual
graphics area, color, font, element, transparency, etc. Then, the suitable perceptual image semantics
for describing VR interfaces can be selected. To avoid the problems of too strong subjectivity, poor
real-time performance, and less data in the traditional KE method, this paper used the method of a big
data crawler to sort the image lexicon of the VR system interface from the channels of the network,
publicity materials, pictorials, etc., and obtained a total of 40,000 words of comments on the VR system.
Adjectives were extracted through semantic analysis, and words suitable for VR interface emotional
image expression with high word frequency, and the top 200 weight rankings, were selected. Then,
50 emotional image words were established by eliminating words with similar meanings, as shown in
Table 1.

Table 1. Extracting words from Big Data analysis.

Project Explanation

Big Data
Collection

Text
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Table 1. Cont.

Project Explanation

Image
words

Words Weight Words Weight Words Weight Words Weight

Technological 0.892 Safe 0.838 Comfortable 0.7382 Accurate 0.7149
Balanced 0.925 Trustworthy 0.810 Intuitive 0.7254 Shock 0.7235

Easy to use 0.921 Efficient 0.814 Natural 0.7469 Oppression 0.7294
Concise 0.877 Fashionable 0.837 Advanced 0.7155 Agile 0.6849
Tidiness 0.878 Trustworthy 0.761 Calm 0.7233 Friendly 0.6953
Tedious 0.881 Quiet 0.769 Interesting 0.7341 Uncomfortable 0.7112
Novel 0.872 Rich 0.815 Endurable 0.7383 Vertigo 0.6935

Beautiful 0.863 Compact 0.774 Dynamic 0.7619 Happy 0.6971
Rational 0.859 Moderate 0.744 Relaxed 0.7121 Cheap 0.6991

Clear 0.853 Convenient 0.790 Experience 0.7161 Texture 0.7006
Coordinated 0.838 Orderliness 0.765 Smooth 0.7011 Trivial 0.7035
Symmetrical 0.826 Cheerful 0.739 Clear 0.7056 Disgusting 0.6887

Gorgeous 0.819 Complicated 0.755 Feel good 0.7149 Patient 0.6934

Table 2 demonstrates the preliminary screening of the perceptual image semantics, in which 22 VR
users (12 men and 10 women) are tested. Firstly, a questionnaire is established. Then, the sample
pictures can be observed from the test results, which takes the users experience into account to select
the most suitable perceptual image semantics. According to the number of votes, 33 perceptual image
semantic words are initially screened and established to express the VR interface. Then, perceptual
images are semantically grouped as shown in Figure 3.

Table 2. The preliminary screening results of the perceptual image semantic words.

Adjective Votes Adjective Votes Adjective Votes Adjective Votes Adjective Votes

Technological 14 Beautiful 9 Trustworthy 12 Intuitive 12 Natural 11
Balanced 16 Rational 12 Efficient 11 Convenient 9 Advanced 12

Easy to use 10 Clear 13 Fashionable 12 Orderliness 13 Calm 8
Concise 8 Coordinated 11 Dependable 12 Cheerful 10 Interesting 13
Tidiness 9 Symmetrical 8 Quiet 9 Complicated 13 Endurable 18
Tedious 5 Gorgeous 4 Rich 9 Comfortable 10 Relaxed 10
Novel 9 Safe 13 Compact 16 Intuitive 12
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To further explore the structural relationship of the perceptual images in the VR interface,
22 subjects were invited to collect the perceptual images. After the reading of image adjectives,
the words with similar meanings were entered into in the same column by the artificial classification
method. Table 3 depicts the 33 × 33 similarity matrix gained by MATLAB, which counts the same
number of grouping times. The obtained data were imported into SPSS data statistical software for
cluster analysis. The perceptual image words can be divided into seven groups, as shown in Table 4.
The representative perceptual image semantics with the seven groups were: scientific and technological,
clear, fashionable, balanced, neat, dynamic, and easy to use.

Table 3. The 33 × 33 similarity matrix of the perceptual image semantic vocabulary.

