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Abstract: This paper is devoted to a generalization of the well-known Fekete-Szegö type coefficients
problem for holomorphic functions of a complex variable onto holomorphic functions of several variables.
The considerations concern three families of such functions f , which are bounded, having positive
real part and which Temljakov transform L f has positive real part, respectively. The main result
arise some sharp estimates of the Minkowski balance of a combination of 2-homogeneous and
the square of 1-homogeneous polynomials occurred in power series expansion of functions from
aforementioned families.
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1. Introduction

Since the several complex variables geometric analysis depends on the type of domains in Cn (see for
instance References [1–3]), we consider a special, but wide class of domains in Cn. We say that a domain
G ⊂ Cn, n ≥ 1, is complete n-circular if zλ = (z1λ1, ..., znλn) ∈ G for each z = (z1, ..., zn) ∈ G and every
λ = (λ1, ..., λn) ∈ Un, where Un is the open unit polydisc in Cn, that is, the product of n copies of the
open unit disc U = {ζ ∈ C : |ζ| < 1} . From now on by G will be denoted a bounded complete n-circular
domain in Cn, n ≥ 1. Such bounded domain G and its boundary ∂G can be redefined as follows

G = {z ∈ Cn : µG(z) < 1}, ∂G = {z ∈ Cn : µG(z) = 1},

using the Minkowski function µG : Cn → [0, ∞)

µG(z) = in f {t > 0 :
1
t

z ∈ G}, z ∈ Cn.

It is well-known (see e.g, Reference [4]) that µG is a norm in Cn if G is a convex bounded complete
n-circular domain.
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The function µG is very useful in research the spaceHG of holomorphic functions f : G → C. ByHG(1)
will be denoted the collection of all f ∈ HG , normalized by the condition f (0) = 1. In the paper we consider
the following subfamilies ofHG

BG = { f ∈ HG : | f (z)| < 1, z ∈ G} ,

CG = { f ∈ HG(1) : Re f (z) > 0, z ∈ G},
VG = { f ∈ HG(1) : ReL f (z) > 0, z ∈ G} ,

where L : HG −→ HG means the Temljakov [5] linear operator

L f (z) = f (z) + D f (z)(z), z ∈ G,

defined by the Frechet differential D f (z) of f at the point z. Note that the operator L is invertible and its
inverse has the form

L−1 f (z) =
1∫

0

f (zt)dt, z ∈ G.

Let us recall that every function f ∈ HG has a unique power series expansion

f (z) =
∞

∑
m=0

Q f ,m(z), z ∈ G, (1)

where Q f ,m : Cn → C, m ∈ N ∪ {0} , are m-homogeneous polynomials. Usually the notion of
m-homogeneous polynomial Qm : Cn −→ C is defined by the formula

Qm(z) = Lm(zm) = Lm(z, ..., z), z ∈ Cn,

where Lm : (Cn)m −→ C is an m-linear mapping (0-homogeneous polynomial means a constant function
Q0 : Cn → C). Note that the homogeneous polynomials occured in the expansion (1) have the form

Q f ,m(z) =
1

m!
Dm f (0)(zm).

A simple kind of 1-homogeneous polynomial is the following linear functional J ∈ (Cn)∗

J(z) =
n

∑
j=1

zj, z = (z1, ..., zn) ∈ Cn.

We will use the following generalization of the notion of the norm of m-homogeneous polynomial
Qm : Cn → C, that is, the µG -balance of Qm [6–8]

µG(Qm) = sup
w∈Cn\{0}

|Qm(w)|
(µG(w))m = sup

v∈∂G
|Qm(v)| = sup

u∈G
|Qm(u)| ,

which is identical with the norm ‖Qm‖ if G is convex. The notion µG -balance of m-homogeneous
polynomial brings a very useful inequality

|Qm(z)| ≤ µG(Qm)(µG(z))m,
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which generalize the well-known inequality

|Qm(z)| ≤ ‖Qm‖ ‖z‖m .

