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Abstract: Numerical investigations are performed on the magnetohydrodynamic (MHD) pump-based
microchannel cooling system for heat dissipating element. In the present study, the MHD pump
performance is evaluated considering normal current density, magnetic flux density, volumetric
Lorentz force, shear stress and pump flow velocity by varying applied voltage and Hartmann number.
It is found that for a low Hartmann number, the Lorentz force increases with an increase in applied
voltage and Hartmann number. The velocity distribution along dimensionless width, the shear
stress distribution along dimensionless width, the magnetic flux density along the dimensionless
width and radial magnetic field distribution showed symmetrical behavior. The MHD pump-based
microchannel cooling system performance is evaluated by considering the maximum temperature of
the heat dissipating element, heat removal rate, efficiency, thermal field, flow field and Nusselt number.
In addition, the influence of various nanofluids including Cu-water, TiO2-water and Al2O3-water
nanofluids on heat transfer performance of MHD pump-based microchannel is evaluated. As the
applied voltage increased from 0.05 V to 0.35 V at Hartmann number 1.41, the heat removal rate
increased by 39.5%. The results reveal that for low Hartmann number, average Nusselt number is
increasing function of applied voltage and Hartmann number. At the Hartmann number value of
3.74 and applied voltage value of 0.35 V, average Nusselt numbers were 12.3% and 15.1% higher for
Cu-water nanofluid compared to TiO2-water and Al2O3-water nanofluids, respectively. The proposed
magnetohydrodynamic microcooling system is effective without any moving part.
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1. Introduction

Magnetohydrodynamic (MHD) pumps have been focus of research owing to various advantages
over traditional pumps in many specific areas of application including biological fields, solar
applications and heat transfer systems [1]. The major advantage of such pumps is that they are
free of any moving parts. Additionally, the miniaturization of such pumps due to their simple structure,
can be utilized in microfluidic systems, microcooling systems and microelectromechanical system
(MEMS) applications [2,3]. In a few applications, where it is difficult to use conventional pumps such as
molten metal pumping, these pumps are more useful and efficient. Moreover, the applications requiring
no moving sections, for example, in spaceships and biological applications like blood pumping, these
pumps can be used [4]. Out of various applications, one of the promising usages of MHD pumps is
cooling of heat dissipating element. The coolant flow is generated by MHD pumps and can be made to
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flow in the microchannel where the dissipated heat from the heat dissipating element is taken away.
Use of microchannels in a cooling system is one of the efficient ways of dissipating heat [5,6]. In such
instances, heat transfer effectiveness and the thermal behavior of a cooling system with its influencing
factors need to be investigated.

Lemoff et al. [7] developed and presented one of the first MHD micropumps with AC current using
Lorentz force to pump electrolytic solution in microchannel. The authors showed that the continuous
flow without any pulse can be produced. Rivero and Cuevas [8] studied MHD micropumps in one and
two-dimensional flow models for laminar flows in parallel plates and rectangular ducts by considering
the influence of slip condition which can be used to design MHD micropumps and characterize the
flow behavior in these microfluidic devices. The 2D model presented by the authors showed more
accuracy with results of experimentation as compared to 1D model [8]. Zhao et al. [9] conducted an
analytical study by using the separation of variables method for generalized Maxwell fluids in a MHD
rectangular micropump operated under the AC electric field and found that for given oscillating Reynolds
number, large Hartmann number leads to large amplitudes of velocity. Yousofvand et al. [10] investigated
heat transfer and pumping performance of electromagnetic pump considering Cu-water nanofluid as
working fluid and found that for low Hartmann numbers, body force increases whereas for Ha > 200, the
opposite trend is observed. Moghaddam analytically investigated the MHD micropump performance
considering circular channel. The author found that average dimensionless velocity initially increases
with increase in Hartmann number and dimensionless radius. However, after attaining peak, the average
dimensionless velocity decreases with increase in Hartmann number and dimensionless radius [11].
Miroshnichenko et al. [12] studied MHD natural convection in a partially open trapezoidal cavity under
the influence of various magnetic field orientations and found that an increase in uniform magnetic field
value decreases the rate of heat transfer. A comprehensive study of power-law fluids in MHD natural
convection has been conducted by Kefayati [13,14]. Shirvan et al. [15] conducted numerical investigations
on MHD flow in a square cavity with different inlet and outlet ports. The authors presented optimization
of mean Nusselt number using orthogonal array optimization. Kiyasatfar et al. [16] investigated thermal
behavior and fluid motion in direct current (DC) MHD pump by varying magnetic flux density, applied
current and channel size. The authors found that the maximum velocity increases with increase in applied
current and as Hartmann number increases the velocity profile becomes flatter. Larimi et al. [17] studied
the effect of non-uniform transverse magnetic field arrangements with a different Reynolds number for
magnetic nanofluids on heat transfer and found that applying external magnetic fluid is strongly effective
in fluid cooling at low Reynolds number. Kolsi et al. [18] performed a numerical study for 3D MHD
natural convection inside a cubical enclosure with an inclined plate and found an optimal inclination angle
of 180◦ for the plate. Kefayati considered various flow types including non-Newtonian nanofluids [19],
blood flow [20] and power-law fluids in an internal flow [21] with focus of investigation on the effects of
the power-law index, Reynolds number on thermal behavior by varying magnetic field to find optimized
conditions. Further research has been conducted to understand the flow behavior of MHD considering
different cases [22,23].

