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Abstract: This paper presents a spectral calculus for computing the spectra of causal Lorentz invariant
Borel complex measures on Minkowski space, thereby enabling one to compute their densities with
respect to Lebesque measure. The spectra of certain elementary convolutions involving Feynman
propagators of scalar particles are computed. It is proved that the convolution of arbitrary causal
Lorentz invariant Borel complex measures exists and the product of such measures exists in a wide
class of cases. Techniques for their computation in terms of their spectral representation are presented.
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1. Introduction

Let B(R4) denote the Borel algebra of R4 (with respect to the Euclidean topology) [1] and let

B0(R4) = {Γ ∈ B(R4) : Γ is relatively compact}. (1)

Let
H+

m = {p ∈ R4 : p2 = m2, p0 > 0}, (2)

and
H−m = {p ∈ R4 : p2 = m2, p0 < 0}, (3)

be the mass shells (cones) corresponding to mass m > 0 (m = 0) and let

H+
im = {p ∈ R4 : p2 = −m2, p0 > 0}, (4)

and
H−im = {p ∈ R4 : p2 = −m2, p0 < 0}, (5)

be the positive time (negative time) imaginary mass hyperboloids corresponding to mass m > 0.
Define measures on these hyperboloids (cones) by

Ω±m(Γ) =
∫

π(H±m∩Γ)

d
⇀
p

ωm(
⇀
p )

, m ≥ 0, (6)

Ω±im(Γ) =
∫

π(H±im∩Γ)

d
⇀
p

ωim(
⇀
p )

, m > 0, (7)
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and
Ωim = Ω+

im + Ω−im, (8)

where π : R4 → R3 is defined by

π(p) = π(p0, p1, p2, p3) =
⇀
p = (p1, p2, p3), (9)

and ωm : R3 → [0, ∞) is defined by

ωm(
⇀
p ) = (m2 + |

⇀
p |2)

1
2 . (10)

An equivalent set of definitions to these definitions of the measures Ω±m and Ω±im is to specify the effect
of applying the measures to measurable functions ψ : R4 → C. In fact

< Ω±m , ψ >=
∫

ψ(±ωm(
⇀
p ),

⇀
p )

d
⇀
p

ωm(
⇀
p )

, m ≥ 0, (11)

< Ω±im, ψ >=
∫

ψ(±ωim(
⇀
p ),

⇀
p )

d
⇀
p

ωim(
⇀
p )

, m > 0. (12)

Consider the following general form of a complex measure µ : B0(R4)→ C on Minkowski space.

µ(Γ) = cδ(Γ) +
∫ ∞

m=0
Ω+

m(Γ) σ1(dm) +
∫ ∞

m=0
Ω−m(Γ) σ2(dm) +

∫ ∞

m=0
Ωim(Γ) σ3(dm), (13)

where c ∈ C (the complex numbers), δ is the Dirac delta function (measure), σ1, σ2, σ3 : B0([0, ∞))→ C
are Borel complex measures. Then µ is a Lorentz invariant Borel complex measure. Conversely [2]
leads to the following.

Theorem 1. The Spectral Theorem. Let µ : B0(R4) → C be a Lorentz invariant Borel complex measure.
Then µ has the form of Equation (13) for some c ∈ C and Borel spectral measures σ1, σ2 and σ3.

(More generally, from [2] Lorentz invariant distributions inD∗(R4) are of the form of Equation (13)
where c ∈ C, σ1, σ2, σ3 ∈ D∗(R) with the possible addition of a distribution supported at the origin of
the form P(2)δ where 2 is the wave operator and P is some polynomial.)

In Section 3, we show how the Feynman scalar propagator in momentum space can be identified
with the causal Lorentz invariant measure Ωm. In Section 4, we will present a spectral calculus
whereby the spectrum of a causal Lorentz invariant Borel complex measure on Minkowski space can
be calculated, whereby causal is meant that the support of the measure is contained in the closed future
null cone of the origin.

In Section 5 of the paper, we use the spectral calculus and other methods to compute the spectrum
of the measure Ωm ∗Ωm which is the convolution of the standard Lorentz invariant measure on the
mass m mass shell (i.e., the Feynman scalar propagator corresponding to mass m on the space of
positive energy functions) with itself, where m > 0. In Section 7, we use general arguments to compute
the spectrum of Ωim ∗Ωim, m > 0. In Section 8, we will show how the density with respect to Lebesque
measure associated with a causal Lorentz invariant Borel complex measure can be determined from
its spectrum and in Section 9 we will show how the convolution and product of such measures can
be computed.

