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Abstract: We propose a field theory for the local metric in Stueckelberg–Horwitz–Piron (SHP) general
relativity, a framework in which the evolution of classical four-dimensional (4D) worldlines xµ (τ)

(µ = 0, 1, 2, 3) is parameterized by an external time τ. Combining insights from SHP electrodynamics
and the ADM formalism in general relativity, we generalize the notion of a 4D spacetime M to
a formal manifold M5 = M× R, representing an admixture of geometry (the diffeomorphism
invariance of M) and dynamics (the system evolution of M (τ) with the monotonic advance of
τ ∈ R). Strategically breaking the formal 5D symmetry of a metric gαβ(x, τ) (α, β = 0, 1, 2, 3, 5) posed
onM5, we obtain ten unconstrained Einstein equations for the τ-evolution of the 4D metric γµν(x, τ)

and five constraints that are to be satisfied by the initial conditions. The resulting theory differs from
five-dimensional (5D) gravitation, much as SHP U(1) gauge theory differs from 5D electrodynamics.

Keywords: general relativity; Stueckelberg-Horwitz-Piron (SHP) theory; numerical relativity

1. Introduction

The Arnowitt Deser Misner (ADM) formalism [1] in general relativity (GR) expresses the
Einstein field equations in canonical form, thus permitting a solution of particular field/matter
configurations formulated as initial value problems. As a canonical Hamiltonian formulation that
splits four-dimensional (4D) spacetime into three-dimensional (3D) space and a selected time direction,
ADM provides insight into general features of relativity, but is not always the most convenient of the
3+1 formulations for computation, especially numerical simulation. In this paper we borrow techniques
from the 3+1 formalism in order to generalize the Stueckelberg–Horwitz–Piron (SHP) theory of classical
electrodynamics [2–7] to SHP GR [8,9]. The SHP framework is a covariant canonical approach to
relativistic classical and quantum mechanics, in which 4D spacetime events are defined with respect
to coordinates xµ (µ = 0, 1, 2, 3) and an external evolution parameter τ. Events trace out particle
worldlines as functions xµ(τ) or ψ(x, τ) under the monotonic advance of τ, producing five τ-dependent
gauge fields aα(x, τ) carrying the interaction between events. (Here and throughout the SHP literature,
Greek indices α, β, γ, ..., η take the values 0, 1, 2, 3, 5, while λ, µ, ν, ... run from 0 to 3.) The result is
an integrable electrodynamics, instantaneous in the external time τ, but recovering Maxwell theory
in a τ-equilibrium limit. At numerous stages of analysis in SHP, an apparent five-dimensional (5D)
symmetry arising from the five variables xµ, τ must be judiciously broken to 4+1 representations of
O(3,1), because the xµ are coordinates while τ is an external parameter. In this paper we apply the
lessons of SHP electrodynamics to a 4+1 theory of a local metric gαβ(x, τ). As we shall see, this approach
differs from a 3+2 or (3+1)+1 formalism, in that we do not split 4D spacetime into space and time,
maintaining the manifest spacetime covariance of the underlying physical picture in each step. Rather,
we construct a purely formal 4+1 −→ 5D manifold as a guide to formulating field equations that under
the 5D −→ 4+1 foliation describe a spacetime metric γµν(x, τ) evolving with τ and preserving the
required spacetime symmetries.
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1.1. Motivation: The Problem of Time

In summarizing Einstein gravity as “Spacetime tells matter how to move; matter tells spacetime
how to curve,” Wheeler [10] touched on certain general issues in relativity known collectively as
the problem of time In nonrelativistic mechanics, space is viewed as the “arena” of physical motion,
a manifold with given background metric in some coordinate system, while time is an external
parameter introduced to mark the coordinate evolution that characterizes the motion of objects
in space. In contrast, time in general relativity retains its traditional Newtonian role as evolution
parameter, but also serves as a coordinate, and thus, through the metric, plays a structural role
in the spacetime “arena” itself. This dual role is complicated by the principal features of general
relativity: the diffeomorphism invariance that eliminates any a priori distinction between space and
time coordinates, and the background independence that regards gravitation as equivalent to motion
in the spacetime determined by the local metric.

Because the metric is itself determined by the time parameterized motion of matter,
practical approaches to problems in gravitation generally pose the Einstein field equations and the
equations of motion for matter as an initial value problem. Beginning with a consistent spacetime
geometry at some time, one may solve for the evolution of spacetime and the motions of matter
over time. Known as a 3+1 formalism, this approach singles out a time direction, as in standard
Hamiltonian formulations of field theory, and so the equations are not manifestly covariant, although
general covariance is preserved at each step [1,11,12]. On the one hand, a configuration of matter and
spacetime that satisfies the equations of GR represents a 4D block universe, given once and describing
all space, past, present, and future. Additionally, on the other hand, we may find such solutions by
integrating forward in time from consistent initial conditions at some time. In Wheeler’s words [13],
“A decade and more of work by Dirac, Bergmann, Schild, Pirani, Anderson, Higgs, Arnowitt, Deser,
Misner, DeWitt, and others has taught us through many a hard knock that Einstein’s geometrodynamics
deals with the dynamics of geometry: of 3-geometry, not 4-geometry.”

Unsurprisingly, the foliation of spacetime into three-geometries of simultaneous points in space
further complicates the interpretation of time. Because time is only felt in the evolution from one
3D submanifold to another, the Hamiltonian is constrained to vanish when restricted to any given
equal-time three-geometry [12]. Moreover, there is no preferred criterion for choosing a functional
of canonical variables that might be used as an intrinsic time parameter. While one may consider a
physical clock that measures the proper time in some reference frame, the proper time depends on a
spacetime trajectory that is only known after the equations of motion have been solved. While such
a system may be well-posed in classical GR [11], this is less obvious if the metric is subject to
quantum fluctuations.

1.2. Stueckelberg-Horwitz-Piron (SHP) Theory

Stueckelberg–Horwitz–Piron (SHP) theory is a covariant approach to relativistic classical and
quantum mechanics developed to address the problem of time as it arises in electrodynamics.
In 1937 Fock proposed using proper time as the evolution parameter for a Newton-like force law,
succinctly expressing a manifestly covariant formulation of electrodynamics [14]. But, four years
later, Stueckelberg proposed [2,3] to interpret antiparticles as particles moving backward in time,
and showed that neither the coordinate time x0 = ct nor the proper time of the motion could serve as
evolution parameter for particle/antiparticle pair processes. Because ds2 = ηµνdxµdxν cannot remain
constant during such processes, he introduced an external time τ and argued that ds2 = ηµν ẋµ ẋνdτ2

can be a τ-dependent dynamical quantity, even in flat space. In 1973, Horwitz and Piron [4] were
similarly led to use an external time in formulating a manifestly covariant relativistic mechanics with
interactions, in order to overcome a priori constraints on the 4D phase space that conflict with canonical
structure. Thus, writing the eight-dimensional (8D) unconstrained phase space

xµ(τ), ẋµ(τ) ẋµ =
dxµ

dτ
λ, µ, ν, . . . = 0, 1, 2, 3 (1)
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the O(3,1)-symmetric action for a particle in Maxwell theory

SMaxwell =
∫

dτ

[
1
2

Mẋµ ẋµ +
e
c

ẋµ Aµ

(
xλ
)]

µ, λ = 0, 1, 2, 3 (2)

leads to the Lorentz force in the covariant form found by Fock. However, because the potential Aµ is
produced by a Maxwell current

Jµ(x) =
∫

dτ Ẋµ(τ)δ4 (x− X(τ)) (3)

depending on the trajectory Xµ(τ) that is only given after the equations of motion have been solved,
the system may not be well-posed. To overcome this conflict, Horwitz, Saad, and Arshansky [5]
extended the action (2) by adding τ-dependence to the vector potential, along with a new scalar
potential, to obtain the action

SMaxwell −→ SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋµaµ

(
xλ, τ

)
+

e
c

c5a5
(

xλ, τ
)

(4)

=
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋβaβ

(
xλ, τ

)
(5)

where α, β, γ = 0, 1, 2, 3, 5, and in analogy to x0 = ct, we write x5 = c5τ. Compatibility of SHP
electrodynamics with Maxwell theory requires c5 � c and we will neglect (c5/c)2 where appropriate.
If we take the potential to be pure gauge, as aα = ∂αΛ(x, τ), then the interaction term is just the total
τ-derivative of Λ, showing that this theory is the most general U(1) gauge theory on the unconstrained
phase space (see also [15]). Variation with respect to xµ leads to the Lorentz force [16] in the form

Mẍµ =
e
c
(
ẋν fµν + c5 fµ5

)
=

e
c

ẋβ fµβ (6)

d
dτ

(
−1

2
Mẋµ ẋµ

)
= c5

e
c

ẋβ f5β (7)

where the field

fαβ = ∂αaβ − ∂βaα (8)

is made a dynamical quantity by addition of a kinetic term of the type

Sfield =
∫

dτ d4x f αβ(x, τ) fαβ(x, τ) (9)

to the total action. Because the apparent 5D symmetry of the interaction term ẋβaβ (x, τ) in the
action (5) is broken to 4+1 in (4), SHP electrodynamics differs in significant ways from 5D Maxwell
theory. We notice that (7) permits the exchange of mass between particles and fields, and indicates
the condition for non-conservation of proper time. It has been shown [16] that the total mass, energy,
and momentum of particles and fields are conserved.