The MHD pump involves two types of heat transfer mechanism: forced convection and mixed
convection. The micro-cooling of the heat dissipating element is a case of mixed convection owing to its
microstructure and very low flow rate. Mixed convection heat transfer has attracted significant research
attention of heat transfer engineers owing to various application fields including heat exchangers,
electronic cooling [24], heat dissipating element cooling [25], micro-cooling, MEMS applications, solar
energy applications and metal casting [26]. Micro-cooling application is one of the critical research
areas which has gained importance due to recent trends of miniaturization of devices as well as
high power applications, which results in large amount of heat generation in compact volume. The
various cooling methods previously suggested, including direct fan cooling [27] and thermoelectric
cooling, suffer from low efficiency and high-power consumption. In addition, the presence of moving
components makes conventional cooling methods less desirable [28]. Therefore, in the present study,
MHD pump-based microchannel cooling for a heat dissipating element is investigated. The MHD
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pump performance is evaluated by varying the applied voltage and Hartmann number, and its effect
on various parameters including normal current density, magnetic flux density, volumetric Lorentz
force, shear stress and pump flow velocity is reported. The heat transfer performance of the MHD
pump-based microchannel cooling for a heat dissipating element is reported by considering the heat
removal rate, efficiency, thermal field, flow field and Nusselt number. In addition, three different
nanofluids, including Cu-water, TiO2-water and Al2O3-water, are considered, and their influence on
heat transfer performance is compared. The comparative heat transfer performance and potentials of
various nanofluids in MHD pump application for microchannel cooling have not been realized. This
study provides a comprehensive understanding of MHD pump performance, heat transfer performance
of MHD pump-based microchannel cooling systems, and the influence of various nanofluids on heat
transfer performance.

2. Method

2.1. Numerical Modeling

A schematic view of an MHD pump for cooling a heat dissipating element is presented in Figure 1.
A heat dissipating element can be any microsystem including microfluidic devices, micro-batteries,
electronic chips, light emitting diodes (LED), etc. The basic principle of operation of MHD pumps
is based on the Lorentz force in which magnetic and electrical fields are kept perpendicular, which
forces conducting fluids in a perpendicular direction to both electric currents and magnetic fields,
creating an MHD pump effect. The magnetic field strength and applied current both affect the flow
velocity. The magnetic field is created by keeping two small permanent magnets. The origin of the
coordinate system lies between two magnets and it is equidistance from the magnets. The origin of the
coordinate system lies exactly at the center of the MHD pump without considering the microchannel
dimensions (Figure 1). The origin of the coordinate system has been chosen specifically at the center of
the MHD pump (without considering microchannel dimensions) for simplicity in the calculations. The
width of the MHD pump is chosen as a characteristic length of the system considering width as an
important dimension of the MHD pump system along which various parameters are evaluated. Due
to the Lorentz force, the coolant flows in the positive X-axis direction (i.e., from the MHD pump and
towards the microchannel) as shown in Figure 1. The microchannel consists of four slots. Details of the
MHD pump dimensions are provided in Table 1.
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Table 1. MHD pump and microchannel dimensions.

Item Parameter Values

MHD pump Length × Height (mm) 80 × 10

Microchannel
Length ×Width × Height (mm) 30 × 30 × 10

Number of channel slots (ea) 4
Single channel Width × Height (mm) 4 × 7
Magnet radius Radius × Height (mm) 15 × 7.5

Heat dissipating element Length ×Width × Height (mm) 10 × 10 × 1

2.2. Governing Equations and Boundary Conditions

The modeling of the MHD phenomena involves a multiphysics problem with coupled equations
between fluid flow, heat transfer, current flow, and magnetic fields, which are solved numerically.
The different fields of physics involved are expressed by partial differential equations, which can
be solved via the finite element method. In the present study, the numerical modeling of the MHD
phenomena is conducted using COMSOL. The partial differential equations involving multiphysics
behavior with coupling between fluid flow, heat transfer, electric current and magnetics are solved
using the finite element method. The fluid flow and heat transfer are governed by the Navier–Stokes
equation as shown below [29]. Equations (1)–(3) show continuity, momentum and energy conservation,

respectively [30], where
→

V is velocity, ρ is density, p is pressure and α is thermal diffusivity.