Let us denote by I the linear functional

I = (µG(J))−1 J

and by Im, m ≥ 1, the m-homogeneous polynomial Im : Cn → C

Im(z) = (I(z))m , z ∈ Cn.

It is obvious that µG(Im) = 1.
In many papers (see for instance References [9–13]) there are presented some sharp estimations of

m-homogeneous polynomials Q f ,m, m ≥ 1, for functions f of the form (1) from different subfamilies ofHG .
Below we give three Bavrin’s [9] estimates, in the case Cn, n ≥ 1, in term of µG -balances of m-homogeneous
polynomials, m ≥ 1

µG(Q f ,m) ≤


1, for f ∈ BG
2, for f ∈ CG
2

m+1 , for f ∈ VG
, m ≥ 1. (2)

2. Main Results

In the present paper we give for f ∈ BG(0) = { f ∈ BG : f (0) = 0} (also for f ∈ CG and f ∈ VG) a
kind sharp estimate for the pair of homogeneous polynomials Q f ,2, Q f ,1, that is, sharp estimate

µG(Q f ,2 − λ
(

Q f ,1

)2
) ≤ M(λ), λ ∈ C.

It is a generalization of a solution of the well known Fekete-Szegö coefficient problem in complex
plane [14] onto the case of several complex variables. The first result we demonstrate in the following
theorem, which is a generalization of a result of Keogh and Merkes [15]:

Theorem 1. Let ϕ ∈ BG(0) be a function of the form

ϕ(z) =
∞

∑
m=1

Qϕ,m(z), z ∈ G. (3)

Then, for every γ ∈ C there holds the sharp estimate

µG
(

Qϕ,2 − γ
(
Qϕ,1

)2
)
≤ max{1, |γ|}. (4)

Proof. Let us fix arbitrarily z ∈ G\ {0} . Then using the classic Schwarz Lemma to the function U 3 ζ →
ϕ
(

ζ z
µG (z)

)
∈ U (at the point ζ = µG (z) ∈ U), we obtain the inequality

|ϕ (z)| ≤ µG (z) , z ∈ G\ {0}

(it is also true for z = 0).



Symmetry 2020, 12, 1707 4 of 10

Now, by this result we see that for every z ∈ G, the function

Φ (ζ) =

{
ϕ(ζz)

ζ , ζ ∈ U\{0}
limζ→0

ϕ(ζz)
ζ , ζ = 0

transforms holomorphically the disc U into itself, fixes the point ζ = 0 and has the expression

Φ (ζ) =
∞

∑
m=0

βmζm, ζ ∈ U,

where βm = Qϕ,m+1(z), for nonegative integers m.
Thus, in view of the well known [16,17] sharp coefficient estimates

|βm| ≤ 1, m = 0, 1, ...,

|β1| ≤ 1− |β0|2 ,

we obtain for every z ∈ G ∣∣Qϕ,m(z)
∣∣ ≤ 1, m = 1, 2, ...∣∣Qϕ,2(z)
∣∣ ≤ 1−

∣∣Qϕ,1(z)
∣∣2 .

Therefore, for z ∈ G and every γ ∈ C∣∣∣Qϕ,2(z)− γ
(
Qϕ,1(z)

)2
∣∣∣ ≤ ∣∣Qϕ,2(z)

∣∣+ |γ| ∣∣Qϕ,1(z)
∣∣2 ≤ 1−

∣∣Qϕ,1(z)
∣∣2 + |γ| ∣∣Qϕ,1(z)

∣∣2
= 1 + (|γ| − 1)

∣∣Qϕ,1(z)
∣∣2 ≤ max{1, |γ|},

because (|γ| − 1)
∣∣Qϕ,1(z)

∣∣2 ≤ 0 if |γ| < 1 and 0 ≤ (|γ| − 1)
∣∣Qϕ,1(z)

∣∣2 ≤ |γ| − 1 if |γ| ≥ 1.
Consequently,

sup
z∈G

∣∣∣Qϕ,2(z)− γ
(
Qϕ,1(z)

)2
∣∣∣ ≤ max{1, |γ|}.