Word 1 Word 2 Word 3 Word 4 . . . . . . Word 30 Word 31 Word 32 Word 33

Word 1 0 0 0 0 . . . . . . 1 5 12 0
Word 2 0 0 0 0 . . . . . . 0 3 0 1
Word 3 0 0 0 0 . . . . . . 3 2 1 4
Word 4 0 0 0 0 . . . . . . 9 0 0 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Word 30 1 0 3 9 . . . . . . 0 1 0 5
Word 31 3 3 2 0 . . . . . . 1 0 4 1
Word 32 14 0 1 0 . . . . . . 0 4 0 2
Word 33 0 1 2 13 . . . . . . 5 1 1 0
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Table 4. The results of the semantic grouping of perceptual images *.

Group Perceptual Image Words

Group 1 Technological, Rational
Group 2 Balanced, Neat, Coordinated, Symmetrical
Group 3 Easy to use, Efficient, Convenient, Cheerful, Intuitive
Group 4 Concise, Monotonous, Calm
Group 5 Tedious, Rich, Compact, Complicated
Group 6 Novel, Advanced, Fashionable, Interesting
Group 7 Beautiful, Endurable,
Group 8 Gorgeous, Dynamic,
Group 9 Safe, Trustworthy

Group 10 Comfortable, Natural, Relaxed

* According to the obtained perceptual image words, these are formed into antisense adjective pairs: scientific
and technological–traditional; clear–vague; fashionable–conservative; balanced–unbalanced; neat–fragmentary;
dynamic–quiet; easy to use–difficult to use.

3.2. Deconstruction of the VR Interface Design Elements

According to the multiple regression analysis, the functional relationship of design feature space
and image space can be achieved, and then the KE model of the VR system interface is formed [43].
The deconstruction and reanalysis of the design element features of VR interface samples were
conducted using the design element analysis method. Combining the VR system interface design
requirements and design principle constraints, this defines the design items as function operation
area layout, visual browsing sequence, visual graphic area, color, font, transparency, etc. The design
elements of the VR interface are presented in Table 5. According to the corresponding elements, the
distribution of each design category was determined with six items and 13 categories.

Table 5. Classification of the VR interface design elements.

Project Category Category Definition

Function Operation Area
Layout X1

Aggregation C11 The layout of functional operation areas is
relatively concentrated.

Discrete C12 The layout of the functional operation area is
relatively discrete.

Visual browsing order X2
Few browse interruptions C21 The number of user visual browsing

interruptions is small.

Browse interrupted the second
time C22

The user’s visual browsing is interrupted
many times.

Visual graphic area X3
Round chamfering C31 Chamfered curve

Square chamfer C32 Chamfered straight lines are the main ones.

Color X4

Cold tone C41 The overall hue is colder

Warm tone C42 The overall hue is warmer.

Grey tone C43 Colorless phase, gray tone

Transparency X5
Transparency C51 In VR space, the following objects can be seen

through the interface.

No transparency C52 In VR space, the following objects cannot be
seen through the interface.

Font X6
Rough gesture C61 The font is thick

Gesticulate meticulously C62 The font strokes are thinner.

The layout of the functional operation area was distinguished by aggregation and dispersion.
The visual browsing sequence was distinguished according to the proportion of text and graphics in the
system interface. If the text accounted for a large proportion, the number of browsing interruptions was
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less. Pictures accounted for a large proportion because the user’s vision stayed on the images for analysis,
and the number of browsing interruptions was higher. The visual graphic area was distinguished
by chamfering. The color of the system interface was distinguished by hue. The transparency of
the system interface was distinguished according to whether there was transparency. Fonts were
distinguished according to the thickness of the strokes.

3.3. Establishment and Solution of Intention Space Model

According to the theory of multiple regression analysis, the linear relationship between the
perceptual image cognitive space and VR interface design variables was established. Qualitative
variables of interface design must be converted into quantitative variables, and then quantitative
analysis can be carried out. Based on quantitative theory I, a mathematical model was established.
The VR interface design project is regarded as item X and the design elements as category C.