These equations of motion, along with the τ-dependent field equations, have been used
to calculate [17] the Bethe–Heitler mechanism for electron-positron production in classical
electrodynamics. A positron (an electron with ẋ0 = cṫ < 0) propagates backward in coordinate
time until entering the bremsstrahlung field produced by another electron scattering off a heavy
nucleus. This field leads to ẗ > 0, so the particle gains energy E = Mc2 ṫ < 0 continuously (and thus
ẋµ ẋµ changes sign twice) until emerging as an electron propagating forward in coordinate time with
E = Mc2 ṫ > 0. At coordinate times prior to the particle’s turn-around (when E = Mc2 ṫ = 0)
no particles will be observed, but two particles will be observed for subsequent coordinate times,
implementing Stueckelberg’s picture of pair creation.
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A physical event xµ(τ) in SHP is an irreversible occurrence at time τ with spacetime coordinates
xµ. The formalism thereby implements the two aspects of time as distinct physical quantities:
the coordinate time x0 = ct describing the locations of events, and the external Stueckelberg time
τ describing the chronological order of event occurrence. This eliminates grandfather paradoxes
because for τ2 > τ1 an event xµ(τ2) at some spacetime point xµ occurs after the event xµ(τ1) and
cannot affect it. Similarly, the 4D block universe M(τ) occurs at τ, representing the 4D manifold
of general relativity, comprising all of space and coordinate time x0. A Hamiltonian K generates
evolution ofM(τ) occurring at τ to an infinitesimally close 4D block universeM(τ + dτ) occurring
at τ + dτ. The configuration of spacetime, including the past and future of x0 = ct, may thus change
infinitesimally from chronological moment to moment in τ. Thus, it is not unreasonable to expect that
M(τ) will be endowed with a τ-dependent metric γµν(x, τ) whose dynamics we explore in this paper.
On the contrary, a 4D metric given for all τ would have the character of an absolute background field
in this formalism, in violation of the goals of general relativity.

For the kinetic term (9) we formally raise the five-index of fαβ although we understand the
Lagrangian density as

f αβ(x, τ) fαβ(x, τ) = f µν(x, τ) fµν(x, τ) + 2σ f µ
5(x, τ) fµ5(x, τ) (10)

with σ = ±1 simply the choice of sign for the vector-vector term. That is, we bear in mind that in this
notation the β = 5 index is a formal convenience, indicating O(3,1) scalar quantities, not an element
of a 5D tensor, and not a timelike coordinate. In particular, ẋ5 = c5 is constrained to be a constant
scalar, identical in all reference frames, and x5 = c5τ must not be treated as a dynamical variable.
Nevertheless, the contraction on indices α, β suggests a formal 5D symmetry, possibly O(4,1) or O(3,2)
that breaks to O(3,1) in the presence of matter, and for convenience we write

ηαβ = diag (−1, 1, 1, 1, σ) (11)

in the form of a 5D flat space metric. Although the higher symmetry is non-physical for matter,
it appears in wave equations, much as the wave equations for nonrelativistic acoustics appear to
possess a Lorentz symmetry not associated with the physics. In developing an SHP approach to
general relativity, we will similarly exploit this notation as a guide to the appropriate extension of GR
while respecting the non-dynamical character of x5.

Classical and quantum SHP particle mechanics in a spacetime with a τ-independent local metric
γµν(x) has been studied extensively by Horwitz [8,9] and will not be discussed at length here. Our goal
in this paper is to find a consistent prescription for extending general relativity to accommodate a metric
gαβ(x, τ) (where α, β = 0, 1, 2, 3, 5) satisfying τ-dependent Einstein equations on a formal 5D manifold
whose meaning is explored through particle mechanics and field equations. As in standard approaches
to GR, the study of embedded hypersurfaces is central to this program. But, while the 3+1 formalism
begins with a 4D block universeM and defines a foliation into embedded spacelike hypersurfaces
of equal coordinate time t, the 4+1 formalism begins with a parameterized family of 4D spacetimes
M(τ) embedded as hypersurfaces into a 5D pseudo-spacetime. Because the evolution ofM(τ) is
determined by an O(3,1) scalar Hamiltonian K, with τ as an external parameter (Poincaré invariant by
definition), there is no conflict with the diffeomorphism invariance of general relativity. This approach
will guide us toward the formal structures of a 5D manifoldM5 with coordinates (x, τ) on which we
may perform a 4+1 foliation by choosing τ as the unambiguously preferred time direction (See [18,19]
for discussion of general 5D spacetime with preferred foliation.). We refer toM5 as a pseudo-spacetime
to emphasize that despite the formal manifold structure, in specifying the physics we treat τ as a
parameter and not a coordinate. Moreover,M5 represents an admixture of symmetries: 4D spacetime
geometry within eachM(τ), and canonical dynamics between any pairM(τ1),M(τ2). We expect no
general diffeomorphism invariance forM5.
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1.3. Organization of This Paper

The remainder of this paper is organized, as follows: in Section 2, we formulate the particle
mechanics for an event in 5D pseudo-spacetime, derive the 5D mass-energy-momentum tensor for
non-thermodynamic dust, and pose the Einstein field equations generalized to 5D. We obtain a general
solution for the associated weak field equations, and consider a source event of slightly varying
mass (time acceleration in a co-moving frame). This leads to a small nonrelativistic modification
to Newtonian gravity in which the mass variation of the source is transferred through the metric
to induce varying mass motion in a test event. In Section 3, we formalize the foliation of the 5D
pseudo-spacetime into the 4+1 hypersurface geometry, and by projecting onto tangent and normal
components, express 5D Einstein equations as a set of coupled partial differential equations in the
intrinsic and extrinsic curvature of the hypersurface. In Section 4, we complete the 4+1 ADM formalism
by transforming the differential equations to covariant canonical Hamiltonian form. Finally, in Section 5
we apply the 4+1 formalism to two possible generalizations of Schwarzschild geometry. In the first,
we include a non-trivial fifth component in the diagonal metric, which is seen to be constrained to
satisfy a 4D wave equation. A test event moving in the resulting field evolves with mass that depends
on its distance from the source. In the second, we allow for the mass parameter in the standard
Schwarzschild metric to be τ-dependent and find the conditions of the mass-energy-momentum tensor
that lead to such a solution. The presented examples were chosen because they can be solved in closed
form. Realistic applications of this formalism will necessarily require numerical solutions beyond the
scope of this paper.

2. Particle Mechanics

2.1. Particle Lagrangian in Standard GR

Regarding the spacetime manifold M as a 4D block universe, general relativity begins with
consideration of the squared interval

δx2 = γµνδxµδxν = (x2 − x1)
2 (12)

between two neighboring points ofM. The invariance of this interval, viewed as an instantaneous
displacement in the block universe, is a geometrical statement referring to the freedom that is permitted
in assigning a coordinate map to the manifold. To extract dynamics from geometry, one considers the
spacetime trajectory of a material event (some appropriate abstraction of point mass, which in GR
would necessarily be a black hole), described as a mapping of an arbitrary parameter ζ to a continuous
sequence of events xµ(ζ) inM. Because the interval between any two points on a trajectory must be
timelike, the proper time s may be taken as parameter, and “motion” along the trajectory is observed
through advances in the time coordinate x0(s) for advancing values of s. The invariant interval (12)
can be written

δx2 = γµνδxµδxν = γµν
dxµ

ds
dxν

ds
δs2 = γµν ẋµ ẋνδs2 (13)

suggesting [20] a dynamical description of the trajectory by the action

S =
∫

dx =
∫

ds
√
−γµν ẋµ ẋν (14)

and leading to geodesic equations of motion as an expression of the equivalence principle. The geodesic
equations can also be derived from the action

S =
∫

ds
1
2

γµν ẋµ ẋν (15)

which removes the constraint ẋ2 = −c2 associated with (14).
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2.2. Particle Lagrangian in SHP GR

To extend the SHP classical mechanics of a free particle to a manifold with a τ-dependent local
metric, we begin by considering the interval

dxµ = xµ
1 (τ1)− xµ

2 (τ2) (16)

between an event xµ
1 ∈ M(τ1) and an event xµ

2 ∈ M(τ2). Writing these events as

X1 = (x1, c5τ1) X2 = (x2, c5τ2) (17)

we introduce a notion of 5D distance by combining the geometrical distance δx between any two arbitrary
points inM(τ), with the dynamical distance between events generated by a Hamiltonian that evolves
M(τ) −→M(τ + δτ). The geometrical distance is characterized by the squared relativistic interval
(12) and taking τ2 = τ1 + δτ, so that

x2(τ1 + δτ)− x1(τ1) ' x2(τ1) +
dx(τ)

dτ
δτ − x1(τ1) = δx +

dx(τ)
dτ

δτ (18)

and we write the difference in the form

X2 − X1 =

(
δx +

dx(τ)
dτ

δτ, c5δτ

)
(19)

which motivates the notion of a 5D invariant interval through

dX2 = γµν

(
δxµ +

dxµ(τ)

dτ
δτ

)(
δxν +

dxν(τ)

dτ
δτ

)
+ σc2

5δτ2 = gαβ (x, τ) δxαδxβ (20)

referred to x1 coordinates at τ = τ1. Because the manifoldM(τ) evolves, the spacetime metric γµν

must depend on x and τ in some manner to be determined.
As in 4D general relativity, the squared interval (20) suggests the Lagrangian

L =
1
2

Mgαβ

(
xµ, x5)ẋα ẋβ λ, µ, ν = 0, 1, 2, 3 α, β, γ = 0, 1, 2, 3, 5 (21)

from which we may find equations of motion in the space determined by the local metric gαβ.