The above inequality gives the estimate (4) from the thesis by the definition of µG -balance of
homogeneous polynomials and the fact that Qϕ,2 − γ

(
Qϕ,1

)2 is a 2-homogeneous polynomial.
It remains the problem of the sharpness of the estimation (4) . First, we prove that in the case |γ| ≥ 1,

the equality in (4) is attained by the function ϕ̃ ∈ BG(0)

ϕ̃(z) = I(z), z ∈ G.

Indeed, since Qϕ̃,1 = I, Qϕ̃,2 = 0 and µG(I2) = 1, we have

µG

(
Qϕ̃,2 − γ

(
Qϕ̃,1

)2
)
= µG

(
−γ

(
Qϕ̃,1

)2
)
= |γ| µG

((
Qϕ̃,1

)2
)
= |γ| = max{1, |γ|}.

Now, we show that in the case |γ| < 1 the equality in (4) realizes the function ϕ̂ ∈ BG(0)

ϕ̂(z) = I2(z), z ∈ G.
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Indeed, since Qϕ̂,1 = 0, Qϕ̂,2 = I2, we get

µG

(
Qϕ̂,2 − γ

(
Qϕ̂,1

)2
)
= µG

(
Qϕ̂,2

)
= 1 = max{1, |γ|}.

This completes the proof.

A next theorem includes a solution of the Fekete-Szegö type problem in the family CG .

Theorem 2. Let G ⊂ Cn be a bounded complete n-circular domain and let p ∈ CG . If the expansion of the function
p into a series of m-homogenous polynomials Qp,m has the form

p(z) = 1 +
∞

∑
m=1

Qp,m(z), z ∈ G, (5)

then for the homogeneous polynomials Qp,2, Qp,1 and every λ ∈ C there holds the following sharp estimate:

µG
(

Qp,2 − λ
(
Qp,1

)2
)
≤ 2 max {1, |2λ− 1|} . (6)

Proof. It is known, that between the functions p ∈ CG and ϕ ∈ BG(0), there holds the following
relationship [9]:

p ∈ CG ⇐⇒
p− 1
p + 1

= ϕ ∈ BG(0). (7)

Inserting the expansions (3) and (5) of functions into (7), we receive

∞

∑
m=1

Qp,m(z) =

(
∞

∑
m=1

Qϕ,m(z)

)(
2 +

∞

∑
m=1

Qp,m(z)

)
, z ∈ G.

Then, comparing the m-homogeneous polynomials on both sides of the above equality, we determine
the homogeneous polynomials Qϕ,1, Qϕ,2, as follows

Qϕ,1 =
1
2

Qp,1,

Qϕ,2 =
1
2

Qp,2 −
1
4
(
Qp,1

)2 .

Putting the above equalities into Theorem 2.1 and using the fact that the mapping
(

Q f ,1

)2
is a

2-homogenous polynomial, we obtain

1
2

µG

[
Qp,2 −

1
2
(1 + γ)

(
Qp,1

)2
]
≤ max{1, |γ|}.

Denoting

λ =
1
2
(1 + γ) ,

we get
µG
(

Qp,2 − λ
(
Qp,1

)2
)
≤ 2 max {1, |2λ− 1|} .

Now, we show the sharpness of the estimate. To do it, let us consider two cases.
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At the beginning, we prove that, in the case

|2λ− 1| ≥ 1

the equality in (6) is attained by the function p = p̃ with

p̃(z) =
1 + I(z)
1− I(z)

, z ∈ G.