∇·
→
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(
→

V·∇)
→
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(
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→
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→
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(5)

→

F is the body force due to Lorentz forces which causes fluid motion as shown in Equation (4) [9].

The electric current density which is defined by Ohm’s law is shown in Equation (5) [31], where
→

J is

the electric current in y-direction and
→

B is the magnetic field in the z-direction. The electric current and
magnetic field are perpendicular which creates a Lorentz force in the x-direction.

The working fluid is Newtonian fluid with flow considered as steady and laminar based on the
low Reynolds number. The thermo-physical properties of working fluid, nanoparticle and boundary
conditions are presented in Table 2. The heat dissipating element that is acting on the pump’s wall is
assumed to be a constant volumetric heat generation source. The applied electric voltage is varied
from 0.05 V to 0.35 V with an interval of 0.05 V. The Hartmann number is varied from 1.41 to 3.74. The
cylindrical type permanent magnets are used for providing the magnetic field intensity. Three different
types of nanofluids are considered including Cu-water, TiO2-water, and Al2O3-water nanofluids. The
base fluid for all the nanofluids is water. The boundary condition of opening at atmospheric pressure
is applied at the coolant inlet and coolant outlet. The density of water is considered as 997.0 kg/m3 at
25 ◦C and assumed as an incompressible fluid. The thermal conductivity of water is considered as
0.6069 W/m-K at 25 ◦C. The specific heat of water is considered as 4181.7 J/kg-K. The details about
the boundary conditions and thermophysical properties of water and nanoparticles are presented in
Table 2.
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Table 2. Boundary conditions and thermophysical properties.

Specifications Values

Boundary conditions
Inlet coolant temperature (◦C) 25

Applied Voltage (V) 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
Volumetric heat generation rate (W/m3) 1.0 × 108

Coolant inlet Opening at atmospheric pressure
Coolant outlet Opening at atmospheric pressure

Thermophysical properties
Water Cu TiO2 [32] Al2O3 [33]

Density (kg/m3) 997 8954 4260 3970
Thermal conductivity (W/m-K) 0.6069 400 8.9 25

Specific heat (J/kg-K) 4181.7 383 686.2 765

2.3. Nanofluid Relations

The density of nanofluid with various nanoparticle volume fraction is predicted by the
Pak et al. [34] as shown in Equation (6). Zhong et al. [35] experimentally measured the density
of TiO2-water nanofluid and compared the predictions using the Equation (6) within 0.54%. Therefore,
in the current study, the density of various nanofluids with different volume fraction is calculated
using Equation (6), where ρ denotes density and φ denotes volume fraction.

ρn f = φρn + (1−φ)ρ f (6)

The viscosity of the nanofluid (µn f ) with various nanoparticle volume fraction (φ) using viscosity
of fluid (µ f ) is predicted by various researchers including Batchelor [36], Vand [37], Wang et al. [38],
Duangthongsuk et al. [39] and Bobbo et al. [40], as shown in Equations (7)–(11), respectivelyBased on
the model prediction accuracy with experimental data [35], in the present study, the model proposed
by Want et al. [38] is used for calculating the viscosity of nanofluid.

µn f = µ f
(
1 + 2.5φ+6.5φ2

)
(7)

µn f = µ f
(
1 + 2.5φ+7.349φ2

)
(8)

µn f = µ f
(
1 + 7.3φ+123φ2

)
(9)

µn f = µ f
(
1.013 + 0.092φ−0.015φ2

)
(10)

µn f = µ f
(
1 + 0.36838φ+0.25271φ2

)
(11)

The thermal conductivity and specific heat of nanofluid for various volume fractions are calculated
using Equation (12) [41] and Equation (13) [42], respectively. The effect of the nanoparticle volume
fraction on the mixture properties is presented in Figure 2.

kn f= k f
kp+2k f+2φ

(
kp−k f

)
kp+2k f−2φ

(
kp−k f

) (12)

