Article

Some Results of Fekete-Szegö Type. Results for Some Holomorphic Functions of Several Complex Variables

Renata Długosz ${ }^{1, *(\text { (D) }}$ and Piotr Liczberski ${ }^{2}$ (D)
1 Centre of Mathematics and Physics, Lodz University of Technology, Ul. Żwirki 36, 90-924 Łódź, Poland
2 Institute of Mathematics, Lodz University of Technology, Ul. Żwirki 36, 90-924 Łódź, Poland; piotr.liczberski@p.lodz.pl
* Correspondence: renata.dlugosz@p.lodz.pl

Received: 29 August 2020; Accepted: 9 October 2020; Published: 16 October 2020

Abstract

This paper is devoted to a generalization of the well-known Fekete-Szegö type coefficients problem for holomorphic functions of a complex variable onto holomorphic functions of several variables. The considerations concern three families of such functions f, which are bounded, having positive real part and which Temljakov transform $L f$ has positive real part, respectively. The main result arise some sharp estimates of the Minkowski balance of a combination of 2-homogeneous and the square of 1-homogeneous polynomials occurred in power series expansion of functions from aforementioned families.

Keywords: holomorphic functions of scv; n-circular domains in $\mathbb{C}^{n} \%$; minkowski function; fekete-Szegö type estimates

MSC2010: 32A30; 30C45

1. Introduction

Since the several complex variables geometric analysis depends on the type of domains in \mathbb{C}^{n} (see for instance References [1-3]), we consider a special, but wide class of domains in \mathbb{C}^{n}. We say that a domain $\mathcal{G} \subset \mathbb{C}^{n}, n \geq 1$, is complete n-circular if $z \lambda=\left(z_{1} \lambda_{1}, \ldots, z_{n} \lambda_{n}\right) \in \mathcal{G}$ for each $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{G}$ and every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \overline{U^{n}}$, where U^{n} is the open unit polydisc in \mathbb{C}^{n}, that is, the product of n copies of the open unit disc $U=\{\zeta \in \mathbb{C}:|\zeta|<1\}$. From now on by \mathcal{G} will be denoted a bounded complete n-circular domain in $\mathbb{C}^{n}, n \geq 1$. Such bounded domain \mathcal{G} and its boundary $\partial \mathcal{G}$ can be redefined as follows

$$
\mathcal{G}=\left\{z \in \mathbb{C}^{n}: \mu_{\mathcal{G}}(z)<1\right\}, \partial \mathcal{G}=\left\{z \in \mathbb{C}^{n}: \mu_{\mathcal{G}}(z)=1\right\}
$$

using the Minkowski function $\mu_{\mathcal{G}}: \mathbb{C}^{n} \rightarrow[0, \infty)$

$$
\mu_{\mathcal{G}}(z)=\inf \left\{t>0: \frac{1}{t} z \in \mathcal{G}\right\}, z \in \mathbb{C}^{n}
$$

It is well-known (see e.g, Reference [4]) that $\mu_{\mathcal{G}}$ is a norm in \mathbb{C}^{n} if \mathcal{G} is a convex bounded complete n-circular domain.

The function $\mu_{\mathcal{G}}$ is very useful in research the space $\mathcal{H}_{\mathcal{G}}$ of holomorphic functions $f: \mathcal{G} \rightarrow \mathbb{C}$. By $\mathcal{H}_{\mathcal{G}}(1)$ will be denoted the collection of all $f \in \mathcal{H}_{\mathcal{G}}$, normalized by the condition $f(0)=1$. In the paper we consider the following subfamilies of $\mathcal{H}_{\mathcal{G}}$

$$
\begin{aligned}
\mathcal{B}_{\mathcal{G}} & =\left\{f \in \mathcal{H}_{\mathcal{G}}:|f(z)|<1, z \in \mathcal{G}\right\}, \\
\mathcal{C}_{\mathcal{G}} & =\left\{f \in \mathcal{H}_{\mathcal{G}}(1): \operatorname{Re} f(z)>0, z \in \mathcal{G}\right\}, \\
\mathcal{V}_{\mathcal{G}} & =\left\{f \in \mathcal{H}_{\mathcal{G}}(1): \operatorname{Re} \mathcal{L} f(z)>0, z \in \mathcal{G}\right\},
\end{aligned}
$$