δ1(1, 1) . . . δ1(1, r1)δ1(2, 1) . . . δ1(2, r2) . . . δ1(m, 1) . . . δ1(m, rm)

δ2(1, 1) . . . δ2(1, r1)δ2(2, 1) . . . δ2(2, r2) . . . δ2(m, 1) . . . δ2(m, rm)

δn(1, 1) . . . δn(1, r1)δn(2, 1) . . . δn(2, r2) . . . δn(m, 1) . . . δn(m, rm)

 (5)

where δi (j,k)(i = 1, . . . , n; j = 1, . . . , m; k = 1, . . . , rj) is the response of category k.
This model calculates the average value of the semantic scores of all testers for each category in the

sample. A sample with a greater than average value can be identified as the element category and has
a greater impact on the user’s sensibility and is, thus, parameterized as “1”. For the parameterization
“0”, the category is less than the average value. As shown in Table 6, the evaluation average value of
the perceptual image words and each design category are substituted into the mathematical model.
Then, the influence and direction of each category on perceptual image words can be analyzed by the
category scores.

Table 6. The perceptual image data of the VR interface based on quantitative theory class I.

X1 X2 X3 X4 X5 X6

Sample C11 C12 C21 C22 C31 C32 C41 C42 C43 C51 C52 C61 C62

1 1 0 1 0 0 1 1 0 0 0 1 1 0
2 0 1 0 1 0 1 0 0 1 0 1 0 1
3 0 1 0 1 0 1 0 1 0 0 1 0 1
4 0 1 1 0 1 0 0 1 0 0 1 1 0
5 0 1 1 0 0 1 0 1 0 1 0 0 1
6 1 0 0 1 0 1 0 0 1 0 1 0 1
7 0 1 0 1 0 1 0 1 0 0 1 0 1
8 1 0 1 0 1 0 0 1 0 1 0 1 0
9 0 1 1 0 1 0 1 0 0 0 1 1 0

10 0 1 1 0 1 0 1 0 0 0 1 1 0
11 1 0 1 0 1 0 0 0 1 0 1 1 0
12 0 1 0 1 0 1 0 1 0 0 1 0 1
13 1 0 1 0 1 0 0 1 0 0 1 1 0
14 1 0 0 1 0 1 0 0 1 0 1 0 1
15 1 0 1 0 1 0 0 1 0 0 1 1 0
16 0 1 1 0 1 0 1 0 0 1 0 0 1

3.4. Importance Analysis of the VR Interface Design Elements

When analyzing the importance of design elements in the VR system design interface, the Likert
scale provides a method to effectively connect user cognition and design elements. The Likert scale is a
psychological response scale. The Likert scale can express the changes of users’ perceptual cognition
of products through ordered variables [44,45]. From the analysis of VR interface factors, 16 samples
were selected for experiments as shown in Figure 1. The subjects comprised 40 users, 22 of whom had
a design background. Sixteen typical samples were divided into seven groups of perceptual image
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semantics, and a Likert scale was adopted to discretize the target data. The image relevance degree of
semantic words in Likert scale were divided into 1, 2, 3, 4, and 5 levels. Thus, “1” and “5” represent
“relatively” and “extremely”, respectively, and “3” is the neutral point. The subjects who choose the
neutral point answer usually do not have a clear attitude. The further away the selected answer is
from the neutral point of “3”, the clearer the subject’s perceptual tendency towards himself. After the
Likert scale investigation, the sample was evaluated to produce the perceptual image evaluation table
of VR interface influencing factors, as shown in Table 7. For a certain kind of image, the parameters
were input into SPSS for data processing; then, the values of design features and the average value of
perceptual images of each experimental sample were calculated. After the calculation and analysis of
multiple regression, the analysis results of the relationship model between the design project and the
perceptual image word pair were obtained.

Table 7. The evaluation factors of the VR interface perceptual image.

Sample
Perceptual Image Words

Technological Clear . . . . . . Easy to Use

1 3.725 4.25 . . . . . . 2.725
2 1.125 3.725 3.275
3 2.225 3.735 . . . . . . 1.865

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 1.935 3.45 . . . . . . 1.985

For an image of SPSS, the values of parameterized design features and the average value of
perceptual images of each experimental sample were input respectively. Then, the analysis results of
the relationship model between the design project and the perceptual image word pair were obtained.
As shown in Table 8, taking “easy to use” as an example, the relationship of “easy to use” and perceptual
image words is gained.

Table 8. Relationship of “easy to use” and perceptual image words.