(
ρCp

)
n f

= (1−φ)
(
ρCp

)
f
+ φ
(
ρCp

)
n

(13)
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2.4. Mesh Independency

Figure 3 shows the details of the mesh independency test. The Lorentz force and average velocity
are considered as parameters to evaluate the mesh independency. In the present study, the mesh type
is defined as the number of elements in the generated mesh. Mesh type 1 contains 5.43 × 104 elements,
which is a coarse mesh, whereas mesh type 5 contains 1.45 × 106 elements, which is a finer mesh. As
the mesh elements increased from 9.65 × 105 to 1.45 × 106, the Lorentz force and average velocity
varied only 0.008% and 0.166%, respectively. Considering the computational cost and accuracy of the
numerical simulations, mesh type 4 with 9.65 × 105 elements, is selected for carrying out numerical
simulations as shown in Table 3.

Table 3. Mesh details.

Mesh Type Number of Elements

Type 1 5.43 × 104

Type 2 1.56 × 105

Type 3 6.09 × 105

Type 4 9.65 × 105

Type 5 1.45 × 106

2.5. Data Reduction

The MHD pump flow is generated by the application of electric and magnetic field, which
interacts with the conducting fluid. The developed flow is described as Hartmann flow and the
non-dimensional number, known as the Hartmann number (Ha), is defined as shown in Equation
(14), where B is magnetic flux intensity, L is characteristics length, σ is electrical conductivity and µ is
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dynamic viscosity [21]. The Hartmann number gives an estimation of the magnetic forces compared to
viscous force [9].

Ha = BL(σ/µ)0.5 (14)
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The convective heat transfer rate is used to obtain heat transfer coefficient and calculate average
Nusselt number (Nuavg). The heat transfer rate is evaluated as shown in Equation (15) [43].

Qconv= minCp(T bulk,out − Tbulk,in
)

(15)

The average heat transfer coefficient is evaluated from Equation (16). The numerator is convective
heat transfer from wall to fluid and the denominator is a combined term consisting of the wall
convective surface area and logarithmic mean temperature difference of the wall-and-bulk fluid [25].

havg =
Qconv

Awall (T wall − Tbulk)LMTD
(16)

(Twall − Tbulk)LMTD =
∆Twall−buk,in − ∆Twall−buk,out

log(∆Twall−buk,in/∆Twall−buk,out
) (17)

where ∆Twall−buk,in and ∆Twall−buk,out indicate the differences between the wall temperature and bulk
fluid temperature at the inlet and outlet of the channel, respectively (Equation (17)). The average
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Nusselt number is calculated as shown in Equation (10) where Dh represents the hydraulic diameter
and kf represents the thermal conductivity of the fluid.

Nuavg =
havg ×Dh

k f
(18)

3. Results and Discussion

The results of the numerical study on the MHD pump subjected to the mentioned boundary
conditions are presented in terms of normal current density, magnetic flux density, volumetric Lorentz
force, shear stress and pump flow velocity by varying applied voltage and Hartmann number.
For evaluating the MHD pump performance, Cu-water nanofluid with 0.1% volume fraction was
considered. In the subsequent sub-sections, the performance of the MHD pump-based microchannel
cooling system is presented considering various parameters, including the maximum temperature of a
heat dissipating element, heat removal rate, efficiency, thermal field, flow field and Nusselt number. In
addition, the heat transfer performance of Cu-water nanofluid is compared with TiO2-water nanofluid
and Al2O3-water nanofluid. The study provided an in-depth understanding of the MHD pump
functioning and its application in micro-cooling systems.

3.1. Validation

The numerical study is validated with the previously published literature. The server workstation
with an Intel (R) Xenon(R) CPU E5-2620 v3 @2.40 GHz including 24 cores and 64 GB computation
memory is used to run the simulations. To ensure the accuracy of the numerical study method,
numerically predicted velocity is compared with previously published experimental data [7] and
numerical data [10] as shown in Figure 4. It is demonstrated that the predicted velocity closely matches
with the linear fit to the experimental data and numerical data. Thus, the validation of the numerical
model is confirmed.
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3.2. Magnetohydrodynamic Pump (MHD) Performance