Some of the work of this paper may be compared to the work of Scharf and others, dating back to
the paper of Epstein and Glaser [3] on forming products of causal distributions.
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The concept of spectral representation in quantum field theory (QFT) dates back to the work of
Källén [4] and Lehmann [5] who, independently, proposed the representation

< 0|[φ(x), φ†(y)]|0 >= i
∫ ∞

0
dm′2σ(m′2)∆m′(x− y), (14)

for the commutator of interacting fields where ∆m′ is the Feynman propagator corresponding to mass
m′. Itzykson and Zuber [6] state, with respect to σ, “In general this is a positive measure with δ-function
singularities." While Källén, Lehmann and others propose and use this decomposition they do not
present a way to compute the spectral measure σ. As mentioned above one of the main results of the
present paper is a presentation of a spectral calculus that enables one to compute the spectral function
of a causal Lorentz invariant Borel complex measure on Minkowski space. This spectral calculus is
quite easy to use in practice but it is somewhat tedious to prove rigorously its validity. This use in
practice involves a general form of argument which is exemplified by the argument used in the case of
the computation of the spectrum of the convolution Ωm ∗Ωm which we call Argument 1. The validity
of Argument 1 is proved in Section 6.

2. Related Work

Our work has some connection with the spectral theory of hyperbolic surfaces [7,8] and its
multivarious ramifications in quantum physics, number theory, and discrete groups as the hyperboloid
Hm is a higher dimensional hyperbolic space and the standard measure Ωm on Hm is a fundamental
solution of the Klein-Gordon equation on Minkowski space (whose solutions are eigenfunctions of the
wave operator) whereas the spectral theory of hyperbolic surfaces is concerned with eigenfunctions of
the Laplace operator.

Bollini et al. [9] describe how the convolution of two ultradistributions of exponential type
(UET) can exist. They then define the product of two UETs in terms of the convolution of their
Fourier transforms. They obtain expressions for the Fourier transform of Lorentz invariant UETs
(generalizing Bochner’s theorem). Kamiński and Mincheva-Kaminska [10] present results concerning
the convolution of distributions such as the existence of the convolution of tempered distributions
whose supports are polynomially compatible sets. Ortner and Wagner [11] consider the Fourier
transform of O(p, q) invariant distributions. They present a condition under which two Lorentz
invariant tempered distributions are convolvable and a formula for their convolution.

Zinoviev [12] considers Lorentz invariant tempered distributions on (R4)k supported on the
product of closed future light cones. Soloviev [13] discusses the theory of Lorentz covariant
distributions, ultradistributions and hyperfunctions.

Harish-Chandra [14] realized the fruitfulness of regarding the space of invariant distributions as a
module for the algebra of polynomial differential operators. In this context Kolk and Varadarajan [15]
consider Lorentz invariant distributions supported on the boundary of the cone representing the causal
future of the origin.

Our work does not consider the complexities and partial results of the general theory of Lorentz
invariant distributions, ultradistributions and other such spaces but restricts attention to Lorentz
invariant Borel complex measures. There are two reasons for this. Firstly one can obtain complete,
unencumbered and “elegant" results. Secondly, many the distributional objects of interest in QFT
(such as correlation functions) can, through Wick’s theorem, or else the operator product expansion,
be represented in terms of Feynman propagators and the propagators are Lorentz invariant measures
(or else K invariant matrix-valued measures whose trace is Lorentz invariant) [16].

3. The Feynman Scalar Field Propagator as a Tempered Measure

In this section, we give a well-defined definition of the Feynman scalar propagator of QFT in
terms of tempered measures and distributions. The propagator is viewed as being a complex tempered
distribution. It is constructed from the Fourier transform of the tempered measure Ωm.
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Consider the Feynman scalar field propagator. It is written as ([6], p. 35)

4F(x) = −(2π)−4
∫ e−ip.x

p2 −m2 + iε
dp. (15)

This is to be understood with respect to the i−epsilon procedure described in Mandl and Shaw ([17], p. 57),
and the dot product p.x is given by

p.x = ηαβ pαxβ,

where η = diag(1,−1,−1,−1). Therefore4F(x) is written as

4F(x) = −(2π)−4
∫

R3

∫
CF

e−ip.x

p2 −m2 dp0d
⇀
p , (16)

where CF is the standard Feynman propagator contour. Thus4F(x) is written as

4F(x) = −(2π)−4
∫

R3
I(

⇀
p , x) d

⇀
p , (17)

where

I(
⇀
p , x) =

∫
CF

e−ip.x

(p0)2 −ωm(
⇀
p )2

dp0, (18)

and
ωm(

⇀
p ) = (|

⇀
p |2 + m2)

1
2 , m ≥ 0. (19)

The contour integral Equation (18) exists for ωm(
⇀
p ) 6= 0 and is given by

I(
⇀
p , x) = − πi

ωm(
⇀
p )

 e−i(ωm(
⇀
p )x0−

⇀
p .