where $\mathcal{L}: \mathcal{H}_{\mathcal{G}} \longrightarrow \mathcal{H}_{\mathcal{G}}$ means the Temljakov [5] linear operator

$$
\mathcal{L} f(z)=f(z)+D f(z)(z), z \in \mathcal{G},
$$

defined by the Frechet differential $D f(z)$ of f at the point z. Note that the operator \mathcal{L} is invertible and its inverse has the form

$$
\mathcal{L}^{-1} f(z)=\int_{0}^{1} f(z t) d t, z \in \mathcal{G} .
$$

Let us recall that every function $f \in \mathcal{H}_{\mathcal{G}}$ has a unique power series expansion

$$
\begin{equation*}
f(z)=\sum_{m=0}^{\infty} Q_{f, m}(z), z \in \mathcal{G}, \tag{1}
\end{equation*}
$$

where $Q_{f, m}: \mathbb{C}^{n} \rightarrow \mathbb{C}, m \in \mathbb{N} \cup\{0\}$, are m-homogeneous polynomials. Usually the notion of m-homogeneous polynomial $Q_{m}: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ is defined by the formula

$$
Q_{m}(z)=L_{m}\left(z^{m}\right)=L_{m}(z, \ldots, z), z \in \mathbb{C}^{n}
$$

where $L_{m}:\left(\mathbb{C}^{n}\right)^{m} \longrightarrow \mathbb{C}$ is an m-linear mapping (0 -homogeneous polynomial means a constant function $Q_{0}: \mathbb{C}^{n} \rightarrow \mathbb{C}$). Note that the homogeneous polynomials occured in the expansion (1) have the form

$$
Q_{f, m}(z)=\frac{1}{m!} D^{m} f(0)\left(z^{m}\right)
$$

A simple kind of 1-homogeneous polynomial is the following linear functional $J \in\left(\mathbb{C}^{n}\right)^{*}$

$$
J(z)=\sum_{j=1}^{n} z_{j}, z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}
$$

We will use the following generalization of the notion of the norm of m-homogeneous polynomial $Q_{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}$, that is, the $\mu_{\mathcal{G}}$-balance of $Q_{m}[6-8]$

$$
\mu_{\mathcal{G}}\left(Q_{m}\right)=\sup _{w \in \mathbb{C}^{n} \backslash\{0\}} \frac{\left|Q_{m}(w)\right|}{\left(\mu_{G}(w)\right)^{m}}=\sup _{v \in \partial \mathcal{G}}\left|Q_{m}(v)\right|=\sup _{u \in \mathcal{G}}\left|Q_{m}(u)\right|,
$$

which is identical with the norm $\left\|Q_{m}\right\|$ if \mathcal{G} is convex. The notion $\mu_{\mathcal{G}}$-balance of m-homogeneous polynomial brings a very useful inequality

$$
\left|Q_{m}(z)\right| \leq \mu_{\mathcal{G}}\left(Q_{m}\right)\left(\mu_{G}(z)\right)^{m},
$$

which generalize the well-known inequality

$$
\left|Q_{m}(z)\right| \leq\left\|Q_{m}\right\|\|z\|^{m} .
$$

Let us denote by I the linear functional

$$
I=\left(\mu_{\mathcal{G}}(J)\right)^{-1} J
$$

and by $I^{m}, m \geq 1$, the m-homogeneous polynomial $I^{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}$

$$
I^{m}(z)=(I(z))^{m}, z \in \mathbb{C}^{n}
$$

It is obvious that $\mu_{\mathcal{G}}\left(I^{m}\right)=1$.
In many papers (see for instance References [9-13]) there are presented some sharp estimations of m-homogeneous polynomials $Q_{f, m}, m \geq 1$, for functions f of the form (1) from different subfamilies of $\mathcal{H}_{\mathcal{G}}$. Below we give three Bavrin's [9] estimates, in the case $\mathbb{C}^{n}, n \geq 1$, in term of $\mu_{\mathcal{G}}$-balances of m-homogeneous polynomials, $m \geq 1$

$$
\mu_{\mathcal{G}}\left(Q_{f, m}\right) \leq\left\{\begin{array}{l}
1, \text { for } f \in \mathcal{B}_{\mathcal{G}} \tag{2}\\
2, \text { for } f \in \mathcal{C}_{\mathcal{G}} \\
\frac{2}{m+1}, \text { for } f \in \mathcal{V}_{\mathcal{G}}
\end{array}, m \geq 1\right.
$$