Indeed. The function p̃ belongs to CG and Q p̃,1 = 2I, Q p̃,2 = 2I2.
From this, by the case condition for λ, we have step by step:

µG

(
Q p̃,2 − λ

(
Q p̃,1

)2
)
= µG

(
2I2 − λ4I2

)
= 2 |1− 2λ| µG

(
I2
)
= 2 |2λ− 1|

= 2 max {1, |2λ− 1|} .

Now, we show that, in the case
|2λ− 1| < 1

the equality in (6) realizes the function p = p̂, with

p̂(z) =
1 + I2(z)
1− I2(z)

, z ∈ G.

To do it observe that p̂ belongs to CG and Q p̂,1 = 0, Q p̂,2 = 2I2. From this, by the case condition for λ,
we have:

µG

(
Q p̂,2 − λ

(
Q p̂,1

)2
)
= µG

(
2I2
)
= 2 = 2 max {1, |2λ− 1|} .

This completes the proof.

In the sequel we apply the Fekete-Szegö type result in CG to study the family VG .
We start with the observation that for the transform L f of the functions f ∈ HG(1), we have

L f (z) = 1 +
∞

∑
m=1

QL f ,m(z) = 1 +
∞

∑
m=1

(m + 1)Q f ,m(z), z ∈ G. (8)

We present the Fekete-Szegö type result in the family VG in the following theorem:

Theorem 3. Let G ⊂ Cn be a bounded complete n-circular domain and the expansion of the function f ∈ VG into a
series of m-homogenous polynomials Q f ,m has the form (1), with Q f ,0 = 1. Then for the homogeneous polynomials
Q f ,2, Q f ,1 and η ∈ C there holds the following sharp estimate:

µG

(
Q f ,2 − η

(
Q f ,1

)2
)
≤ 2

3
max

{
1,
∣∣∣∣32 η − 1

∣∣∣∣} . (9)

Proof. Let f ∈ VG . Then p = L f belongs to the family CG . Inserting into this equality the expansions (5)
of functions p ∈ CG and the expansions (8) of L f of functions f ∈ VG , we obtain

1 +
∞

∑
m=1

Qp,m(z) = 1 +
∞

∑
m=1

(m + 1) Q f ,m(z), z ∈ G.
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Then, comparing the m-homogeneous polynomials on both sides of the above equality, we can
determine the homogeneous polynomials Qp,1, Qp,2, as follows

Qp,1 = 2Q f ,1,

Qp,2 = 3Q f ,2.

Putting the above equalities into Theorem 2.2 and using the fact that the mapping
(

Q f ,1

)2
is a

2-homogenous polynomial, we obtain

µG

[
3Q f ,2 − 4λ

(
Q f ,1

)2
]
≤ 2 max{1, |2λ− 1|}

and consequently

µG

[
Q f ,2 −

4
3

λ
(

Q f ,1

)2
]
≤ 2

3
max{1, |2λ− 1|}.

Denoting

η =
4
3

λ,

we get

µG

(
Q f ,2 − η

(
Q f ,1

)2
)
≤ 2

3
max

{
1,
∣∣∣∣32 η − 1

∣∣∣∣} .

Now, we will show the sharpnes of the estimates (9) .To this aim, we consider two cases.
At the begining, we prove that the equality in (9) holds in the case∣∣∣∣32 η − 1

∣∣∣∣ ≥ 1.

To do it let us denote by Z the analytic set {z ∈ G : I(z) = 0}. In this case the extremal function has
the form

f̃ (z) =

{
−1− 2

I(z) log (1− I(z)), for z ∈ G\Z
1, for z ∈ Z

,

where the branch of the function log(1− ζ), ζ ∈ U, takes the value 0 at the point ζ = 0.
First we observe that f̃ ∈ VG , because L f̃ = 1+I

1−I ∈ CG .
Now we show that f̃ realizes the equality in the thesis. To do it observe that the power series

expansion of the function log(1− ζ), ζ ∈ U, implies the expression

f̃ (z) = −1 +
2

I(z)

(
I(z) +

1
2

I2(z) +
1
3

I3(z) + ...
)

, z ∈ G.