Design Project Design Category Design Category Score Range

Function Operation Area Layout X1 C11 2.004
3.024C12 −1.821

Visual browsing order X2 C21 1.007
2.125C22 0.417

Visual graphic area X3 C31 0.001
0.010C32 −0.009

Color X4

C41 −0.013

0.912C42 0.433

C43 −0.479

Transparency X5 C51 −0.001
1.191C52 3.190

Font X6
C61 −0.011

1.713C62 2.702

Constant term 0.782

Decision coefficient 0.876

Multiple correlation coefficient 0.936

The level of category score in Table 8 indicates the semantic level of the perceptual image
of the project. A positive value of the category score is a positive image, and a negative value
represents a corresponding negative image. The smaller the absolute value of the difference between
the determination coefficient and 1, the higher the accuracy of the prediction model. The difference
between the maximum and minimum category score in each element is used to measure the contribution
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of each item in the overall forecast. Multivariate regression analysis is employed to study the expression
of dependency relationship of variables [46]. The multivariate regression method is adopted to analyze
the mapping function relationship between the VR interface feature space and perceptual space.
Moreover, the multiple correlation coefficient is the fitting degree of the regression model, which
explains the meaning of the perceptual image, that is, the reliability degree of regression analysis.
As shown in Table 8, the constant term is 0.782. The multiple correlation coefficient was 0.936, and the
decision coefficient was 0.876. Thus, the prediction model is shown in Equation (6):

Y1 = 0.003c11 − 1.821c12 + 0.007c21 − 3.417c22 + 0.001c31 − 0.009c32 − 0.013c41 +

0.433c42 − 0.479c43 + 0.001c51 + 3.190c52 − 0.011c61 + 2.702c62 + 0.782.
(6)

Table 8 also indicates that the discrete layout of the functional operation areas (X1–C12) and the
jumping interface browsing mode (X2–C22) have a reverse effect on the “easy to use” perceptual image.
The interface with the aggregation of the functional operation area layout (X1–C11) and sequential
browsing mode and less user visual jump (X1–C21) played a positive role in “easy to use” perceptual
images. The layout of more dispersed functional operation areas dispersed the user’s concentration
and consumed more time and energy in finding functional tasks. Therefore, the more concentrated
distribution of functional areas should be controlled uniformly within the optimum visual range of
users, thus increasing the efficiency of functional operations.

The browsing mode of users tended to be the interface form of combining pictures and words.
More words caused user cognitive fatigue, whereas more pictures lack logic. Therefore, a combination
of the two improves users’ satisfaction. The contribution values of the perceptual images of each
project are shown in Table 9. For the user demand of “easy to use”, the complex network was used to
analyze the correlation between design elements in the VR system interface. As shown in Table 10,
the interface layout and overall tone have a strong correlation with each element. The analysis results
of multiple linear regression were combined with the complex network, which demonstrated that the
interface layout (X1) and interface browsing sequence (X2) of the functional operation area worked as
important factor indexes in the system design.

Table 9. The results of the analysis on the relationship between perceptual image words.

Perceptual Image Words X1 X2 X3 X4 X5 X6

Technological 0.067 0.983 2.798 2.191 1.640 2.655
Clear 3.395 2.747 0.773 1.065 1.966 0.544

Fashionable 0.824 1.424 2.010 2.912 13.191 0.713
Balanced 1.694 0.596 0.039 0.479 0.745 0.442

Neat 1.147 1.235 1.436 0.938 2.481 0.167
Dynamic 0.681 1.903 3.017 2.149 1.127 1.076

Easy to use 3.524 2.908 0.269 0.358 1.080 1.075

Table 10. Correlation of the design elements.

Clustering
Coefficient

Number
of

Triangles
Eigenvector Degree Closeness

Centrality Hub Diagram

Layout 0.7 7 0.83 6 0.63 0.4
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4. Validation and Analysis of Case Experiments

4.1. KE Model Verification of the VR System Interface

The user’s perceptual demand image for the target interactive interface was determined, and the
design items of VR interactive interface were obtained through category hierarchy inference. Then,
on the basis of comparative analysis with the actual values of the VR system, the design variables
of the interactive interface were classified and sorted. Secondly, after the qualitative variables of
interactive interface design were transformed into quantitative variables through parameterization,
the mapping relationship model between perceptual images and interactive interface design variables
was established using multiple linear regression analysis. Using the T-test, the utility of the model was
verified to be reliable.