2. Main Results

In the present paper we give for $f \in \mathcal{B}_{\mathcal{G}}(0)=\left\{f \in \mathcal{B}_{\mathcal{G}}: f(0)=0\right\}$ (also for $f \in \mathcal{C}_{\mathcal{G}}$ and $f \in \mathcal{V}_{\mathcal{G}}$) a kind sharp estimate for the pair of homogeneous polynomials $Q_{f, 2}, Q_{f, 1}$, that is, sharp estimate

$$
\mu_{\mathcal{G}}\left(Q_{f, 2}-\lambda\left(Q_{f, 1}\right)^{2}\right) \leq M(\lambda), \lambda \in \mathbb{C}
$$

It is a generalization of a solution of the well known Fekete-Szegö coefficient problem in complex plane [14] onto the case of several complex variables. The first result we demonstrate in the following theorem, which is a generalization of a result of Keogh and Merkes [15]:

Theorem 1. Let $\varphi \in \mathcal{B}_{\mathcal{G}}(0)$ be a function of the form

$$
\begin{equation*}
\varphi(z)=\sum_{m=1}^{\infty} Q_{\varphi, m}(z), z \in \mathcal{G} \tag{3}
\end{equation*}
$$

Then, for every $\gamma \in \mathbb{C}$ there holds the sharp estimate

$$
\begin{equation*}
\mu_{\mathcal{G}}\left(Q_{\varphi, 2}-\gamma\left(Q_{\varphi, 1}\right)^{2}\right) \leq \max \{1,|\gamma|\} \tag{4}
\end{equation*}
$$

Proof. Let us fix arbitrarily $z \in \mathcal{G} \backslash\{0\}$. Then using the classic Schwarz Lemma to the function $U \ni \zeta \rightarrow$ $\varphi\left(\zeta \frac{z}{\mu_{\mathcal{G}}(z)}\right) \in U$ (at the point $\zeta=\mu_{\mathcal{G}}(z) \in U$), we obtain the inequality

$$
|\varphi(z)| \leq \mu_{\mathcal{G}}(z), z \in \mathcal{G} \backslash\{0\}
$$

(it is also true for $z=0$).

Now, by this result we see that for every $z \in \mathcal{G}$, the function

$$
\Phi(\zeta)=\left\{\begin{array}{c}
\frac{\varphi(\zeta z)}{\zeta}, \zeta \in U \backslash\{0\} \\
\lim _{\zeta \rightarrow 0} \frac{\varphi(\zeta z)}{\zeta}, \zeta=0
\end{array}\right.
$$

transforms holomorphically the disc U into itself, fixes the point $\zeta=0$ and has the expression

$$
\Phi(\zeta)=\sum_{m=0}^{\infty} \beta_{m} \zeta^{m}, \zeta \in U
$$

where $\beta_{m}=Q_{\varphi, m+1}(z)$, for nonegative integers m.
Thus, in view of the well known $[16,17]$ sharp coefficient estimates

$$
\begin{aligned}
\left|\beta_{m}\right| & \leq 1, m=0,1, \ldots \\
\left|\beta_{1}\right| & \leq 1-\left|\beta_{0}\right|^{2}
\end{aligned}
$$

we obtain for every $z \in \mathcal{G}$

$$
\begin{gathered}
\left|Q_{\varphi, m}(z)\right| \leq 1, m=1,2, \ldots \\
\left|Q_{\varphi, 2}(z)\right| \leq 1-\left|Q_{\varphi, 1}(z)\right|^{2}
\end{gathered}
$$