⇀
x ) if x0 > 0,

e−i(−ωm(
⇀
p )x0−

⇀
p .

⇀
x ) if x0 < 0.

(20)

To prove this consider the contour C1(R) given by

C1(R) = {Reit : 0 ≤ t ≤ π}.

We will show that

I1(R) =
∫

C1(R)

e−ip.x

(p0)2 −ωm(
⇀
p )2

dp0 → 0 as R→ ∞,

as long as x0 < 0. To this effect we note that

|I1(R)| =|
∫ π

t=0

e−iReitx0+i
⇀
p .

⇀
x

(Reit)2 −ωm(
⇀
p )2

iReit dt|

≤
∫ π

t=0

∣∣∣∣∣ eR sin tx0

(Reit)2 −ωm(
⇀
p )2

∣∣∣∣∣ R dt

≤
∫ π

t=0

1

|R2 −ωm(
⇀
p )2|

R dt

=
πR

|R2 −ωm(
⇀
p )2|

,

→ 0 as R→ ∞, if x0 < 0.

(21)



Symmetry 2020, 12, 1696 5 of 24

Therefore, for x0 < 0,

I(
⇀
p , x) = 2πires(p0 7→ e−ip.x

(p0)2 −ωm(
⇀
p )2

,−ωm(p)).

Now
e−ip.x

(p0)2 −ωm(
⇀
p )2

=
e−ip.x

(p0 −ωm(
⇀
p ))(p0 + ωm(

⇀
p ))

.

Thus

I(
⇀
p , x) = −πi

e−i(−ωm(
⇀
p )x0−

⇀
p .

⇀
x )

ωm(
⇀
p )

.

Similarly, if x0 > 0, then

I(
⇀
p , x) = −πi

e−i(ωm(
⇀
p )x0−

⇀
p .

⇀
x )

ωm(
⇀
p )

.

Hence ∫
R3
|I(

⇀
p , x)| d

⇀
p = π

∫
R3

1

ωm(
⇀
p )

d
⇀
p = ∞, (22)

and so the integral Equation (17) defining4F(x) does not exist as a Lebesgue integral.
We would like to give a well-defined interpretation of the propagator 4F. H±m for m ≥ 0 are

orbits of the action of the Lorentz group on Minkowski space (these orbits correspond to real mass
orbits, there are also “imaginary mass" hyperboloid orbits Him). Ω±m are Lorentz invariant measures
for Minkowski space supported on H±m ([18], p. 157). Ω±m is locally finite for m ≥ 0. Now, for any
non-negative measurable function ψ : R4 → [0, ∞],

∫
R4

ψ(p)Ω±m(dp) =
∫

R3
ψ(±ωm(

⇀
p ),

⇀
p )

d
⇀
p

ωm(
⇀
p )

. (23)

Here, and for the rest of the section, the symbol ψ stands for a test function in Minkowski space.
It follows from Equations (17), (20) and (23) that one may write

4F(x) =

{
(2π)−4πi

∫
e−ip.x Ω+

m(dp), if x0 > 0,
(2π)−4πi

∫
e−ip.x Ω−m(dp), if x0 < 0.

(24)

Equations (16), (17) and (24) are all integral expressions equivalent to Equation (15) and none of them
exist as Lebesgue integrals. However, formally, Equation (24) can be written as

4F(x) =

 πi
∨

Ω+
m(−x) if x0 > 0,

πi
∨

Ω−m(−x) if x0 < 0,
(25)

where ∨ denotes the inverse Fourier transform operator (and we use the “physics"convention for the
definition of the Fourier transform). Since Ω+

m and Ω−m are tempered distributions their inverse Fourier
transforms exist and are tempered distributions. Let S±(R4) ⊂ S(R4) be the space of test functions
supported in S±, where

S+ = {x ∈ R4 : x0 > 0}, S− = {x ∈ R4 : x0 < 0}. (26)

Then

< 4F, ψ >= πi <
∨

Ω∓m , ψ >= πi < Ω∓m ,
∨
ψ >, (27)
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for ψ ∈ S±(R4), where < ω, ψ > denotes the evaluation of a distribution ω on its test function
argument ψ. Therefore the momentum space scalar field propagator on (S±(R4))∧ is

∧
4F = πiΩ∓m . (28)

(S+(R4))∧ is the space of wave functions with only positive frequency components while (S−(R4))∧

is the space of wave functions with only negative frequency components.
This measure is a tempered measure, i.e., it is a tempered distribution as well as being a measure.
Equations (15) and (25) lead to the ansatz

1
p2 −m2 + iε

→ −πiΩ±m(p). (29)