2.3. Equations of Motion

Before examining particle dynamics in SHP GR, we consider a straightforward extension of
GR to unbroken 5D, with coordinates xα, for α = 0, 1, 2, 3, 5 and external evolution parameter τ.
Naively applying the Euler–Lagrange equations to the action (21), posing no fixed relationship between
x5 and τ, we find

0 =
d

dτ

∂L
∂ẋγ
− ∂L

∂xγ
=

d
dτ

(gαγ ẋα)− 1
2

∂

∂xγ
gαβ ẋα ẋβ (22)

leading to the five geodesic equations

0 =
Dẋγ

Dτ
= ẍγ + Γγ

αβ ẋα ẋβ (23)

where D/Dτ is the absolute derivative (in the notation of Weinberg [21]) and

Γγ
αβ = gγδΓδαβ =

1
2

gγδ
(
∂αgδβ + ∂βgδα − ∂δgβα

)
(24)

is the standard Christoffel symbol in 5D. Writing the canonical momentum
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pα =
∂L
∂ẋα

= Mgαβ ẋβ −→ ẋα =
1
M

gαβ pβ (25)

the Hamiltonian

K = ẋα pα − L =
1

2M
gαβ pα pβ = L (26)

is conserved, as seen directly through

d
dτ

(
1
2

Mgαβ ẋα ẋβ

)
= Mgαβ ẋα Dẋβ

Dτ
= 0 (27)

where we used metric compatibility

Dgαβ

Dτ
= 0. (28)

Time independence of the Hamiltonian may also be found from the canonical equations of motion

ẋα =
dxα

dτ
=

∂K
∂pα

ṗα =
dpα

dτ
= − ∂K

∂xα
(29)

and the Poisson bracket

{F, G} = ∂F
∂xα

∂G
∂pα
− ∂F

∂pα

∂G
∂xα

(30)

so that

d
dτ

(
1

2M
gαβ pα pβ

)
=

dK
dτ

= {K, K}+ ∂K
∂τ

=
1

2M
pα pβ

∂gαβ

∂τ
= 0 (31)

because the metric is not explicitly dependent on τ, which in this case bears no specific relationship
with x5. As seen in SHP electrodynamics, the equation

0 =
Dẋ5

Dτ
= ẍ5 + Γ5

αβ ẋα ẋβ (32)

cannot generally be made consistent with the SHP condition x5 = c5τ ⇒ ẍ5 = 0. Rather, the SHP
formalism defines x5 to be a scalar, in which case the absolute derivative reduces to the total derivative,
so that

Dẋ5

Dτ
=

dẋ5

dτ
= 0 (33)

will replace (32).
To obtain the correct equations of motion for SHP, we must break the 5D symmetry of (21) to 4+1

prior to applying the Euler–Lagrange equations and not treat x5 as a dynamical quantity. Expanding

L =
1
2

Mgαβ(x, τ)ẋα ẋβ =
1
2

Mgµν ẋµ ẋν + Mc5 gµ5 ẋµ +
1
2

Mc2
5 g55 (34)

the equations of motion have four components

ẍµ + Γµ
λσ ẋλ ẋσ + 2c5Γµ

5σ ẋσ + c2
5Γµ

55 = 0 (35)

and, because x5 is not a dynamical quantity, it has no conjugate momentum. Thus, while (35) is
identical to (23) for µ = 0, 1, 2, 3, we understand (32) in the sense of (33). The breaking of 5D symmetry
is expressed here in that Γ5

αβ can be calculated, but it plays no part in the equations of motion.
The 4-momentum is
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pµ =
∂L
∂ẋµ = Mgµν ẋν + Mc5 gµ5 −→ ẋµ =

1
M
(

pµ −Mc5 gµ5
)

(36)

allowing us to write the Hamiltonian in the form

K = pµ ẋµ − L =
(

Mgµν ẋν + Mc5 gµ5
)

ẋµ − L =
1
2

Mgµν ẋµ ẋν − 1
2

Mc2
5g55 (37)

which, unlike the Hamiltonian for unbroken 5D symmetry, is not equal to the Lagrangian
(The difference is precisely the term p5 ẋ5 that would be present in the Legendre transformation
if we had taken x5 to be dynamical). Taking the total τ-derivative of (37) and inserting the equations of
motion (35) leads to

dK
dτ

= −1
2

Mẋµ ẋν ∂gµν

∂τ
− 1

2
Mc2

5
∂g55

∂τ
(38)

showing that this Hamiltonian is not conserved for a τ-dependent metric. Using (36) to eliminate ẋµ,
we put the Hamiltonian into the form

K =
1

2M
gµν pµ pν − c5gµ

5 pµ +
1
2

Mc2
5

(
gµ

5gµ5 − g55

)
(39)

and find its non-conservation from the Poisson bracket

dK
dτ

= {K, K}+ ∂K
∂τ

= − 1
2M

pµ pν ∂gµν

∂τ
− c5 pµ

∂gµ5

∂τ
+

1
2

Mc2
5

(
2gµ

5
∂gµ5

∂τ
− ∂g55

∂τ

)
(40)

where we used

∂gµν

∂τ
= −gµρgνσ ∂gρσ

∂τ
. (41)

When gα5 = 0, the Hamiltonian (39) is seen to generalize the nonrelativistic expression p2/2m for the
energy of a free particle. Because K is a Lorentz scalar, SHP theory associates this Hamiltonian with
the dynamical mass of the particle motion. Section 2.5 provides an example of a test particle evolving
with variable mass in a τ-dependent local metric.

2.4. Mass-Energy-Momentum Tensor

When considering non-thermodynamic dust, we define n(x, τ) to be the number of events per
spacetime volume, and

jα (x, τ) = ρ(x, τ)ẋα(τ) = Mn(x, τ)ẋα(τ) (42)

is the five-component event current. The continuity equation in flat space is

∂α jα = ∂µ jµ + ∂5 j5 = ∂µ jµ +
∂ρ

∂τ
= 0 (43)

and with a local metric is generalized to

∇α jα = 0 (44)

where (in the notation of Wald [22]), the covariant derivative for a vector is

∇αXβ =
∂Xβ

∂xα
+ XγΓβ

γα . (45)

But again, since j5 is a scalar (the number density is scalar on physical grounds) for which the covariant
derivative is just the partial derivative, we must have
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∇5 j5 =
∂ρ

∂τ
(46)

so the continuity equation becomes
∂ρ

∂τ
+∇µ jµ = 0. (47)

Generalizing the 4D stress-energy-momentum tensor to 5D, we write the mass-energy-momentum
tensor [23] as

Tαβ = ρẋα ẋβ −→
{

Tµν = ρẋµ ẋν

T5β = c5 jβ
(48)

where, in addition to the 4D components Tµν, we have the current density T5β = ẋ5 ẋβρ = c5 jβ.
The conservation equation is

0 = ∇βTαβ = ∇β

(
ρẋα ẋβ

)
= ẋα∇β

(
ρẋβ
)
+ ρẋβ∇β ẋα = ẋα∇β jβ + ρẋβ∇β ẋα (49)

which vanishes by virtue of the continuity and geodesic equations

∇α jα = 0 ẋβ∇β ẋα =
Dẋα

Dτ
= 0 (50)

when the equations of motion (23) are evaluated in the sense of (33).

2.5. Weak Field Approximation

As a first step in obtaining field equations for gαβ we extend the Einstein equations to 5D as

Gαβ = Rαβ −
1
2

Rgαβ =
8πG

c4 Tαβ (51)

where the Ricci tensor Rαβ and scalar R are obtained by contracting indices of the 5D curvature
tensor Rδ

γαβ. The weak field approximation (see for example [20,24,25]) is generalized to SHP GR by
introducing a perturbation hαβ to the flat metric, such that

gαβ = ηαβ + hαβ −→ ∂γgαβ = ∂γhαβ

(
hαβ

)2 ≈ 0 (52)

leading to the Ricci tensor

Rαβ '
1
2

(
∂β∂γhγ

α + ∂α∂γhγ
β − ∂γ∂γhαβ − ∂α∂βh

)
R ' ηαβRαβ h ' ηαβhαβ (53)

which naturally contains only the perturbation. Defining h̄αβ = hαβ − 1
2 ηαβh, the Einstein

equations become

16πG
c4 Tαβ = ∂β∂γ h̄γ

α + ∂α∂γ h̄γ
β − ∂γ∂γ h̄αβ − ∂α∂β h̄ (54)

which take the form of a wave equation

16πG
c4 Tαβ = −∂γ∂γ h̄αβ = −

(
∂µ∂µ +

η55

c2
5

∂2
τ

)
h̄αβ (55)

by imposing the usual gauge condition ∂λ h̄αλ = 0. The principal part Green’s function [26] for this
wave equation is

G(x, τ) = − 1
2π

δ(x2)δ(τ)− c5

2π2
∂

∂x2 θ(−η55gαβxαxβ)
1√

−η55gαβxαxβ
(56)
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in which the first term is dominant at long distance, leading to the solution

h̄αβ (x, τ) =
4G
c4

∫
d3x′

Tαβ

(
t− |x−x′ |

c , x′, τ
)

|x− x′| (57)

relating the field h̄αβ (x, τ) to the source Tαβ (x, τ).
As a simple example, we consider a source X = (cT(τ), 0) in a co-moving frame, so that

Ṫ 6= constant corresponds to a variation in energy without corresponding variation in momentum,
producing a variation in mass. The non-zero components of the mass-energy-momentum tensor are

T00 = mc2Ṫ2δ3 (x) ρ (t− T (τ)) Tαi = 0 T55 =
c2

5
c2 T00 ≈ 0 (58)

where we neglect c2
5/c2 � 1 and have written M(τ) = m ρ (t− T (τ)) to represent a slowly varying

density function (the source is sharply located in space but smeared along the t-axis). The perturbed
metric is found to be

h̄00 (x, τ) =
4GM
c2R

Ṫ2 h̄αi (x, τ) = 0 h̄55 (x, τ) = 0 (59)

so using hαβ = h̄αβ − 1
2 ηαβ h̄, we see that h00 = h̄00. Since gαβhβγ ' ηαβhβγ the non-zero Christoffel

symbols are

Γµ
00 = −1

2
ηµν∂νh00 Γµ

0i =
1
2

ηµν∂ihν0 Γµ
50 =

1
2c5

ηµ0∂τh00 (60)

and the equations of motion for a distant test particle split into

ẗ = (∂τh00) ṫ + ẋ · (∇h00) ṫ2 ẍ =
c2

2
(∇h00) ṫ2 (61)

where the factor ∂τh00 distinguishes these equations from the Newtonian model. We write the space
part in spherical coordinates, putting θ = π/2, so that the angular and radial equations become