Figure 5a shows the variation of normal current density with the applied voltage and Hartmann
number. The normal current density increased with the increase in applied voltage. For example, as
the applied voltage increased from 0.05 V to 0.35 V, at a Hartmann number value of 2.0, the normal
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current density increased 600%, or 6 times. For the same applied voltage, a higher normal current
density is observed for the higher Hartmann number. As the Hartmann number increased from 1.41
to 3.76 at a constant applied voltage of 0.35 V, the normal current density increased 600%, or 6 times.
The combined influence of a higher applied voltage and higher Hartmann number are visible with a
significant increase in the normal current density.
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Figure 5b shows the spatial variation of induced current and it can be seen that the induced
current density is higher near electrode area. Figure 5c shows the variation of the average velocity
with respect to current density. The average velocity increased linearly with the increase in current
density. The flow rate can be increased either by increasing applied current, keeping magnetic flux
constant or by increasing magnetic flux while keeping the applied current constant to enhance the
pump performance. Similar trends have been observed by previously conducted studies [16]. For low
Hartmann numbers, the velocity increased with an increase in the Hartmann number. However, the
high Hartmann number can have a negative effect on the velocity as well as volumetric flow rate [11].
For a low Hartmann number, forced convection dominates with higher velocities which is useful for
enhancing the pump performance.

Figure 6a shows the variation of magnetic flux along the dimensionless width in the Y-axis at
the center of the magnetohydrodynamic pump. The maximum value of the magnetic flux attained is
about 0.25 T at the center of the MHD pump channel. However, the value of the magnetic flux density
near the conducting electrode is found to be in the order of 0.11 T. Similar results have been obtained
by Aoki et al. [44]. The magnetic flux showed axisymmetric behavior for the axis passing through the
center of the dimensionless width. Figure 6b shows the magnetic field distribution for the MHD pump
on the XY-plane. As in the present study, the cylindrical permanent magnet is considered for the MHD
pump application and the circular magnetic field pattern is observed. The maximum magnetic field
value of the order of 100 kA/m is observed. The magnetic field showed radial symmetric behavior for
the axis passing through the center of the magnet.

Figure 7 shows the volumetric Lorentz force variation for applied voltage and Hartmann number.
The volumetric Lorentz force increased with increase in applied voltage. For example, as the applied
voltage increased from 0.05 V to 0.35 V at a Hartmann number value of 2.0, the volumetric Lorentz
force increased 600%, or 6 times. For the same applied voltage, a higher volumetric Lorentz force is
observed for a higher Hartmann number. As the Hartmann number increased from 1.41 to 3.76, at
a constant applied voltage of 0.35 V, the volumetric Lorentz force increased 600%, or 6 times. In the
study conducted by Moghaddam on MHD micropumps, the volumetric flow rate increased owing to
an increase in the Hartmann number to a value of 40, then volumetric flow rate started to decrease [11].
Similarly, the volumetric flow rate increased until a Hartmann number of 200, and then decreased in
the study conducted on the MHD pump by Yousofvand et al. [10]. The present study is focused on
low Hartmann numbers (Ha < 4) where the volumetric flow rate and Lorentz force increases with the
increase in Hartmann number, as the defined Hartman number compares the magnetic force with the
viscous force. At low Hartmann numbers, the viscous forces dominate giving a higher volumetric
flow rate. As a result, the lower Hartmann number is favorable for the enhancement of heat transfer.
However, a higher Hartmann number can have an adverse effect on heat transfer [10].