Therefore, for $z \in \mathcal{G}$ and every $\gamma \in \mathbb{C}$

$$
\begin{gathered}
\left|Q_{\varphi, 2}(z)-\gamma\left(Q_{\varphi, 1}(z)\right)^{2}\right| \leq\left|Q_{\varphi, 2}(z)\right|+|\gamma|\left|Q_{\varphi, 1}(z)\right|^{2} \leq 1-\left|Q_{\varphi, 1}(z)\right|^{2}+|\gamma|\left|Q_{\varphi, 1}(z)\right|^{2} \\
=1+(|\gamma|-1)\left|Q_{\varphi, 1}(z)\right|^{2} \leq \max \{1,|\gamma|\}
\end{gathered}
$$

because $(|\gamma|-1)\left|Q_{\varphi, 1}(z)\right|^{2} \leq 0$ if $|\gamma|<1$ and $0 \leq(|\gamma|-1)\left|Q_{\varphi, 1}(z)\right|^{2} \leq|\gamma|-1$ if $|\gamma| \geq 1$.
Consequently,

$$
\sup _{z \in \mathcal{G}}\left|Q_{\varphi, 2}(z)-\gamma\left(Q_{\varphi, 1}(z)\right)^{2}\right| \leq \max \{1,|\gamma|\}
$$

The above inequality gives the estimate (4) from the thesis by the definition of $\mu_{\mathcal{G}}$-balance of homogeneous polynomials and the fact that $Q_{\varphi, 2}-\gamma\left(Q_{\varphi, 1}\right)^{2}$ is a 2-homogeneous polynomial.

It remains the problem of the sharpness of the estimation (4). First, we prove that in the case $|\gamma| \geq 1$, the equality in (4) is attained by the function $\widetilde{\varphi} \in \mathcal{B}_{\mathcal{G}}(0)$

$$
\widetilde{\varphi}(z)=I(z), z \in \mathcal{G}
$$

Indeed, since $Q_{\widetilde{\varphi}, 1}=I, Q_{\widetilde{\varphi}, 2}=0$ and $\mu_{\mathcal{G}}\left(I^{2}\right)=1$, we have

$$
\mu_{\mathcal{G}}\left(Q_{\widetilde{\varphi}, 2}-\gamma\left(Q_{\widetilde{\varphi}, 1}\right)^{2}\right)=\mu_{\mathcal{G}}\left(-\gamma\left(Q_{\widetilde{q}, 1}\right)^{2}\right)=|\gamma| \mu_{\mathcal{G}}\left(\left(Q_{\widetilde{q}, 1}\right)^{2}\right)=|\gamma|=\max \{1,|\gamma|\} .
$$

Now, we show that in the case $|\gamma|<1$ the equality in (4) realizes the function $\widehat{\varphi} \in \mathcal{B}_{\mathcal{G}}(0)$

$$
\widehat{\varphi}(z)=I^{2}(z), z \in \mathcal{G}
$$

Indeed, since $Q_{\widehat{\varphi}, 1}=0, Q_{\widehat{\varphi}, 2}=I^{2}$, we get

$$
\mu_{\mathcal{G}}\left(Q_{\widehat{\varphi}, 2}-\gamma\left(Q_{\widehat{\varphi}, 1}\right)^{2}\right)=\mu_{\mathcal{G}}\left(Q_{\widehat{\varphi}, 2}\right)=1=\max \{1,|\gamma|\}
$$

This completes the proof.
A next theorem includes a solution of the Fekete-Szegö type problem in the family $\mathcal{C}_{\mathcal{G}}$.
Theorem 2. Let $\mathcal{G} \subset \mathbb{C}^{n}$ be a bounded complete n-circular domain and let $p \in \mathcal{C}_{\mathcal{G}}$. If the expansion of the function p into a series of m-homogenous polynomials $Q_{p, m}$ has the form

$$
\begin{equation*}
p(z)=1+\sum_{m=1}^{\infty} Q_{p, m}(z), z \in \mathcal{G} \tag{5}
\end{equation*}
$$

then for the homogeneous polynomials $Q_{p, 2}, Q_{p, 1}$ and every $\lambda \in \mathbb{C}$ there holds the following sharp estimate:

$$
\begin{equation*}
\mu_{\mathcal{G}}\left(Q_{p, 2}-\lambda\left(Q_{p, 1}\right)^{2}\right) \leq 2 \max \{1,|2 \lambda-1|\} \tag{6}
\end{equation*}
$$