To verify the perceptual imagery semantic score of the KE model, the subjective evaluation of the
sample was performed by the participant, and the calculated value of the KE model was compared
with the actual value with a single-sample T-test. As shown in Figure 4, four samples were selected
and verified. The characteristics of the texture components of typical samples were substituted into
multiple regression equations, and then the image scores and coordinates of the image space were
obtained. The paired contrast T-test was conducted with the actual evaluation data, which was gained
from the image verification experiment to judge the credibility of the modeling rule.
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The concrete composition of the interface design elements of the virtual reality system was
calculated through the concrete coordinate values of the perceptual space. The product scheme was
designed according to the composition of the elements. The designer evaluated the imagery perception
of the design solution. The actual evaluation data was obtained from the experiment, which was
compared and tested against the predicted data to determine the credibility of the stylistic rule. For the
four verification samples, the coding table of the morphological and physical elements was achieved
as shown in Table 11.

Table 11. Validation of the sample design element image data.

X1 X2 X3 X4 X5 X6

Sample C11 C12 C21 C22 C31 C32 C41 C42 C43 C51 C52 C61 C62

1 1 0 1 0 0 1 1 0 0 0 1 1 0
2 0 1 1 0 0 1 0 1 0 0 1 0 1
3 1 0 0 1 1 0 0 1 0 0 1 1 0
4 0 1 0 1 1 0 0 0 1 0 1 1 0
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The characteristics of the components of the verification sample design were substituted into
the multiple regression equation (KE model) to calculate the image score. We invited 20 subjects to
complete a questionnaire survey of the five-order semantic difference method. Four samples were
scored on six perceptual image semantics as shown in Figure 5. The average score of each perceptual
image semantics was calculated, and the predicted value of the multiple regression equation was
compared with the actual value. For each sample, the calculated value was subtracted from the
corresponding column value of the evaluation score. Then, the absolute value was obtained, which
was recorded as Pi (i = 1, 2... 7), where i is the corresponding perceptual image word, for example, i = 1
is “easy to use”.

Figure 5. Comparison chart of the experimental values and actual values.

For the same sample, the average value of the difference between the “calculated value and the
actual value” of the perceptual image was obtained and recorded as T, T = (P1 + P2 + . . . . . . + P7)/7,
and the correlation coefficient was obtained as shown in Table 12. The results show that the difference
between the calculated value and the actual value was essentially controlled at approximately 97%.
The mathematical model of the developed VR interface imagery space was reasonable and considered
significantly relevant; thus, the reliability of the analysis results can be verified. The KE method is
based on emotional experience to analyze users’ cognitive behavior, which not only provides the basis
for VR system interaction designers to mine the needs of design users but also opens up the design
space for designers to enhance users’ perceptual cognitive experiences.

Table 12. Verification of the sample “Calculated Value—Actual Value” correlation coefficient.

Sample T

1 0.122
2 0.163
3 0.104
4 0.482
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4.2. CNN Forecast Model

Based on the CNN, a VR perceptual image prediction model and the optimal combination of
design elements were established, which provided certain theoretical guiding significance for assisting
in the design and development of the VR system interface. The predictive model input set data was
organized with the imagery of the VR system interface as “easy to use”. The VR interface elements
were deconstructed according to the deconstruction method outlined in Section 3.2. The design feature
module is an explicit knowledge feature. The One-Hot coding method was adopted to extend the
numerical value of discrete features to Euclidean space [47,48]. The number 0 indicates the irrelevant
options, and the number 1 indicates the relevant options. The VR information interface sample design
elements were input to process information according to the One-Hot coding mode. Based on the
modeling method of the convolution neural network, the correlation between user perceptual intention
and design elements was quantitatively established by making full use of the user interaction data of
the VR system [49]. Then, the output set data was collated, and the collated samples were imported
into the VR information interface. Figure 6 depicts the experimental scene diagram.

Figure 6. Experimental scenario.