2Ṙφ̇ + Rφ̈ = 0 −→ φ̇ =
L

MR2 −→ R̈− L2

M2R3 = −GM
R2 ṫ2Ṫ2 (62)

where L is a constant of integration with units of angular momentum. Introducing α (τ) through

Ṫ = 1 +
α (τ)

2
−→ Ṫ2 ' 1 + α (τ) −→ ṪT̈ '

(
1 +

α (τ)

2

)
α̇ (τ)

2
(63)

the relationship between t and τ becomes

ẗ =
2G∂τ M

c2R
ṫ +

4GM
c2R

ṪT̈ṫ− 2GM
R2c2 ṘṪ2 ≈ 2GM

c2R

(
1 +

α (τ)

2

)
α̇ (τ) ṫ (64)

where we neglect the nonrelativistic velocity Ṙ/c ≈ 0 and the slow variation in the source distribution
∂τρ ≈ 0. In the absence of the mass perturbation, we have α = 0 −→ ṫ = 1, recovering a Newtonian
notion of time, but this t equation has the solution

ṫ = exp
[

2GM
c2R

(
α +

1
4

α2
)]
−→ ṫ2Ṫ2 ' 1 +

(
1 +

4GM
c2R

)
α (65)

indicating a more complicated relationship between t and τ. Since 4GM/c2R� 1, this leads finally to
a radial equation in the form

d
dτ

{
1
2

Ṙ2 +
1
2

L2

M2R2 −
GM

R

[
1 + α (τ)

]}
=

dK
dτ

= −GM
R

d
dτ

α (τ) . (66)
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We recognize K on the LHS as the Hamiltonian of the test particle moving in this local metric,
recovering the Newtonian expression when the perturbation α(τ) vanishes. The mass fluctuation of
the point source is seen to induce a fluctuation in the mass of the distant test particle, acting through
the field gαβ(x, τ) in order to produce a small modification of Newtonian gravity.

3. Field Equations

In a 3+1 formalism such as ADM, a spacetime trajectory is defined with respect to a foliation of
M. For any point xµ ∈ M, we define a time function t(x) onM whose level sets

Σ(t0) =
{

xµ
∣∣ t(x) = t0

}
(67)

are hypersurfaces of constant time. The 4D hypersurface Σ(t0) ⊂M is homeomorphic to a spacelike
3D submanifold Σ̂ with coordinates xi, i = 1, 2, 3, and the homeomorphism forms an embedding of Σ̂
intoM, which may be expressed as

xµ
t0
= xµ(x, t0) (68)

for fixed t0. The trajectory

xµ
x0 (t) = xµ (x0, t) (69)

associated with this embedding connects the point x0 with fixed 3D coordinates on different
hyperspaces, suggesting a notion of time evolution from one hyperspace to the next.

We extend these ideas to SHP general relativity, taking advantage of the analogy with the 3+1
formalism [1,11,27,28] and employing its standard notation. Roughly following the tutorial exposition
of 3+1 numerical relativity that is given in [29,30], we decompose the Einstein field equations into
spacetime and τ sectors, leading to a set of coupled partial differential equations for the phase
space variables of the field theory, γµν(x, τ) and γ̇µν(x, τ) = ∂γµν(x, τ)/∂τ. Although the general
presentation is familiar, it differs in certain details, because the foliation is natural and the field theory
is presumed to carry the factor σ associated with objects carrying a five-index. With appropriate initial
conditions for the metric and the matter distribution, this poses an initial value problem that can be
integrated forward in τ to solve for evolving spacetime configurations.

3.1. Embedding and Foliation

The first step is to introduce a 5D pseudo-spacetime by defining the injective mapping

Φ :M −→ M5 =M× R X = Φ(x, τ) = (x, c5τ) (70)

with coordinates Xα ∈ M5, for α = 0, 1, 2, 3, 5. This structure admits the natural foliation defined by
level surfaces of the scalar field τ(X) = τ

Σ(τ0) =
{

X ∈ M5
∣∣ τ(X) = X5/c5 = τ0

}
(71)

which is homeomorphic to M(τ0) for any τ0 (and so we drop reference to τ0 in referring to the
hypersurfaces). We take

Eα
µ =

(
∂Xα (x, τ)

∂xµ

)
τ0

µ = 0, 1, 2, 3 (72)

as the four basis elements Eµ = ∂µ for T (Σ), the tangent space of Σ. Thus, when restricted to X ∈ Σ,
the squared interval becomes

dX2
∣∣∣
Σ
= gαβdXαdXβ

∣∣∣
Σ
= gαβ

∂Xα

∂xµ

∂Xβ

∂xν
dxµdxν = γµνdxµdxν (73)
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where we identify γµν = gαβEα
µEβ

ν , the induced metric on Σ, with the 4D spacetime metric we began
with. For a vector in the time direction of T (M5), we write

∂α τ(X) = δ5
α ∂5 τ(X) = δ5

α
1
c5

∂τ τ(X) (74)

which is normal to the tangent space of Σ in the sense that τ (X) = τ0 is constant throughout Σ(τ0).
Thus, in T (M5), the vector (E5)α = ∂α τ(X) points out of T (Σ) in the direction of time evolution.
The unit normal nα in the time direction is defined as

n = σ
1√
|g55|

E5 −→ n2 =
1
|g55| g

αβ(E5)α(E5)β =
1
|g55| g

55 = σ (75)

so that

nα = gαβnβ = gαβσ
1√
|g55|

δ5
β = σgα5 1√

|g55|
. (76)

For any vector A ∈ T (M5) in the tangent space of M5 we can project onto parallel and
normal components

A‖ = σ (A · n) n A⊥ = A− σ (A · n) n (77)

and so define the normal projection operator

Παβ = σnαnβ ΠαγΠγβ = σ2n2 nαnβ = Πβ
α (78)

and the tangent projection operator

Pαβ = gαβ − σnαnβ Pαβ = gαβ − σnαnβ PαγPγβ = Pβ
α = δ

β
α − σnαnβ (79)

along with the completeness relation

gαβ = Pαβ + σnαnβ δα
β = Pα

β + σnαnβ . (80)

For any vector V ∈ T (M5), the vector Vα
⊥ = Pα

β Vβ is in T (Σ) , and so there is some vector
v ∈ T (M), such that

Vα
⊥ = vµEα

µ (81)

which entails

vµ = γµνvν = gαβEα
µEβ

ν vν = gαβEα
µVβ
⊥ = Eα

µV⊥α = Eα
µPβ

α Vβ = Eβ
µVβ (82)

since Eα
µ ∈ T (Σ). In particular, expressing the metric in terms of (80), we find

γµν = gαβEα
µEβ

ν =
(

Pαβ + σnαnβ

)
Eα

µEβ
ν = PαβEα

µEβ
ν = Pµν (83)

so that the projector Pαβ when restricted to Σ acts precisely as the 4D metric γµν.
Generalizing the characterization of 5D distance that is expressed in (19), we write

X2 − X1 =
(

δxµ + Nµδx5, Nδx5
)

δXα =
(

δxµ + Nµδx5
)

Eα
µ + Nnαδx5 (84)

where N is a lapse function and Nµ is a shift four-vector. The 5D squared invariant interval now takes
the form
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dX2 = gαβ

(
x, τ
)
δXαδXβ

= gαβ

(
x, τ
)[(

δxµ + Nµδx5)Eα
µ + Nnαδx5][(δxν + Nνδx5)Eβ

ν + Nnβδx5]
= γµν

(
x, τ
)(

δxµ + Nµδx5)(δxν + Nνδx5)+ σ2N2(δx5)2

= γµν

(
x, τ
)
δxµδxν + 2γµν

(
x, τ
)

Nνδxµδx5 +
(
γµν

(
x, τ
)

NµNν + σ2N2)(δx5)2 (85)

allowing us to decompose the 5D metric

gαβ =

[
γµν Nµ

Nµ σN2 + γµνNµNν

]
gαβ =

 γµν + σ
1

N2 NµNν −σ
1

N2 Nµ

−σ
1

N2 Nµ σ
1

N2

 (86)

into the spacetime and τ sectors. Once again, on any 4D SHP spacetimeM(τ), the induced metric
γµν(x, τ) is just the local metric, we assumed to exist at the outset. In this decomposition, the unit
normal nα becomes

nα = σ
1√
|g55|

∂α τ(X) = σNδ5
α . (87)

One can easily establish that
√

g =
√

γN by writing

[
gµν gµ5

gµ5 g55

]
=

[
γµν Nµ

Nµ σN2 + γµνNµNν

]
=

[
I 0

Nµ 1

] [
γµν 0

0 σN2

] [
I Nν

0 1

]
. (88)

3.2. Intrinsic and Extrinsic Geometry

With compatible connection (24) the covariant derivative (45) onM5 obeys∇γgαβ = 0, leading to
the standard Ricci identity

[
∇β,∇α

]
Xδ = XγRγ

δαβ (89)

with Riemann tensor

Rγ
δαβ =

∂

∂xα
Γγ

δβ −
∂

∂xβ
Γγ

δα + Γγ
σαΓσ

δβ − Γγ
σβΓσ

δα (90)

and associated Bianchi relations. To find the corresponding structures on the hyperspaces defined
through foliation we examine their projections onto T (Σ).