Proof. It is known, that between the functions $p \in \mathcal{C}_{\mathcal{G}}$ and $\varphi \in \mathcal{B}_{\mathcal{G}}(0)$, there holds the following relationship [9]:

$$
\begin{equation*}
p \in \mathcal{C}_{\mathcal{G}} \Longleftrightarrow \frac{p-1}{p+1}=\varphi \in \mathcal{B}_{\mathcal{G}}(0) \tag{7}
\end{equation*}
$$

Inserting the expansions (3) and (5) of functions into (7), we receive

$$
\sum_{m=1}^{\infty} Q_{p, m}(z)=\left(\sum_{m=1}^{\infty} Q_{\varphi, m}(z)\right)\left(2+\sum_{m=1}^{\infty} Q_{p, m}(z)\right), z \in \mathcal{G}
$$

Then, comparing the m-homogeneous polynomials on both sides of the above equality, we determine the homogeneous polynomials $Q_{\varphi, 1}, Q_{\varphi, 2}$, as follows

$$
\begin{aligned}
& Q_{\varphi, 1}=\frac{1}{2} Q_{p, 1} \\
& Q_{\varphi, 2}=\frac{1}{2} Q_{p, 2}-\frac{1}{4}\left(Q_{p, 1}\right)^{2}
\end{aligned}
$$

Putting the above equalities into Theorem 2.1 and using the fact that the mapping $\left(Q_{f, 1}\right)^{2}$ is a 2-homogenous polynomial, we obtain

$$
\frac{1}{2} \mu_{\mathcal{G}}\left[Q_{p, 2}-\frac{1}{2}(1+\gamma)\left(Q_{p, 1}\right)^{2}\right] \leq \max \{1,|\gamma|\}
$$

Denoting

$$
\lambda=\frac{1}{2}(1+\gamma)
$$

we get

$$
\mu_{\mathcal{G}}\left(Q_{p, 2}-\lambda\left(Q_{p, 1}\right)^{2}\right) \leq 2 \max \{1,|2 \lambda-1|\}
$$

Now, we show the sharpness of the estimate. To do it, let us consider two cases.

At the beginning, we prove that, in the case

$$
|2 \lambda-1| \geq 1
$$

the equality in (6) is attained by the function $p=\widetilde{p}$ with

$$
\widetilde{p}(z)=\frac{1+I(z)}{1-I(z)}, z \in \mathcal{G}
$$

Indeed. The function \widetilde{p} belongs to $\mathcal{C}_{\mathcal{G}}$ and $Q_{\widetilde{p}, 1}=2 I, Q_{\widetilde{p}, 2}=2 I^{2}$.
From this, by the case condition for λ, we have step by step:

$$
\begin{aligned}
\mu_{\mathcal{G}}\left(Q_{\widetilde{p}, 2}-\lambda\left(Q_{\widetilde{p}, 1}\right)^{2}\right) & =\mu_{\mathcal{G}}\left(2 I^{2}-\lambda 4 I^{2}\right)=2|1-2 \lambda| \mu_{\mathcal{G}}\left(I^{2}\right)=2|2 \lambda-1| \\
& =2 \max \{1,|2 \lambda-1|\}
\end{aligned}
$$

Now, we show that, in the case

$$
|2 \lambda-1|<1
$$

the equality in (6) realizes the function $p=\widehat{p}$, with

$$
\widehat{p}(z)=\frac{1+I^{2}(z)}{1-I^{2}(z)}, z \in \mathcal{G}
$$

To do it observe that \hat{p} belongs to $\mathcal{C}_{\mathcal{G}}$ and $Q_{\widehat{p}, 1}=0, Q_{\widehat{p}, 2}=2 I^{2}$. From this, by the case condition for λ, we have:

$$
\mu_{\mathcal{G}}\left(Q_{\widehat{p}, 2}-\lambda\left(Q_{\widehat{p}, 1}\right)^{2}\right)=\mu_{\mathcal{G}}\left(2 I^{2}\right)=2=2 \max \{1,|2 \lambda-1|\}
$$

This completes the proof.
In the sequel we apply the Fekete-Szegö type result in $\mathcal{C}_{\mathcal{G}}$ to study the family $\mathcal{V}_{\mathcal{G}}$.
We start with the observation that for the transform $\mathcal{L} f$ of the functions $f \in \mathcal{H}_{\mathcal{G}}(1)$, we have

$$
\begin{equation*}
\mathcal{L} f(z)=1+\sum_{m=1}^{\infty} Q_{\mathcal{L} f, m}(z)=1+\sum_{m=1}^{\infty}(m+1) Q_{f, m}(z), z \in \mathcal{G} \tag{8}
\end{equation*}
$$