Figure 8a shows the shear stress variation along the non-dimensional width at the center of the
magnetohydrodynamic pump. The shear stress values for all the Hartmann numbers are compared in
the middle section of the channel. Regions of higher shear stress are observed near the wall for all the
Hartmann numbers. The values of shear stress in the region near the walls of the channel increased as
the Hartmann number increased. Shear stress is directly proportional to the rate of change of velocity.
The increase in shear stress at the walls for a higher Hartmann number is observed due to the typical
velocity profile of the MHD pump flow inside the channel, where the velocity profile becomes flatter
at the center, and a large velocity change is seen near the walls. As the Hartmann number increased
from 1.41 to 3.74, the shear stress value near the channel walls increased around 7 times, or 714%. The
shear stress variation showed axisymmetric behavior for the axis passing through the center of the
dimensionless width. Figure 8b shows the pressure contours for the flow cross-sectional area at the
center of the pump in the YZ-plane, and it could be seen that higher pressure regions are observed
near the wall owing to the Hartmann effect.
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Figure 9 shows the variation of the velocity profile along the dimensionless width in the Y-axis
imposed by the Lorentz force at the center of the magnetohydrodynamic pump. The velocity profiles
show maximum values near the walls and lower values in the center of the channel owing to the
Lorentz force distribution [44]. The velocity variation showed axisymmetric behavior for the axis
passing through the center of a dimensionless width. The M-shape velocity profiles as observed in
Figure 9 are present in many MHD pumps. This can be attributed to the position of conducting
electrodes on the two opposite walls to provide the DC power supply. Moreover, the different fluids
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have responded with a similar velocity profile indicating that it is a geometrically affected phenomenon
with the position of the electrode [45]. It could be seen from Figure 9 that as the Hartmann number
increased, the velocity increased. Moreover, as the value of the Hartmann number increased, the
velocity profile became flatter. The plug-like shape remained constant for a large portion of the
channel width [46,47]. The current flowing in the closed loop generated a non-uniform negative small
electromagnetic Lorentz force which counteracted the conducting fluid flow in the magnetic field
creating a flat velocity boundary layer [45]. This phenomenon is called the Hartmann effect. For
example, as the value of the Hartmann number increased from 1.41 to 3.74, the maximum velocity
increased by 280% at the center of the magnetohydrodynamic pump. Moreover, as the value of the
Hartmann number increased, its effect on velocity change was slightly reduced. This is evident from
Figure 9, as the change in maximum velocity for the Hartmann number variation from 3.46 to 3.74 is
less as compared to the variation from 1.41 to 2.00.
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Figure 10 shows the velocity field variation in the X-axis along the width at the center of the
magnetohydrodynamic pump. The velocity at the center of the channel is higher compared to the
channel wall, owing to the high shear stress observed along the channel wall. The average velocity of
0.0034, 0.0061, 0.0085, 0.0106, 0.0126, 0.0145 and 0.0164 m/s are developed for the applied voltage of
0.05, 0.10, 0.15, 0.25, 0.30 and 0.35 V at Hartmann number value of 2.0, respectively.
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The increase in average velocity with increase in the applied voltage is attributed to development
of higher Lorentz force. It is obvious from Equation (4) that the Lorenz force will increase if the cross
product of current density and magnetic field increases.

3.3. MHD-Based Microchannel Cooling System

The magnetohydrodynamic pump has various advantages over traditional pumps including low
cost, low electric field and no moving parts. The Lorentz force developed by the interaction between
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the electric current and magnetic field can be used to propel, stir or manipulate the flow behavior in
the channel. This section provided the details of the MHD micropump performance considering the
applied voltage and Hartmann number.

Figure 11 shows the variation of the maximum temperature of the heat dissipating element for
the varied applied voltage and Hartmann number with Cu-water with volume fraction of 0.1% as
coolant. As the applied voltage is increased, the maximum temperature of the heat dissipating element
decreased. For example, as the applied voltage increased from 0.05 V to 0.35 V at a Hartmann number
value of 2.0, the maximum temperature of the heat dissipating element decreased by 7.7%. For the
same applied voltage, lower maximum temperatures of the heat dissipating element are observed
for a higher Hartmann number. As the Hartmann number increased from 1.41 to 3.76 at a constant
applied voltage of 0.05 V, the maximum temperature of the heat dissipating element decreased by
11.0%. The combined influence of higher applied voltage and higher Hartmann number are visible
with significant decrease in the maximum temperature of the heat dissipating element. These findings
show that the applied voltage and Hartmann number have a significant effect on maintaining and
controlling the maximum temperature of the heat dissipating element.
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Figure 12 shows variation of the heat removal rate for the varied applied voltage and Hartmann
number with Cu-water with the volume fraction of 0.1% as coolant. As the applied voltage is increased,
the heat removal rate increased. For example, as the applied voltage increased from 0.05 V to 0.35 V
at a Hartmann number value of 2.0, the heat removal rate increased by 34.5%. For the same applied
voltage, higher heat removal rates are observed for a higher Hartmann number. As the Hartmann
number increased from 1.41 to 3.76 at a constant applied voltage of 0.05 V, the heat removal rate
increased by 39.5%. The combined influence of a higher applied voltage and higher Hartmann number
are visible with significant increase in heat removal rate. The increase in heat removal rate with a
higher applied voltage is attributed to an increase in the volumetric Lorentz force as shown in Figure 7,
which subsequently results in the higher volumetric flow rate. It can be seen that for a lower Hartmann
number, the rate of change heat removal rate is large, whereas for a higher Hartmann number, the rate
of change of heat removal rate is small. This is because the dominance of the magnetic force increased
as the Hartmann number increased [10].
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Figure 13 shows the variation of efficiency for the varied applied voltage and Hartmann number
with Cu-water with volume fraction of 0.1% as coolant. The efficiency is defined as shown in
Equation (19).
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As shown, the efficiency decreased continuously with increase in applied voltage. This shows 
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As shown, the efficiency decreased continuously with increase in applied voltage. This shows
that, even though for higher applied voltage the heat removal rate is higher, and the temperature
of the heat dissipating element is minimum, the heat removal process is less efficient. Therefore, an
optimum operating range considering the heat removal rate, temperature of heat dissipating element
and efficiency could be considered. As the applied voltage increased from 0.05 to 0.35 V at a Hartmann
number value of 3.46, the efficiency decreased from 204.4 to 4.9. For the same applied voltage, a lower
efficiency is observed for a higher Hartmann number. As the Hartmann number increased from 1.41 to
3.76 at a constant applied voltage of 0.35 V, the efficiency decreased from 29.1 to 4.9. The combined
influence of the higher applied voltage and higher Hartmann number are visible with a significant
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decrease in efficiency. These findings show that the applied voltage and Hartmann number have a
significant effect on efficiency.