For a vector V = V⊥ ∈ T (Σ) we define the projected covariant derivative ∇α in which the
projected derivative acts on the projected vector. Thus,

∇αV⊥β = ∇α

(
Pδ

βVδ

)
= Pδ

β∇α (Vδ) = Pδ
β

(
Pγ

α∇γ

)
Vδ = Pγ

α Pδ
β∇γVδ . (91)

We justify the second equality by noting that the full 5D covariant derivative of the projector is

∇αPβγ = ∇α

(
gβγ − σnβnγ

)
= −σ∇α

(
nβnγ

)
= −σ

[
(∇αnγ) nβ + nβ∇αnγ

]
(92)

and so the projected covariant derivative of the projector is

∇αPβγ =−σPα′
α Pβ′

β Pγ′
γ

((
∇α′nγ′

)
nβ′ + nβ′∇α′nγ′

)
=−σPα′

α Pγ′
γ

(
∇α′nγ′

) (
Pβ′

β nβ′

)
− σPα′

α Pγ′
γ

(
Pβ′

β nβ′

)
∇α′nγ′ = 0 (93)
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which follows from Pδ
βnδ ≡ 0. This compatibility justifies regarding ∇α as the intrinsic covariant

derivative on T (Σ), denoted as

Dα = ∇α = Pγ
α∇γ Dµ = Eα

µDα = Eα
µPγ

α∇γ = Eγ
µ∇γ (94)

and satisfying Dµγλρ = 0. That is, for V⊥µ ∈ T (Σ) and vν ∈ T (M) with vµ = Eα
µV⊥α we have

Eα
µEβ

ν

(
DαV⊥β

)
= Eα

µDαEβ
ν

(
Pδ

βVδ

)
= Eα

µDα

(
Eβ

ν Pδ
β

)
Vδ = Eα

µDαEδ
νVδ = Dµvν . (95)

The projected curvature R̄ρ
λµν is defined through

[
Dν, Dµ

]
Xλ = XρR̄ρ

λµν (96)

and will be examined below.
Restricted to T (Σ) ⊂ T (M) the Weingarten map χ associates to a tangent vector V ∈ T (Σ) the

variation of the τ-like unit vector n along V. Thus,

χ (V) = ∇Vn = V · (∇n) χα (V) = Vβ∇βnα (97)

and

U · (∇Vn) = V · (∇Un) . (98)

The extrinsic curvature on T (Σ) is

K : T (Σ)× T (Σ)→ R (99)

defined as the projection onto a vector U of the Weingarten map along a vector V

K (U, V) =−U · χ (V) = −U · ∇Vn = −gαγVαUβ∇βnγ (100)

Kαβ =−gαγ∇βnγ = −∇βnα . (101)

Using the projector Pαβ, we extend this definition to the full manifold T (M) as

K (U⊥, V⊥) = K (PU, PV) = −gγα

(
Pγ

ε Vε
) (

Pβ
φ Uφ

)
∇βnα (102)

KφεUφVε = VεUφ
(
−gγαPγ

ε Pβ
φ

)
∇βnα (103)

Kαβ =−Pγ
α Pδ

β ∇δnγ (104)

where we recall that ∇δnγ may have both normal and tangent components with respect to T (Σ).
Because the projection is idempotent, we can write

Pδ
β (∇γnδ) ≡ ∇γnβ (105)

leading to the identity

Kαβ = −Pγ
α Pδ

β∇γnδ = −Pγ
α∇γnβ = −

(
γ

γ
α − σnαnγ

)
∇γnβ = −∇αnβ + σnα

(
nγ∇γnβ

)
(106)

and the contracted form

K = γαβKαβ = γαβPγ
α Pδ

β∇γnδ = γγδ∇γnδ = ∇αnα . (107)
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Using (87) for the unit normal nα, we may expand

(
nγ∇γnβ

)
= σnγ∇γ

(
N∇βτ

)
= σnγ (∇γN)

nβ

σN
+ σnγN∇β

( nγ

σN

)
=

1
N

[
nγnβ∇γN − σδ

γ
β∇γN

]
= −σ

1
N

[
δ

γ
β − σnγnβ

]
∇γN

=−σ
1
N

Pγ
β∇γN = −σ

1
N

DβN (108)

to put (106) into the form

Kαβ = −∇αnβ − nα
1
N

DβN . (109)

If V ∈ T (M5) has components both tangent and normal to T (Σ), and it so can be written as

Vβ = Eβ
λvλ − σ (n ·V) nβ −→ ∇αVβ = ∇αEβ

λvλ − σ∇α (n ·V) nβ (110)

we see that

Dµvν = Eα
µEβ

ν∇αVβ − σ (n ·V)Kµν (111)

in which the first term represents the tangential part of the covariant derivative, and the second term
is seen to expresses the connection for the normal components of V in the full covariant derivative.

3.3. Evolution of the Hypersurface Σ

From (84) we see that the variation of X ∈ Σ for a small time variation δx5 at a given point x0 ∈M is

δXα =

(
∂Xα

∂x5

)
x0

δx5 =

(
∂Xα

∂τ

)
x0

δτ −→ Eα
5 = (∂5)

α = Nnα + NµEα
µ (112)

Defining mα = Nnα we write E5 as ∂5 = m + N and characterize time evolution through the Lie
derivative in the time direction

L5 = Lm + LN . (113)

For the metric γαβ, the Lie derivative is

Lm γαβ = mγ∇γγαβ + γγβ∇αmγ + γαγ∇βmγ (114)

which we may evaluate by using (79) for Pαβ = γαβ in the first term and using (109) to obtain

∇βmα = N∇βnα + nα∇βN = −NKβα − nβDαN + nα∇βNu (115)

in the remaining terms. Notice that Lm Pα
β is the derivative in the normal direction of the projector

onto the tangent space, so that direct calculation while using (109) and (115) provides

Lm Pα
β = mγ∇γ(δ

α
β − σnαnβ)− γ

γ
β∇γmα + γα

γ∇βmγ = 0 (116)

expressing compatibility of Lm with Pα
β. As a result, if V ∈ T (M5) is tangent to Σ, its Lie derivative

in the time direction is tangent to Σ, and so tangent vectors propagate as tangent vectors as τ advances
monotonically. As a result, (114) simplifies to

Lm γαβ = −2NKαβ (117)

leading to
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L5 γαβ −LN γαβ = −2NKαβ −→ L5 γµν −LN γµν = −2NKµν (118)

as the evolution equation for the metric.

3.4. Decomposition of the Riemann Tensor

The 4+1 decomposition of Rγ
δαβ is accomplished by projecting onto Σ and n. Using the

completeness relation (80) to write

Rγ
δαβ =

(
Pα′

α + σnαnα′
) (

Pβ′

β + σnβnβ′
) (

Pγ
γ′+ σnγnγ′

) (
Pδ′

δ + σnδnδ′
)

Rγ′

δ′α′β′ (119)

we obtain products of the type

Rγ
δαβ = δα′

α δ
β′

β δ
γ
γ′ δδ′

δ Rγ′

δ′α′β′ −→


Eα

µ Eβ
ν Eλ

γ Eδ
σ Pα′

α Pβ′

β Pγ
γ′ Pδ′

δ Rδ′α′β′γ′ = Rλ
σµν

Eα
µ Eβ

ν Eλ
γ Pγ

γ′n
δ Pα′

α Pβ′

β Rγ′

δα′β′ = σN Rλ
5µν

Eαµ Eβ
ν Pαα′ nδ Pβ′

β nγ Rα′
δβ′γ = N2 Rµ

5ν5

(120)

where Rγ
δαβ nδ nα nβ = 0 , because of the symmetries of the Riemann tensor. For the projected curvature

defined in (96), we write

DαDβVγ = Dα

(
DβVγ

)
= Pα′

α Pβ′

β Pγ′
γ ∇α′

(
Dβ′V

γ′
)

(121)

we expand and use (92) in order to obtain

DαDβVγ = σKαβPγ
γ′n

β′∇β′V
γ′ + σKγ

α KβδVδ + Pα′
α Pβ′′

β Pγ
γ′′(∇α′∇β′′V

γ′′) (122)

so that

[
Dα, Dβ

]
Vγ = R̄γ

δαβVδ = −σ
(

KαδKγ
β − KβδKγ

α

)
Vδ + Pα′

αPβ′

βPγ
γ′R

γ′

δ′α′β′P
δ′
δVδ (123)

which, by the quotient theorem on Σ, leads to

Pα′
αPβ′

βPγ
γ′P

δ′
δRγ′

δ′α′β′ = R̄γ
δαβ − σ

(
Kγ

α Kβδ − Kγ
β Kαδ

)
(124)

This is known as the Gauss relation. Acting on this expression with Eµ
γEδ

νEα
λEβ

ρ we find

Rµ
νλρ = R̄µ

νλρ − σ
(

Kµ
λKρν − Kµ

ρ Kλν

)
(125)

providing an expression for the intrinsic curvature Rµ
νλρ in terms of the projected curvature R̄µ

νλρ and
the intrinsic curvature Kρν. Contracting on α and γ in (124) leads to

Pα′
αPβ′

βR α′β′ − σPαα′n
δ′Pβ′

βnγ′Rα′
δ′β′γ′ = R̄αβ − σ

(
KKαβ − Kδ

αKβδ

)
(126)

and contracting on α and β gives

R− 2σRαβnαnβ = R̄− σ
(

K2 − KαβKαβ

)
(127)

called the scalar Gauss relation.
Applying the Ricci identity (89) to the vector n as

(
∇β∇α −∇α∇β

)
nγ = Rγ

γ′αβnγ′ (128)

projecting the LHS onto Σ as
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Pα′
αPβ′

βPγ
γ′

(
∇α′∇β′ −∇β′∇α′

)
nγ′ (129)

and using the identity (106) leads us to

DβKγ
α − DαKγ

β = Pγ
γ′n

δPα′
αPβ′

βRγ′

δα′β′ (130)

which is called the Codazzi relation. Contracting on α and γ produces

nδRδ
µνλ = DλKνµ − DνKλµ . (131)

Using (87) for the unit normal nα provides an interpretation of this expression as

nδRδ
µνλ = σNδ5

δ Rδ
µνλ −→ R5

µνλ = σ
1
N
(

DλKνµ − DνKλµ

)
(132)

recalling the role of the extrinsic curvature Kµν as the curvature ofMmapped to the hypersurface Σ
and embedded in the larger manifoldM5.