We present the Fekete-Szegö type result in the family $\mathcal{V}_{\mathcal{G}}$ in the following theorem:
Theorem 3. Let $\mathcal{G} \subset \mathbb{C}^{n}$ be a bounded complete n-circular domain and the expansion of the function $f \in \mathcal{V}_{\mathcal{G}}$ into a series of m-homogenous polynomials $Q_{f, m}$ has the form (1), with $Q_{f, 0}=1$. Then for the homogeneous polynomials $Q_{f, 2}, Q_{f, 1}$ and $\eta \in \mathbb{C}$ there holds the following sharp estimate:

$$
\begin{equation*}
\mu_{\mathcal{G}}\left(Q_{f, 2}-\eta\left(Q_{f, 1}\right)^{2}\right) \leq \frac{2}{3} \max \left\{1,\left|\frac{3}{2} \eta-1\right|\right\} \tag{9}
\end{equation*}
$$

Proof. Let $f \in \mathcal{V}_{\mathcal{G}}$. Then $p=\mathcal{L} f$ belongs to the family $\mathcal{C}_{\mathcal{G}}$. Inserting into this equality the expansions (5) of functions $p \in \mathcal{C}_{\mathcal{G}}$ and the expansions (8) of $\mathcal{L} f$ of functions $f \in \mathcal{V}_{\mathcal{G}}$, we obtain

$$
1+\sum_{m=1}^{\infty} Q_{p, m}(z)=1+\sum_{m=1}^{\infty}(m+1) Q_{f, m}(z), z \in \mathcal{G}
$$

Then, comparing the m-homogeneous polynomials on both sides of the above equality, we can determine the homogeneous polynomials $Q_{p, 1}, Q_{p, 2}$, as follows

$$
\begin{aligned}
& Q_{p, 1}=2 Q_{f, 1} \\
& Q_{p, 2}=3 Q_{f, 2} .
\end{aligned}
$$

Putting the above equalities into Theorem 2.2 and using the fact that the mapping $\left(Q_{f, 1}\right)^{2}$ is a 2-homogenous polynomial, we obtain

$$
\mu_{\mathcal{G}}\left[3 Q_{f, 2}-4 \lambda\left(Q_{f, 1}\right)^{2}\right] \leq 2 \max \{1,|2 \lambda-1|\}
$$

and consequently

$$
\mu_{\mathcal{G}}\left[Q_{f, 2}-\frac{4}{3} \lambda\left(Q_{f, 1}\right)^{2}\right] \leq \frac{2}{3} \max \{1,|2 \lambda-1|\} .
$$

Denoting

$$
\eta=\frac{4}{3} \lambda,
$$

we get

$$
\mu_{\mathcal{G}}\left(Q_{f, 2}-\eta\left(Q_{f, 1}\right)^{2}\right) \leq \frac{2}{3} \max \left\{1,\left|\frac{3}{2} \eta-1\right|\right\} .
$$

Now, we will show the sharpnes of the estimates (9).To this aim, we consider two cases.
At the begining, we prove that the equality in (9) holds in the case

$$
\left|\frac{3}{2} \eta-1\right| \geq 1
$$

To do it let us denote by \mathcal{Z} the analytic set $\{z \in \mathcal{G}: I(z)=0\}$. In this case the extremal function has the form

$$
\tilde{f}(z)=\left\{\begin{array}{c}
-1-\frac{2}{I(z)} \log (1-I(z)), \text { for } z \in \mathcal{G} \backslash \mathcal{Z} \\
1, \text { for } z \in \mathcal{Z}
\end{array}\right.
$$

where the branch of the function $\log (1-\zeta), \zeta \in U$, takes the value 0 at the point $\zeta=0$.
First we observe that $\widetilde{f} \in \mathcal{V}_{\mathcal{G}}$, because $\mathcal{L} \widetilde{f}=\frac{1+I}{1-I} \in \mathcal{C}_{\mathcal{G}}$.
Now we show that \tilde{f} realizes the equality in the thesis. To do it observe that the power series expansion of the function $\log (1-\zeta), \zeta \in U$, implies the expression

$$
\tilde{f}(z)=-1+\frac{2}{I(z)}\left(I(z)+\frac{1}{2} I^{2}(z)+\frac{1}{3} I^{3}(z)+\ldots\right), z \in \mathcal{G} .
$$