Figure 14 shows the velocity and temperature distribution in the MHD pump microchannel
cooling system with Cu-water with volume fraction of 0.1% as coolant. As shown in Figure 14a, the
velocity is uniformly distributed in the microchannel throughout, which makes it an attractive method
for the cooling heat dissipating element, especially where space and noise are constraints such as
electronic devices. The rate of increase of the developed flow velocity in the magnetohydrodynamic
pump cooling system is an indication of cooling performance as a higher velocity development leads
to higher cooling performance. However, the increase in flow velocity has limitations owing to applied
voltage and applied magnetic field. As expected, the flow velocity in the thin microchannel increased
as it passed through the narrow duct of microchannel cooling system [6]. This is desirable as the heat
dissipating element is placed exactly at the center of the microchannel. As shown in Figure 14b, the
temperature of the coolant increased as it passed through microchannel. In the present study, the
square microchannel design is investigated considering the manufacturing simplicity of the square
duct. The future scope of the study involves the use of different shapes of microchannel including
circular and trapezoidal. The temperature field distribution for the MHD pump microchannel at
the center plane showed that heat transfer occurred along the edges of the microchannel and heat is
taken away as the flow proceeded [48]. The geometry based microchannel optimization for effective
thermal performance could be carried out considering the requirement of cooling performance and
these findings can be used to design an effective cooling by optimizing influencing parameters.
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Figure 14. Velocity and temperature distribution in MHD pump microchannel cooling system.

Figure 15 shows the variation of the average Nusselt number for the applied voltage and Hartmann
number with Cu-water with a volume fraction of 0.1% as the coolant. The Nusselt number is an
indication of enhanced heat transfer due to convection as compared to conduction [49]. The higher
Nusselt number indicates the effectiveness of magnetohydrodynamic cooling systems for the heat
dissipating element. The average Nusselt number increased with the applied voltage. For example, as
the applied voltage increased from 0.05 V to 0.35 V at a Hartmann number value of 2.0, the average
Nusselt number increased by 112.6%. For the same applied voltage, a higher average Nusselt number
is observed for higher Hartmann numbers. As the Hartmann number increased from 1.41 to 3.76 at a
constant applied voltage of 0.25 V, the heat removal rate increased by 100.0%. The combined influence
of a higher applied voltage and higher Hartmann number are visible with a significant increase in the
average Nusselt number. However, the rate of increase of the average Nusselt number decreased as the
applied voltage and Hartmann number increased. The heat transfer performance slightly deteriorated
as the value of the Hartmann number increased due to suppression of convection due to the magnetic
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field [10,50]. These findings show that the applied voltage and Hartmann number have a significant
effect on the heat transfer performance of MHD micropumps.
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Figure 15. Variation of average Nusselt number with applied voltage.

3.4. Influence of Various Nanofluids

The thermal performance of the MHD pump is compared using various nanofluids. Three types
of nanofluids including Cu-water, TiO2-water and Al2O3-water are considered with a volume fraction
of 0.1%. For performance comparison, the volume fraction of nanoparticles in nanofluids is kept
constant. To evaluate the thermal performance of MHD pumps with various nanofluids, the heat
transfer rate, efficiency and Nusselt number variation are considered.