Returning to the Ricci identity for nα, we apply (109) twice to terms∇β∇γnα and project onto (128)

with Pαα′nγ′Pβ′

β to obtain

− KαγKγ
β +

1
N

DβDαN + Pα′
αPβ′

β nγ∇γKα′β′ = Pαα′n
γ′Pβ′

β Rα′
δβ′γ′n

δ . (133)

Again using (115) in the Lie derivative of Kαβ to write

Lm Kαβ = Nnγ∇γKαβ − 2NKαγKγ
β − KαγDγNnβ − KβγDγNnα (134)

the last two equations are combined as

1
N
Lm Kαβ +

1
N

DαDβN + KαγKγ
β = Pαα′ n

δPβ′

β nγRα′
δβ′γ (135)

to provide an evolution equation for Kαβ. Rewriting (126) as

Pαα′n
δ′Pβ′

βnγ′Rα′
δ′β′γ′ = σPα′

αPβ′

βR α′β′ − σR̄αβ + KKαβ − Kδ
αKβδ (136)

we can put (135) into the form

Pα′
αPβ′

βR α′β′ = σ
1
N
Lm Kαβ + σ

1
N

DαDβN + R̄αβ − σKKαβ + σ2Kδ
αKβδ (137)

in which only Pα′
αPβ′

βR α′β′ on the LHS refers to the 5D geometry ofM5.

3.5. Decomposition of the Einstein Equation

The Einstein equations

Gαβ = Rαβ −
1
2

gαβR =
8πG

c4 Tαβ (138)

can be written

Rαβ =
8πG

c4

(
Tαβ −

1
2

gαβT
)

(139)

where T = gαβTαβ. As above, we decompose the field equations by projecting onto Σ and n as

Tαβ = Tα′β′

(
Pα′

α + σnα′nα

) (
Pβ′

β + σnβ′nβ

)
= Sαβ + 2σnα pβ + nαnβκ (140)
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where

Sαβ = Pα′
α Pβ′

β Tα′β′ pβ = −nα′Pβ′

β Tα′β′ κ = nαnβTαβ (141)

so that Sµν corresponds to the 4D energy-momentum tensor Tµν, pµ corresponds to the mass current
into the µ direction T5µ, and κ corresponds to the mass density T55. It is useful to regard mass in this
context as being related to the difference between energy and momentum, a dynamical quantity in the
SHP framework. The trace is

T = gαβTαβ = gαβ
(
Sαβ − 2σnα pβ + nαnβκ

)
= S− 2σgαβnα pβ + gαβnαnβκ = S + σκ (142)

where we used

gαβnα pβ = n · p = 0 (143)

which follows from

pβ = −Pβ′

β

(
nαTαβ′

)
∈ T (Σ) . (144)

Thus, projecting the field equations (139) onto Σ with Pα′
α Pβ′

β leads to

Pα′
α Pβ′

β

(
Tα′β′ −

1
2

gα′β′T
)
= Sαβ −

1
2

γαβ (S + σκ) (145)

on the RHS and while the LHS is Pα′
αPβ′

βR α′β′ which from (137) provides

Lm Kµν = −DµDνN + N
{
−σR̄µν + KKµν − 2Kλ

µ Kνλ + σ
8πG

c4

[
Sµν −

1
2

γµν (S + σκ)

]}
(146)

as the evolution equation for Kµν.
The double projection onto the time direction n is(

Rαβ −
1
2

gαβR
)

nαnβ =
8πG

c4 Tαβnαnβ −→ Rαβnαnβ − 1
2

σR =
8πG

c4 κ (147)

and using the scalar Gauss relation (127), we obtain

R̄− σ
(

K2 − KµνKµν

)
= −σ

16πG
c4 κ (148)

This expression, called the Hamiltonian constraint, has no τ-derivatives, and so, if it is satisfied by the
initial conditions, then it will be satisfied at all times. We observe that this constraint applies to the
mass density of the gravitational field, not the energy density as in 4D GR.

The mixed projection with Pβ′

βnα

nαPβ′

β

(
Rαβ′ −

1
2

gαβ′R
)
= nαPβ′

β

8πG
c4 Tαβ′ −→ Pβ′

βnαRαβ′ −
1
2

gαβ′n
αPβ′

βR = −8πG
c4 pβ (149)

is combined with the contracted Codazzi relation (131) and gαβ′nαPβ′

β = nαPαβ = 0 to obtain

DµKµ
ν − DνK =

8πG
c4 pν (150)



Symmetry 2020, 12, 1721 19 of 29

which is called the momentum constraint, referring to the flow of mass into the field, and it also has
no τ-derivatives. We notice that the evolution equation contains only objects defined on Σ and, thus,
includes no factors of Γ5

µν. Any such factors can only appear in the constraint equations.
Writing the Einstein tensor as

Gαβ = Rαβ −
1
2

gαβR (151)

the Bianchi relations are

∇αGαβ = ∂αGαβ + Christoffel Symbols× Gαβ = 0 (152)

forming a set of relations among the field entities. The five equations in 5D reduce the number of
independent components of Gαβ from fifteen to ten, and are understood as constraints on the initial
conditions of the evolution equations. Because the Einstein equations are second order in τ derivatives
of the metric, a solution requires that the initial conditions include γµν and ∂τγµν at the initial time.
Expanding ∂αGαβ = ∂µGµβ + ∂5G5β to rewrite the Bianchi relations as

1
c5

∂τG5β = −∂µGµβ − Christoffel Symbols× Gαβ (153)

and noticing that the LHS cannot be more than second order in ∂τ , we see that G5β cannot be more
than first order in ∂τ . Therefore, the expressions contained in G5β must be part of the initial conditions.
The Einstein equations

Gαβ = 8πGNTαβ (154)

thus split into components

Gµβ = 0 −→ ten equations of second order in ∂τ (155)

G5β = 0 −→ five relations among the initial conditions of first order ∂τ . (156)

Moreover, the constraints are propagated to future times because

G5β|τ0 = 0⇒ ∂βG5β|τ0 = 0⇒ ∂τG5β|τ0 = 0 (157)

and so they do not change.

3.6. Summary of Einstein System as Differential Equations

The decomposition of the Einstein equations into a 4+1 system of partial differential equations
permits particular structures to be solved as an initial value problem. The initial conditions that
are to be specified at some τ are the metric γµν and its first Lie derivative Kµν, along with the
mass-energy-momentum distribution of matter as represented by Sµν, pν, and κ. The initial conditions
must satisfy the Hamiltonian constraint, a constraint on mass rather than energy,

R̄− σ
(

K2 − KµνKµν

)
= −σ

16πG
c4 κ (158)

and the momentum constraint

DµKµ
ν − DνK =

8πG
c4 pν (159)

at the initial time. Because these constraints contain no τ derivatives, they are guaranteed to be satisfied
at subsequent times. Given appropriate initial conditions, the metric is found at subsequent times by
integrating forward—analytically or numerically—the coupled evolution equations
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1
c5
Lτ γµν −LN γµν = −2NKµν (160)

and

(
1
c5
Lτ −LN

)
Kµν =−DµDνN

+N
{
−σR̄µν + KKµν − 2Kλ

µ Kνλ + σ
8πG

c4

[
Sµν −

1
2

γµν (S + σκ)

]}
(161)

We note that the lapse N and shift Nµ are not dynamical variables, but they are part of the metric
specified at the initial time.

4. The ADM Hamiltonian Formulation

The configuration space variable in the ADM formalism is gαβ = gαβ

(
γµν, Nµ, N

)
, the full metric

onM5. Becausre N and Nµ are not dynamical, the phase space consists of γµν and γ̇µν, as given by

γ̇µν =
1
c5
Lτ γµν = LN γµν + 2NKµν (162)

where we use (160) with the sign convention for Kµν reversed. Contracting on α and β in (137) and
combining with the scalar Gauss relation (127), we obtain

R = R̄− σ
(

K2 − KαβKαβ

)
+ 2σ∇α

(
nβ∇βnα − nα∇βnβ

)
(163)

so that the Einstein-Hilbert action for GR in the absence of matter can be expanded as

SADM
[
γµν, γ̇µν, Nµ, N

]
=
∫

dτd4x
√

gR̄ =
∫

dτd4x
√

γN
[

R̄− σ
(

KµνKµν − K2
)]

(164)

where g =
∣∣det gαβ

∣∣ and γ =
∣∣det γµν

∣∣ and the total gradient in (163) is discarded as a boundary term.
The DeWitt metric is defined as

Gµνλρ =
1
2

(
γµλγνρ + γµργνλ − 2γµνγλρ

)
(165)

with inverse in D dimensions

Gµνλρ =
1
2

(
γλζ γρκ + γλκγρζ −

2
D− 1

γλργζκ

)
(166)

in terms of which

GµνλρKµνKλρ =
1
2

(
γµλγνρ + γµργνλ − 2γµνγλρ

)
KµνKλρ = KµνKµν − K2 (167)

so that

LADM
[
γµν, γ̇µν, Nµ, N

]
=
√

γN
[
−σGµνλρKµνKλρ + R̄

]
. (168)

Because Kµν is first order in derivatives, the first term has the form of kinetic energy. The canonical
conjugate momentum to γµν is

πµν =
∂LADM

∂γ̇µν
= −2σ

√
γNGζκλρKλρ

∂Kζκ

∂γ̇µν
(169)

so that using (162) to obtain
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∂Kζκ

∂γ̇µν
=

1
2N

δ
µ
ζ δν

κ (170)

we find

πµν = −2σ
√

γNGζκλρKλρ
1

2N
δ

µ
ζ δν

κ = −σ
√

γGµνλρKλρ = −σ
√

γ (Kµν − γµνK) (171)

with trace

π = γµνπµν = σ (D− 1)
√

γK −→ K =
σ

(D− 1)
√

γ
π . (172)

Writing Kµν in terms of πµν

Kµν = − σ√
γ

(
πµν − γµν 1

(D− 1)
π

)
(173)

and lowering the indices of πµν

Gµνλρπλρ = πµν −
1

D− 1
γµνπ = −σ

√
γKµν (174)

we see that Kµν represents the momentum conjugate to γµν. Replacing Kµν in (162), we can write the
velocity as