The VR system applied is modeled by Rhinoceros software, and the system is developed using
UNREAL ENGINE 4.21.1. The virtual hardware devices are HTC VIVE/HTC VIVE PRO, VIVE
head-mounted device, VIVE control handle and VIVE locator. In the formal experiment, 15 personnel
were recruited for the perceptual intention experiment, who were aged between 20 and 26 years old,
and comprised 8 men and 7 women. All of the subjects had normal vision or corrected vision with no
defects in visual, auditory, or tactile perception, and were right-handed. The experimental task was
to observe the overall interface information transmission effect and click on the task area. The task
involved a sense of ease, and the data measurement of intention value “ease and ease of use” was
recorded by the NASA-TLX scale.

For the feature analysis of the input and output set data, the neural network model structure for
the VR system interface should mainly contain the following layers. As shown in Figure 2, the first
layer is a one-dimensional convolution method. It has 2048 convolution kernels and the size of the
convolution kernels is set to 7. The output dimensions of this layer are (28 – 7 + 1) = 22 and 2048.
When the number of convolution kernels is 1024 and the size of convolution kernels is 5, the output
dimensions of this layer are (22 – 5 + 1) = 18 and 1024. The third layer is the convolution layer with 512
convolution kernels and the size of convolution kernels is 5. The fourth layer is a convolution layer,
which has 256 convolution kernels and the size of convolution kernels is 5. The fifth layer is also a
convolution layer, which has 128 convolution kernels and the size of convolution kernels is 3. The sixth
convolution layer has 64 convolution kernels and the size of convolution kernels is 3. The seventh
layer is a tile layer. The eighth layer is the full junction layer with 128 neurons. The ninth layer is the
full junction layer with 20 neurons. The tenth layer is the output layer and has one neuron.

To verify the results of the prediction model, samples are selected with the performance test.
Then, the data in the output layer can be normalized and detected by the function MSE. Mean square
error in mathematical statistics refers to the expected value of the square of the difference between the
estimated parameter value and the parameter value, which is recorded as MSE. MSE is a convenient
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method to measure the “average error”. MSE can evaluate the degree of change of data. The smaller
the MSE value, the better the accuracy of the prediction model in describing experimental data.

MSE =
1
p

p∑
k=1

(yk − yk
∗)2 (7)

The authors in [50] demonstrated that the feasibility of the CNN prediction model can be verified
with MSE values of less than 0.01 for this VR interface. The test data of the user NASA scale and the
output layer values of CNN model were analyzed via the mean square deviation MSE calculation.
Figure 7 shows the fitting situation of 50 iterations. The measured result value was 0.0074, and the
MSE value was less than 0.01, which proves that the CNN model of VR digital information interfaces
performed well. This also shows that the output predicted value was essentially consistent with the
experimental value data and that the model can complete the correct mapping between user imagery
testing and design elements. Comparing the CNN forecast data and Back Propagation Neural Network
(BP) forecast data with the actual values, we found that the CNN forecast data was more accurate,
as shown in Figure 8. Therefore, this CNN prediction model has guiding significance for assisting the
design and development of VR system interfaces.

Figure 7. Model training results.
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4.3. Analysis of Perceptual Image Prediction Results Based on CNN

The matching types of interface design elements of the VR system were 2 × 2 × 2 × 3 × 2 × 2 =

96 when the NASA cognitive load scale takes a value of 40.59454, which is the minimum cognitive
load value. The VR information interface features included the following features. (1) The layout
of the aggregated functional operation area had fewer visual interruptions. This can improve the
concentration of users, reduce energy consumption, and improve the efficiency of functional operations.
(2) The chamfering features of the visual graphic area were round chamfering. Roundly chamfered
corners gave users a warm and friendly feeling, improved the comfort of user experience, and reduced
stimulation. (3) The overall tone was cold. The colder color tone is more in line with the scientific
and technological characteristics of VR systems. (4) The interface was transparent. The transparent
interface makes the VR system environment more real, provides a sense of depth in the environment,
and enhances the user experience. (5) The font strokes of the text are thick. Thicker font strokes can
make the text clearer and have a higher error tolerance for users to read information.