Figure 16 shows variation of the heat removal rate for the varied Hartmann number. As the
Hartmann number is increased, the heat removal rate increased. For example, as the Hartmann number
increased from 1.41 to 3.74 at an applied voltage value of 0.35 V, the heat removal rate increased by
18.0% for Cu-water nanofluids. For the same applied voltage, higher heat removal rates are observed
for Cu-water nanofluid as compared to TiO2-water and Al2O3-water nanofluids. As previously noted,
for a lower Hartmann number, the rate of change heat removal rate is large, whereas for higher
Hartmann number, the rate of change of heat removal rate is small. The Cu-based nanofluid showed a
better heat transfer rate owing to the high thermal conductivity of copper nanoparticles.
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Figure 16. Variation of heat removal rate with various nanofluids at different Hartmann numbers.
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Figure 17 shows variation of the efficiency for the varied Hartmann number. As the Hartmann
number is increased, the efficiency decreased. For example, as the Hartmann number increased from
1.41 to 3.74 at applied voltage value of 0.35 V, efficiency decreased from 29.16% to 4.92% for Cu-water
nanofluid. For the same applied voltage, higher efficiencies are observed for Cu-water nanofluid as
compared to TiO2-water and Al2O3-water nanofluids. For lower Hartmann number, the rate of change
efficiency is large, whereas for higher Hartmann number, the rate of change of efficiency is small. This is
because the dominance of magnetic force increased as the Hartmann number increased. The Cu-based
nanofluid shows better efficiency owing to high thermal conductivity of copper nanoparticles.
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Figure 18 shows variation of the average Nusselt number for the varied Hartmann number. As the
Hartmann number is increased, the average Nusselt number increased. For example, as the Hartmann
number increased from 1.41 to 3.74 at an applied voltage value of 0.35 V, the average Nusselt number
increased by 96.5% for Cu-water nanofluid. For the same applied voltage, higher average Nusselt
numbers are observed for Cu-water nanofluid as compared to TiO2-water and Al2O3-water nanofluids.
Interestingly, the Nusselt number for the TiO2 based nanofluid and Al2O3 based nanofluid are found to
be close. The Cu-based nanofluid showed a better average Nusselt number owing to the high thermal
conductivity of copper nanoparticles.
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4. Conclusions

Magnetohydrodynamic pump-based microchannel cooling is proposed for cooling heat dissipating
elements. The proposed magnetohydrodynamic pump has many advantages including vibration-free
and noise-free applications. In the present study, the applied voltage and Hartmann number are varied
to evaluate the effect on the MHD pump performance considering normal current density, magnetic flux
density, volumetric Lorentz force, shear stress and pump flow velocity as evaluating parameters. The
MHD pump-based microchannel cooling system performance with Cu-water nanofluid is evaluated
considering the maximum temperature of the heat dissipating element, heat removal rate, efficiency,
thermal field, flow field and Nusselt number for various applied voltages and Hartmann numbers.
It is found that for a low Hartmann number, the Lorentz force increased with an increase in the
applied voltage and Hartmann number. As the applied voltage increased from 0.05 V to 0.35 V at a
Hartmann number of 1.41, the heat removal rate increased by 39.5%. The results revealed that for a low
Hartmann number, the average Nusselt number increased with increase in the applied voltage and
Hartmann number. As the applied voltage increased from 0.05 V to 0.35 V at a Hartmann number of
1.41, the average Nusselt number increased by 112.6%. In addition, the influence of various nanofluids
including Cu-water, TiO2-water and Al2O3-water nanofluids on heat transfer performance of MHD
pump-based microchannels is evaluated. At the Hartmann number value of 3.74 and applied voltage
value of 0.35 V, average Nusselt numbers are 12.3% and 15.1% higher for Cu-water nanofluid compared
to TiO2-water and Al2O3-water nanofluids, respectively. The MHD pump is more useful in cases where
space and noise constraint are of particular interest. Especially in the microelectronics device cooling,
the removal of heat is important and due to miniaturization, the MHD pump for cooling provides
a promising option. The investigations provide an opportunity to further explore the application of
MHD pumps in electronics cooling.
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Nomenclature

A cross-sectional area (m2)
→

B magnetic field vector (T)

B magnitude of the magnetic field (T)
Cp specific heat at constant pressure (J/kg-K)
Dh hydraulic diameter (m)
→

E electric field vector (V/m)
→

F electromagnetic force (N)

havg average heat transfer coefficient (W/m2-K)
Ha Hartmann number
→

J current density (A/m2)

L characteristic length (mm)
MHD magnetohydrodynamic
Nuavg average Nusselt number
P pressure (Pa)
Q heat transfer rate (W)
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T temperature (◦C/K)
t time (s)
→

V velocity (m/s)

Greek symbols
∇ gradient operator
α thermal diffusivity (m2/s)
σ electrical conductivity (S/m)
ρ density (kg/m3)
ν kinematic fluid viscosity (m2/s)
µ dynamic viscosity (Pa-s)
k thermal conductivity (W/m-K)
φ volume fraction (%)
Subscripts
avg average
bulk bulk property
conv convective heat transfer
f fluid
in inlet
LMTD logarithmic mean temperature difference
n nanoparticle
nf nanofluid
out outlet
wall wall
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