γ̇µν = −σ
2N√

γ
Gµνλρπλρ + LNγµν (175)

in terms of the momentum and configuration variable.
Because R̄ is independent of the lapse N and shift Nµ the Lagrangian LADM

[
γµν, γ̇µν, Nµ, N

]
contains no derivatives of N, Nµ and these act as Lagrange multipliers enforcing as constraints their
conjugates. Thus

pN =
∂LADM

∂Ṅ
pNµ =

∂LADM

∂Ṅµ
= 0 (176)

and variation with respect to the lapse and shift produces

0 = − ∂

∂N

(√
γN

[
R− σGµνλρKµνKλρ

])
= −√γR + σ

√
γGµνλρ ∂

∂N
(

NKµνKλρ

)
. (177)

Rewriting (162) as

Kµν =
1

2N
(
γ̇µν − DµNν + DνNµ

)
−→ NKµνKλρ ∼

1
N

(178)

the Hamiltonian constraint becomes

0 =
√

γ
[
−σGµνλρKµνKλρ − R̄

]
=
√

γ
[
−σ

(
KµνKµν − K2

)
− R̄

]
= H (179)

where we used (167) and the momentum constraint is

0 = −∂LADM
∂Nµ

= 2σ
√

γDν

(
GνµλρKλρ

)
= 2σ

√
γ (DνKνµ − DµK) = Hµ . (180)

Comparison with (158) and (159) shows that these constraints correspond to the non-evolving Gµ5

components of the Einstein field equations. Using (171), we can also write

Hν = 2σ
√

γDµ

(
GµνλρKλρ

)
= σ2Dµπµν . (181)
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The Legendre transformation to the Hamiltonian density is

HADM = πµνγ̇µν −LADM
[
γµν, γ̇µν, Nµ, N

]
=−σN

√
γGµνλρKµνKλρ + 2πµνDµNν −

√
γNR (182)

where N, Nµ are Lagrange multipliers and do not require kinetic terms. Integrating by parts and
discarding the total gradient provides

2πµνDµNν = 2Dµ (π
µνNν)− Nν

(
2Dµπµν

)
= NνHν (183)

and using (179), we arrive at

HADM = NH+ NνHν . (184)

Writing the Hamiltonian in the form

HADM = πµνγ̇µν + ṗNH+ ṗNµHµ −LADM (185)

the Hamiltonian and momentum constraintsH = 0 andHν = 0 are seen to be secondary constraints
arising from the requirement that the primary constraints pN = 0 and pNµ = 0 are preserved under
time evolution,

ṗN = {pN ,HADM} = 0 ṗNµ = {pNµ ,HADM} = 0 . (186)

The remaining Einstein equations—the evolution equations Gµν = 0 — then follow from

γ̇µν =
{

γµν,HADM
}

π̇µν = {πµν,HADM} (187)

for the canonical variables {
γµν, πλρ

}
=

1
2

(
δλ

µ δ
ρ
ν + δ

ρ
µδλ

ν

)
(188)

The equation for γ̇µν reproduces the definition of πµν, since R does not contain γ̇µν and so
{

γµν, R
}
= 0.

The equation for π̇µν is thus equivalent to Gµν = 0.

5. Perturbations to Schwarzschild Geometry

To get a feel for some simple possibilities in this formalism, we pose a Schwarzschild-like interval
in an empty pseudo-spacetimeM5

ds2 = −c2Bdt2 + Adr2 + r2dθ2 + r2 sin2 θdφ2 + σN2c2
5dτ2 Tαβ = 0 (189)

where N = N(x, τ) and we allow the mass parameter M = M(τ) in the coefficients

B (r, τ) = A−1 (r, τ) =

(
1− 2GM (τ)

rc2

)
N2 = N2 (t, r, τ) (190)

to be τ-dependent. Although the 4D connection and curvature on M may now depend on τ,
these generalizations do not change their structure. The 4+1 metric is

γµν = diag
(
−B, A, r2, r2 sin2 θ

)
g5µ = Nµ = 0 g55 = σN2 (191)

and so the Einstein equations reduce to

∂τγµν = −2NKµν ∂5Kµν = −DµDνN + N
(
−σR̄µν + KKµν − 2Kλ

µ Kνλ

)
(192)
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with constraints

R̄− σ
(

K2 − KµνKµν

)
= 0 DµKµ

ν − DνK = 0 (193)

5.1. Constant Mass Source

Taking M (τ) = m = constant, we find

∂5γµν = 0 = −2NKµν −→ Kµν = 0 −→ R̄µν = −σ
1
N

DµDνN (194)

for the dynamical equations, as expected for a τ-independent 4D Schwarzschild geometry.
The momentum constraint is trivially satisfied, and the Hamiltonian constraint reduces to R̄ = 0.
Therefore, we must have

R̄ = γµνR̄µν = −σ
1
N

γµνDµDνN = 0 −→ γµνDµDνN = 0 (195)

meaning that N can be any solution to the source-free 4D wave equation, which in Schwarzschild
geometry is [

∂2
0 −

B
r2 ∂r

(
r2B∂r

)]
N(t, r, τ) = 0 (196)

where B is given in (190). Writing the Lagrangian for a test particle as

L =
1
2

Mgαβ ẋα ẋβ =
1
2

M
[
−c2B (r, τ) ṫ2 + A (r, τ) dr2 + r2θ̇2 + r2 sin2 θφ̇2 + σc2

5N2
]

(197)

the equations of motion are

0 = ẗ +
∂rB
B

ṙṫ + c5
∂5B
B

ṫ +
1
2

σ
c2

5
c2

∂tN2

B
(198)

0 = r̈ +
1
2

∂r A
A

ṙ2 +
1
2

c2 ∂rB
A

ṫ2 − 1
A

rθ̇2 − 1
A

r sin2 θφ̇2 + c5
∂5 A

A
ṙ− c2

5
1
2

σ
∂r N2

A
(199)

0 = r2θ̈ + 2rṙθ̇ − r2 sin θ cos θφ̇2 (200)

0 = φ̈ + 2
1
r

ṙφ̇ + 2 cot θθ̇φ̇ (201)

which are simplified using the rotational symmetry to put θ = π/2. Writing ∂5 = (1/c5)∂τ ,
these become

0 = ẗ +
∂rB
B

ṙṫ +
1
2

σ
c2

5
c2

∂tN2

B
(202)

0 = r̈ +
1
2

∂r A
A

ṙ2 +
1
2

c2 ∂rB
A

ṫ2 − 1
A

rφ̇2 − c2
5

1
2

σ
∂r N2

A
(203)

0 = φ̈ + 2
1
r

ṙφ̇ (204)

where we used ∂τ B = 0. The angular equation has the standard solution

0 = φ̈ + 2
1
r

ṙφ̇ −→ 0 =
φ̈

φ̇
+ 2

ṙ
r
−→ r2φ̇ = J (205)

with constant J. In the equation for t we recognize
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ẗ +
∂rB
B

ṙṫ =
1
B

(
B

dṫ
dτ

+
dB
dτ

ṫ
)
=

1
B

d (ṫB)
dτ

(206)

and so (202) becomes

0 =
d (ṫB)

dτ
+

1
2

σ
c2

5
c2 ∂tN2 (207)

leading to a perturbation in the evolution of the t coordinate, which recovers the usual relation

ṫ =
(

1− 2Gm
rc2

)−1
(208)

for ∂tN2 → 0. It is convenient to rewrite (207) as

ṫ =
1
B

(
1− σ

c2
5

c2
1
2

∫ τ
dτ ∂tN2

)
. (209)

Using (205) and (209), the radial equation becomes

0 = r̈ +
1
2

∂r A
A

ṙ2 +
1
2

c2 ∂rB
B

(
1− σ

c2
5

c2
1
2

∫ τ
dτ ∂tN2

)2

− 1
A

J2

r3 − c2
5

1
2

σ
∂r N2

A
(210)

which we multiply by 2Aṙ and use

d
dτ

(
Aṙ2

)
= 2Aṙr̈ + ṙ3∂r A (211)

d
dτ

(
J2

r2

)
=−2ṙ

J2

r3 (212)

d
dτ

(
− 1

B

)
= ṙ

∂rB
B2 (213)

d
dτ

N2 = ṙ∂r N2 + ṫ∂tN2 + ∂τ N2 (214)

to obtain

0 =
d

dτ

[
Aṙ2 − c2 1

B
+

J2

r2 − c2
5σN2

]
+ σc2

5

[(
d

dτ

1
B

) ∫ τ
dτ ∂tN2 +

1
B

∂tN2 + ∂τ N2
]

(215)

where we dropped terms in c4
5. Integrating by parts(

d
dτ

1
B

) ∫ τ
dτ ∂tN2 =

d
dτ

(
1
B

∫ τ
dτ ∂tN2

)
− 1

B
∂tN2 (216)

and so the radial Equation (215) becomes

0 =
d

dτ

[
Aṙ2 − c2 1

B
+

J2

r2 − c2
5σ

(
N2 − 1

B

∫ τ
dτ ∂tN2

)]
+ c2

5σ∂τ N2 . (217)

Using (37) the Hamiltonian in these coordinates is

K =
1
2

Mgµν ẋµ ẋν − 1
2

Mc2
5g55 =

1
2

M
(

Aṙ2 − c2 1
B
+

J2

r2

)
− 1

2
Mc2

5σN2 (218)

and the radial equation is now
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0 =
d

dτ

[
K

2M
+ c2

5σ
1
B

∫ τ
dτ ∂tN2

]
+ c2

5σ∂τ N2 . (219)

showing that the Hamiltonian, and thus the dynamical mass of the test particle, is not conserved. If,
for example, we consider a very short perturbation, so that

N(t, r, τ) = α(τ)W(t, r) (220)

with α(τ) a narrow distribution centered on τ = τ0, then writing

∆M = σc2
5

∫
dτ ∂tN2 ' σc2

5∂tW2(t(τ0), r(τ0))
∫

dτα2(τ) (221)

we may integrate (219) to obtain

K
2M

+ ∆M
(

1− 2Gm
rc2

)−1
' −c2

5σW2(t(τ0), r(τ0))
[
α2(∞)− α2(−∞)

]
= κ = constant (222)

describing a distance-dependent shift in the mass of the test particle. Thus, while the mass parameter
m that is associated with a source mass remains constant, the addition of a g55 component to the metric
induces mass transfer in the gravitational field.