Thus

$$
\begin{aligned}
Q_{\tilde{f}, 1}(z) & =I(z) \\
Q_{\tilde{f}, 2}(z) & =\frac{2}{3} I^{2}(z) .
\end{aligned}
$$

Hence, we have step by step:

$$
\mu_{\mathcal{G}}\left(Q_{\widetilde{f}, 2}-\eta\left(Q_{\widetilde{f}, 1}\right)^{2}\right)=\mu_{\mathcal{G}}\left(\frac{2}{3} I^{2}-\eta I^{2}\right)=\left|\frac{2}{3}-\eta\right| \mu_{\mathcal{G}}\left(I^{2}\right)=\left|\frac{2}{3}-\eta\right|=\frac{2}{3} \max \left\{1,\left|\frac{3}{2} \eta-1\right|\right\}
$$

Now, we show that, in the case

$$
\left|\frac{3}{2} \eta-1\right|<1
$$

the extremal function has the form

$$
\widehat{f}(z)=\left\{\begin{array}{c}
-1+\log \frac{1+I(z)}{1-I(z)}, \text { for } z \in \mathcal{G} \backslash \mathcal{Z} \\
1, \text { for } z \in \mathcal{Z}
\end{array}\right.
$$

where the branch of the function $\log (1-\zeta), \zeta \in U$, takes the value 0 at the point $\zeta=0$.
Of course, $\widehat{f} \in \mathcal{V}_{\mathcal{G}}$, because $\mathcal{L} \widehat{f}=\frac{1+I^{2}}{1-I^{2}} \in \mathcal{C}_{\mathcal{G}}$.
Observe that using the power series expansion of the function $\log (1-\zeta), \zeta \in U$, we get the expression

$$
\widehat{f}(z)=-1+\frac{1}{I(z)}\left[2 I(z)+\frac{2}{3} I^{3}(z)+\ldots\right], z \in \mathcal{G}
$$

and consequently

$$
Q_{\widehat{f}, 1}=0, Q_{\widehat{f}, 2}=\frac{2}{3} I^{2}
$$

Therefore, we have step by step

$$
\mu_{\mathcal{G}}\left(Q_{\widehat{f}, 2}-\eta\left(Q_{\widehat{f}, 1}\right)^{2}\right)=\mu_{\mathcal{G}}\left(Q_{\widehat{f}, 2}\right)=\mu_{\mathcal{G}}\left(\frac{2}{3} I^{2}\right)=\frac{2}{3}=\frac{2}{3} \max \left\{1,\left|\frac{3}{2} \eta-1\right|\right\}
$$

This completes the proof.

3. Complementary Remarks

Bavrin [9] declared that every of the estimations (2) is sharp in this sense that there exists an n-circular complete bounded domain \mathcal{G} and a function f from appropriate family $\left(f \in \mathcal{B}_{\mathcal{G}}, f \in \mathcal{C}_{\mathcal{G}}, f \in \mathcal{V}_{\mathcal{G}}\right)$ for which the equality in an inequality of (2) holds. Actually we know that the estimations (2) are sharp in the sense that for every domain \mathcal{G} there exists an extremal function in appropriate family which realizes equality in required inequality from (2). Another problem, connected with the above type estimates, is a characterization of the set of all extremal functions. An information in this direction follows from the main result of Reference [12]. Here we present its part connected with the family $\mathcal{C}_{\mathcal{G}}$ (in the term of $\mu_{\mathcal{G}}$-balance of m-homogeneous polynomials).

If the function p of the form (5) belongs to $\mathcal{C}_{\mathcal{G}}$, then for every $m \geq 1$

$$
2-\mu_{\mathcal{G}}\left(Q_{p, m}\right) \leq m^{2}\left[2-\mu_{\mathcal{G}}\left(Q_{p, 1}\right)\right]
$$

Observe that this result implies that the equality $\mu_{\mathcal{G}}\left(Q_{p, 1}\right)=2$ for a function $p \in \mathcal{C}_{\mathcal{G}}$ implies equalities $\mu_{\mathcal{G}}\left(Q_{p, m}\right)=2, m \geq 1$. In others words if a function $p \in \mathcal{C}_{\mathcal{G}}$ is extremal in the estimation (2) for $m=1$, then it is also extremal for each $m \geq 1$.