Based on the analysis results of the intention space of KE presented in Section 3.4 the discrete
layout of the functional operation areas and the jumping browsing mode had a reverse effect on the
“easy to use” Kansei image. The interface with an aggregated layout of the functional operation areas,
sequential browsing mode, and fewer visual jumps played a positive role in “easy to use” perceptual
images. Therefore, the results of the CNN prediction and KE imagery space analysis were combined
for the optimization design and scheme selection of the VR information interface. Table 13 compares
the representative VR visual information interface design schemes. This presents a representative of
the VR visualization information interface design schemes, in which scheme two is optimized after
the CNN prediction and data comparison. Scheme two had a lower cognitive load value, which is
more in line with the user’s demand of “easy to use” perceptual intention. Hence, the VR system
design method proposed in this paper uses the perspective of taking users as the center, and drives the
VR system interface optimization design using objective data based on user cognition. This provides
the support of the users’ design knowledge for designers to carry out their work, and improves the
attractiveness of the VR system to users and the market competitiveness.

Table 13. Comparison of the schemes.

Category Option 1 Option 2

VR scene map
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Table 13. Cont.

Category Option 1 Option 2

Cognitive load

Mental needs
Physical demand

Time Demand
Task Performance

Degree of effort
Frustration

Total Load Value

7.8 6.571
5.2667 3.714
7.067 3.786

10.067 3.929
5.067 4.857
7.067 3.428
109.6 62.06667

Task Selection Time 1.734 1.12

Category Option 3 Option 4

VR scene map
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Interface layout: simple and balanced
Operation area: upper left corner of the
interface
Chamfering form of the visual graphic
area: square chamfering
Overall color palette of the visualization
interface: cool light colors
Contrast between the mission area and
the overall color palette:
brightness contrast
Visual order of navigation: left to right,
top to bottom. Due to less combination of
pictures and texts, more text than
graphics, so fewer visual transitions and
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Interface layout: rich and balanced.
Operating area: upper left corner
Visual area chamfering method:
oblique chamfering
Total color palette of the visualization
interface: cool and dark.
Contrast between task selection area and
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Cognitive load

Mental needs
Physical demand

Time
Demand

Task Performance
Degree of effort

Frustration
Total Load Value

9.867 7.933
6.733 7.267
6.4 6.4
6 7.867

6.2 9
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106.27 120.33

Task Selection Time 1.317 1.903

5. Conclusions

Starting from the perceptual images of users, this paper investigated users’ psychological
tendencies in operating VR interfaces to break the tradition of subjective thinking design and identify
the key features of VR interface form design. We adopted quantitative theory I and the multiple
regression analysis model. Then, user intention prediction was carried out via a CNN. Using qualitative
inference, the relationship between the VR system design details and the perceptual demands was
established. Via the construction of the mapping model, the perceptual requirements were quantitatively
transformed into design variables.

These results provide a new method for designers to produce design schemes more objectively
and efficiently from the perspective of users’ perceptual needs. This helps to improve the satisfaction
of users and the market competitiveness of innovative design and, also, provides a reference for the
interactive interface design of other products.

The main findings are summarized as follows:

(1) The application of KE in VR system visualization is expanded. Multi-channel perceptual
information is integrated into VR interface task scenario research, which is guided by cognitive
psychology theory and KE theory. The relationship between VR system design elements and
users’ perceptual cognition is analyzed. Then, the spatial model of VR system users’ perceptual
cognitive image resources is built.
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(2) The design cycle for the building of VR systems is shortened and the user satisfaction of the
design scheme is improved. The KE function model is established using quantitative theory I and
multiple regression theory.

(3) The similarity between the calculated value and the actual value is about 97%, thus, the VR
mathematical model established is significantly related. The VR system design features are
used to learn users’ cognitive images through the CNN to achieve the effect of predicting users’
satisfaction. The CNN prediction model gains a measurement value of 0.0074 and the MSE value
is less than 0.01, which indicates that the CNN model has a good test performance.

The focus of the future research will be to explore the multi-dimensional interaction of design
features in VR task situations on user task operations. According to user image feedback, VR resource
features can be dynamically optimized, and the optimal interval value of each design resource feature
can be determined under the condition of high user satisfaction. In general, our research proves that
Kansei Engineering plays an important role in analyzing users’ perceptual images in VR systems’
human–computer interaction, thus expanding the research field for KE.
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