5.2. Variable Mass Source

As a second example, we put N = 1 and consider a τ-dependent variation in the mass M
parameter of the metric, as given by

M (τ) = m [1 + α (τ)] (223)

where the perturbation is small and so

α2 � 1 −→ B = A−1 = 1−Φ0 [1 + α (τ)] (224)

where by comparison with (190) we have Φ0 = 2Gm/rc2. The 4D connection is now τ-dependent,
but retains its unperturbed form with respect to the coordinates xµ, so the space remains Ricci flat
with R̄ = 0. We may ask what kind of mass-energy-momentum configuration would give rise to a
Schwarzschild geometry with τ-varying mass parameter, and if such a configuration can be made
consistent with the Hamiltonian and momentum constraints. The dynamical equation for the metric
(neglecting terms in α2 and Φ2

0) is

∂5γµν = −2NKµν −→ Kµν = − 1
2c5

∂τγµν = −Φ0α̇ (τ)

2c5
diag

(
1,

1
B2 , 0, 0

)
(225)

and raising one index, we find

Kµ
ν = γµλKλν = −Φ0α̇ (τ)

2c5B
diag (−1, 1, 0, 0) −→ K = Kµ

µ = 0 . (226)

Using R̄ = 0, N = 1, Nµ = 0,
(
Kµν

)2 ∝ α2 ≈ 0, along with (225), the evolution equation for the
extrinsic curvature can be written

1
c5

∂τKµν = − 1
2c2

5
Φ0α̈ (τ)diag

(
1,

1
B2 , 0, 0

)
= σ

8πG
c4

[
Sµν −

1
2

γµν (S + σκ)

]
(227)

which can be solved for α(τ) if the energy-momentum tensor is known. Because R̄ = K = 0 and
KµνKµν ∝ α2Φ2

0 ≈ 0, we may take the Hamiltonian constraint
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R̄− σ
(

K2 − KµνKµν

)
= −σ

16πG
c4 κ (228)

as the statement that the mass density κ is approximately zero. Thus, the evolution Equation (227) for
Kµν can be satisfied by

S00 = B2S11 =

(
−σ

c2
5

c2
16πG

c2

)−1

Φ0 α̈ (τ) S22 = S33 = 0 −→ S = 0 (229)

describing a τ-dependent energy density S00 and an energy-momentum S11 flowing into the radial
direction. Using the nonzero Christoffel symbols for the Schwarzschild metric

Γ0
10 =

1
2

∂rB
B

Γ1
00 =

1
2

∂rB
A

(230)

Γ1
11 =

1
2

∂r A
A

= −1
2

∂rB
B

Γ1
22 = − 1

A
r Γ1

33 = − 1
A

r (231)

Γ2
12 =

1
r

Γ3
13 =

1
r

(232)

the momentum constraint

pν = DµKµ
ν − DνK = ∂µKµ

ν + Kλ
ν Γµ

λµ − Kµ
λΓλ

νµ (233)

has components
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1 Γµ
λµ − Kµ

λΓλ
1µ = −1

2
1

c5r
Φ0α̇ (τ)

p2 = p3 = 0

which corresponds to a mass current p1 flowing in the radial direction, driving the varying mass
parameter M(τ) in the metric. Ascribing M(τ) to a τ-dependent mass distribution that produces the
energy density S00, energy-momentum S11, and mass current p1, we see once again that a variation
in source mass will be transferred across spacetime by the induced gravitational field and, in turn,
this field will lead to geodesic motion corresponding to varying mass in a test event.

6. Discussion

Stueckelberg–Horwitz–Piron (SHP) theory is a covariant approach to relativistic dynamics
developed to address the problem of time as it arises in electrodynamics. In order to account for pair
creation/annihilation processes in particular, and to remove from kinematics any a priori constraints
that may lead to formal difficulties in describing relativistic interaction in general, SHP poses a theory
of spacetime events xµ occurring irreversibly at a chronological time τ. By working through the
implications of gauge theory at the classical and quantum levels, SHP introduces five τ-dependent
electromagnetic potentials that reduce to Maxwell fields at τ-equilibrium. The equations of SHP
electrodynamics suggest a formal 5D symmetry structure that must be broken to 4+1 representations
of O(3,1) on physical grounds. The resulting interactions form an integrable system in which event
evolution generates an instantaneous current defined over spacetime at τ, and, in turn, these currents
induce τ-dependent fields that act on other events at τ.

In this paper, we extend these ideas into general relativity, posing a 5D pseudo-spacetime
coordinatized by (xµ, τ) and possessing a formal 5D general diffeomorphism symmetry, which must
similarly break to 4+1 representations of geometrical and dynamical symmetries. This approach
makes SHP general relativity naturally amenable to an unambiguous 4+1 foliation, permitting a
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τ-dependent generalization of gravitation that can be decomposed to a set of 4D curvature and
matter distribution structures that evolve in τ. We have shown that the 15 Einstein equations in
5D decompose into five constraints on initial conditions and 10 unconstrained evolution equations
for the gravitational field, equivalent to removing the a priori constraints from the 10 Einstein
equations in 4D. It is the removal of these constraints that permit mass transfer in SHP gravitation,
just as the absence of a mass-shell constraint permits the exchange of particles and fields in SHP
electrodynamics. We completed the transformation of this system to an ADM-like canonical system,
although computation is generally simpler in the system defined by the intrinsic and extrinsic
curvatures. In analogy to SHP electrodynamics, the resulting formulation of general relativity describes
an instantaneous distribution of mass and energy at τ expressed through Tαβ(x, τ), inducing a local
metric gαβ(x, τ), which, in turn, determines geodesic equations of motion for any particular event
at xµ(τ).

As a simple first example of this method, we obtained a nonrelativistic generalization of
Newtonian gravitation in the weak field approximation, by considering a τ-dependent massive
source. We saw that the non-constant source mass induces a τ-dependent metric, that, in turn, leads
to geodesic motion for a test event associated with non-conservation of the Hamiltonian function
and, thus, mass variation. We then considered two generalizations of the Schwarzschild solution.
In the first, we introduced a non-trivial metric component g55 and saw that it must satisfy a 4D
sourceless wave equation. This generalized plane wave similarly has the effect of inducing a mass
shift in a test event. In a second generalization, we treated the mass parameter in the standard
components of the Schwarzschild metric as τ-dependent and solved for the matter distribution
that would produce this perturbation. We found that the mass density of the matter distribution
effectively vanishes, while the energy density and momentum density into the radial direction drive
the variation of M. These mass effects may be compared to Equation (7), in which we saw that the
SHP electromagnetic field component f5α permits the exchange of mass between particles and fields,
and is, thus, the condition for non-conservation of proper time. The first term of

f5α = ∂5aα − ∂αa5 (234)

induces mass exchange through τ-dependence of the electromagnetic field aα, in analogy with the
τ-dependent gravitational field γµν(x, τ) seen in (59) and (190). The second term induces mass
exchange through a non-trivial fifth field component a5, in analogy with the g55 metric component
used in (196).

Beyond the theoretical interest in modified gravity, the 4+1 formalism in SHP general relativity
offers a potentially significant tool for the calculation of complex dynamics in numerical relativity.
For example, the weak field approximation for a single source event given in Section 2.5 may be
extended by introducing a second source moving at nonrelativistic velocity toward the first. Although
the equations of motion for a test particle in the resulting field is not amenable to closed form solution,
a straightforward numerical solution will take account of the nonlinear evolution of the particle’s
coordinate time t. By comparison, a solution using x0 = ct as the evolution parameter for the particles
and fields will necessarily involve significantly more computational complexity.

It has been shown [31] that Maxwell theory emerges from SHP electrodynamics by taking c5 → 0
and, in this sense, can be seen as an equilibrium limit as τ-evolution of the field reaches a steady
state. Alternatively, this limit is obtained, under appropriate boundary conditions, by integration [5] of
the fields and currents over τ, with the effect of summing at each spacetime point the contributions
from all values of τ. At equilibrium, the electromagnetic fields become τ-independent and the
fields associated with the potential a5 decouple from matter, so that, while proper time remains
unconstrained, it behaves as a classical conserved quantity. Thus, by restricting his electromagnetic
formalism to the τ-independent four-vector potential Aµ(x), Fock remained within standard Maxwell
theory. This restriction was also applied in the formulations of quantum electrodynamics (QED) by
Schwinger [32] and Feynman [33], leading to fixed masses for asymptotic particle states.
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As we saw in Equation (155) the Einstein tensor in SHP can be split into ten unconstrained
components and five constraints among initial condition. It remains to be shown that the unconstrained
components correspond to the ten components of the Einstein tensor in 4D, and the five constraints
permit mass exchange but conserve the total mass of matter and fields. We further expect that,
as in electrodynamics, an appropriate restriction in SHP GR will lead to a decoupling of field
components and the conservation of four of the ten components of the Einstein tensor. This restriction
should produce a τ-parameterized formulation of standard 4D GR, analogous to Fock’s proper-time
formulation of Maxwell theory. While it is evident from (34) that taking c5 to zero recovers the standard
spacetime geodesic Equation (35), the nonlinearity of the Einstein field equations makes the problem of
extracting a τ-parameterized field theory considerably more difficult. These aspects of the theory will
be reported in future work. Such a theory would be especially useful in cases of strong gravitational
fields. We thus expect that calculations of black hole collisions and radiation from stellar collapse may
be improved by posing the initial value problem with respect to the external evolution parameter τ.
Numerical calculations of this type are beyond the scope of this paper and they will be discussed in
future work.
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