Actually, we also have a similar result for the family $\mathcal{V}_{\mathcal{G}}$. More precisely, it is true the following statement. If the function f of the form (1), with $Q_{f, 0}=1$, belongs to $\mathcal{V}_{\mathcal{G}}$, then for every $m \geq 1$

$$
\frac{2}{m+1}-\mu_{\mathcal{G}}\left(Q_{f, m}\right) \leq \frac{2 m^{2}}{m+1}\left[1-\mu_{\mathcal{G}}\left(Q_{f, 1}\right)\right]
$$

To this aim it suffices to recall that, by the assumptions, the function

$$
p(z)=\mathcal{L} f(z)=1+\sum_{m=1}^{\infty}(m+1) Q_{f, m}(z), z \in \mathcal{G}
$$

belongs to the family $\mathcal{C}_{\mathcal{G}}$ and use the previous original inequality in $\mathcal{C}_{\mathcal{G}}$. Therefore, if a function $f \in \mathcal{V}_{\mathcal{G}}$ is extremal in appropriate estimate (2) for $m=1$, that is, if $\mu_{\mathcal{G}}\left(Q_{f, 1}\right)=1$, then it is also extremal in required estimate (2) for each $m \geq 1$, that is, $\mu_{\mathcal{G}}\left(Q_{f, m}\right)=\frac{2}{m+1}$.

We close the paper with a suggestion of characterization of the set of all extremal functions in different estimates of homogeneous polynomials (also of Fekete-Szegö type) in series of functions from subfamilies of the family $\mathcal{H}_{\mathcal{G}}$.

Author Contributions: Investigation, R.D. and P.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Graham, I.G. Kohr, Geometric Function Theory in One and Higher Dimensions; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2003.
2. Kohr, G.; Liczberski, P. Univalent Mappings of Several Complex Variables; Cluj Univ. Press: Cluj-Napoca, Romania, 1998.
3. Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000.
4. Rudin, W. Functional Analysis; McGraw-Hill Inc.: New York, NY, USA, 1991.
5. Temljakov, A. Integral representation of functions of two complex variables. Izv. Acad. Sci. SSSR, Ser. Math. 1957, 21, 89-92.
6. Długosz, R. Embedding theorems for holomorphic functions of several complex variables. J. Appl. Anal. 2013, 19, 153-165. [CrossRef]
7. Długosz, R.; Leś, E. Embedding theorems and extremal problems for holomorphic functions on circular domains of \mathbb{C}^{n}. Complex Var. Elliptic Eq. 2014, 59, 883-899. [CrossRef]
8. Les-Bomba, E.; Liczberski, P. New properties of some families of holomorphic functions of several complex variables. Demonstr. Math. 2009, 42, 491-503. [CrossRef]
9. Bavrin, I.I. A class of regular bounded functions in the case of several complex variables and extreme problems in that class. Moskov Obl. Ped. Inst. Moscov 1976, 1-99.
10. Fukui, S. On the estimates of coefficients of analytic functions. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A 1969, 10, 216-218.
11. Higuchi, T. On coefficients of holomorphic functions of several complex variables. Sci. Rep. Tokyo Kyoiku Daigaku 1965, 8, 251-258.
12. Liczberski, P. Extremal problems in certain classes of holomorphic functions of two complex variables. Sci. Bull. Łódż Techn. Univ. Math. 1977, 11, 65-71.
13. Michiwaki, Y. Note on some coefficients in a starlike functions of two complex variables. Res. Rep. Nagaoka Tech. Coll. 1963, 1, 151-153.
14. Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85-89. [CrossRef]
15. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8-12. [CrossRef]
16. Gelfer, S.A. On a class of regular functions which ommit any pair w,-w of values. Mat. Sb 1946, 19, 33-46.
17. Golusin, G.M. Estimates for analytic functions with bounded mean of the modulus. Trav. Inst. Math. Stekloff 1946, 18, 3-88.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