Thus

Q f̃ ,1 (z) = I(z)

Q f̃ ,2 (z) =
2
3

I2(z).
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Hence, we have step by step:

µG

(
Q f̃ ,2 − η(Q f̃ ,1)

2
)
= µG

(
2
3

I2 − η I2
)
=

∣∣∣∣23 − η

∣∣∣∣ µG

(
I2
)
=

∣∣∣∣23 − η

∣∣∣∣ = 2
3

max
{

1,
∣∣∣∣32 η − 1

∣∣∣∣} .

Now, we show that, in the case ∣∣∣∣32 η − 1
∣∣∣∣ < 1

the extremal function has the form

f̂ (z) =

{
−1 + log 1+I(z)

1−I(z) , for z ∈ G\Z ,

1, for z ∈ Z
,

where the branch of the function log(1− ζ), ζ ∈ U, takes the value 0 at the point ζ = 0.
Of course, f̂ ∈ VG , because L f̂ = 1+I2

1−I2 ∈ CG .
Observe that using the power series expansion of the function log(1− ζ), ζ ∈ U, we get the expression

f̂ (z) = −1 +
1

I(z)

[
2I(z) +

2
3

I3(z) + ...
]

, z ∈ G

and consequently

Q f̂ ,1 = 0, Q f̂ ,2 =
2
3

I2.

Therefore, we have step by step

µG

(
Q f̂ ,2 − η(Q f̂ ,̂1)

2
)
= µG (Q f̂ ,2) = µG

(
2
3

I2
)
=

2
3
=

2
3

max
{

1,
∣∣∣∣32 η − 1

∣∣∣∣} .

This completes the proof.

3. Complementary Remarks

Bavrin [9] declared that every of the estimations (2) is sharp in this sense that there exists an n-circular
complete bounded domain G and a function f from appropriate family ( f ∈ BG , f ∈ CG , f ∈ VG) for
which the equality in an inequality of (2) holds. Actually we know that the estimations (2) are sharp in
the sense that for every domain G there exists an extremal function in appropriate family which realizes
equality in required inequality from (2). Another problem, connected with the above type estimates, is a
characterization of the set of all extremal functions. An information in this direction follows from the main
result of Reference [12]. Here we present its part connected with the family CG (in the term of µG -balance
of m-homogeneous polynomials).

If the function p of the form (5) belongs to CG , then for every m ≥ 1

2− µG(Qp,m) ≤ m2 [2− µG
(
Qp,1

)]
.

Observe that this result implies that the equality µG
(
Qp,1

)
= 2 for a function p ∈ CG implies equalities

µG(Qp,m) = 2, m ≥ 1. In others words if a function p ∈ CG is extremal in the estimation (2) for m = 1,
then it is also extremal for each m ≥ 1.
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Actually, we also have a similar result for the family VG . More precisely, it is true the following
statement. If the function f of the form (1), with Q f ,0 = 1, belongs to VG , then for every m ≥ 1

2
m + 1

− µG(Q f ,m) ≤
2m2

m + 1

[
1− µG

(
Q f ,1

)]
.

To this aim it suffices to recall that, by the assumptions, the function

p(z) = L f (z) = 1 +
∞

∑
m=1

(m + 1) Q f ,m(z), z ∈ G,

belongs to the family CG and use the previous original inequality in CG . Therefore, if a function f ∈ VG is
extremal in appropriate estimate (2) for m = 1, that is, if µG

(
Q f ,1

)
= 1, then it is also extremal in required

estimate (2) for each m ≥ 1, that is, µG
(

Q f ,m

)
= 2

m+1 .
We close the paper with a suggestion of characterization of the set of all extremal functions in different

estimates of homogeneous polynomials (also of Fekete-Szegö type) in series of functions from subfamilies
of the familyHG .
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