4. A Spectral Calculus for Lorentz Invariant Measures

Suppose that µ is a Lorentz invariant Borel complex measure on Minkowski space. Then by the
spectral theorem, it must have the form of Equation (13). If σ2 = σ3 = 0 then µ will be said to be
causal or a type I measure. If σ1 = σ3 = 0 then µ will be said to be a type II measure and if c = 0 and
σ1 = σ2 = 0 then µ will be said to be a type III measure. Thus any Lorentz invariant measure is a sum
of a type I measure, a type II measure and a type III measure. In particular, any measure of the form

µ(Γ) =
∫ ∞

m=0
σ(m)Ω+

m(Γ) dm, (30)

where σ is locally integrable function and the integration is carried out with respect to the Lebesgue
measure, is a causal Lorentz invariant Borel complex measure. If σ is polynomially bounded then µ is
a tempered measure.

The spectral calculus that we will now explain is a way to compute the spectrum σ of a Lorentz
invariant measure µ if we know that µ can be written in the form of Equation (30) and σ is continuous.

For m > 0 and ε > 0 let S(m, ε) be the hyperbolic (hyper-)disc defined by

S(m, ε) = {p ∈ R4 : p2 = m2, |
⇀
p | < ε, p0 > 0}, (31)

where
⇀
p = π(p) = π(p0, p1, p2, p3) = (p1, p2, p3). For a, b ∈ R with 0 < a < b let Γ(a, b, ε) be the

hyperbolic cylinder defined by
Γ(a, b, ε) =

⋃
m∈(a,b)

S(m, ε). (32)

Now suppose that we have a measure in the form of Equation (30) where σ is continuous. Then we
can write

µ(Γ(a, b, ε)) =
∫ ∞

m=0
σ(m)Ωm(Γ(a, b, ε)) dm

=
∫ ∞

m=0
σ(m)

∫
π(Γ(a,b,ε)∩H+

m )

d
⇀
p

ωm(
⇀
p )

dm

=
∫ b

a
σ(m)

∫
Bε(

⇀
0 )

d
⇀
p

ωm(
⇀
p )

dm

≈ 4
3

πε3
∫ b

a

σ(m)

m
dm.

(33)

where

ωm(
⇀
p ) = (

⇀
p

2
+ m2)

1
2 , (34)

and Bε(
⇀
0 ) = {

⇀
p ∈ R3 : |

⇀
p | < ε}.
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The approximation ≈ in the last line comes about because ωm is not constant over Bε(
⇀
0 ).

Thus if we define
ga(b) = g(a, b) = lim

ε→0
ε−3µ(Γ(a, b, ε)), (35)

then we can retreive σ using the formula

σ(b) =
3

4π
bg′a(b). (36)

Thus we have proved the following fundamental theorem of the spectral calculus of causal Lorentz
invariant measures.

Theorem 2. Suppose that µ is a causal Lorentz invariant measure with continuous spectrum σ. Then σ can be
calculated from the formula

σ(b) =
3

4π
bg′a(b), (37)

where, for a, b ∈ R, 0 < a < b, ga : (a, ∞)→ R is given by Equation (35).

To make the proof of this theorem rigorous we prove the following.

Lemma 1. Let a, b ∈ R, 0 < a < b. Then

lim
ε→0

ε−3
∫

Bε(0)

d
⇀
p

ωm(
⇀
p )

=
4π

3
1
m

, (38)

uniformly for m ∈ [a, b].

Proof. Define

I = I(m, ε) =
∫

Bε(0)

d
⇀
p

ωm(
⇀
p )

. (39)

Then

I =
∫ ε

r=0

4πr2 dr

(r2 + m2)
1
2

. (40)

Now
I1 < I < I2,

where

I1 =
∫ ε

r=0

4πr2 dr

(ε2 + m2)
1
2
=

4π

(ε2 + m2)
1
2

1
3

ε3,

I2 =
∫ ε

r=0

4πr2 dr
m

=
4π

m
1
3

ε3.

Therefore
4π

3(ε2 + m2)
1
2
< ε−3 I <

4π

3m
.

Thus
4π

3m
− 4π

3(ε2 + m2)
1
2
>

4π

3m
− ε−3 I > 0.

Hence ∣∣∣∣ε−3 I − 4π

3m

∣∣∣∣ < 4π

3m
− 4π

3(ε2 + m2)
1
2

. (41)
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We have

4π

3m
− 4π

3(ε2 + m2)
1
2

=
4π

3
(ε2 + m2)

1
2 −m

m(ε2 + m2)
1
2

=
4π

3
ε2

m(ε2 + m2)
1
2 ((ε2 + m2)

1
2 + m)

<
4π

3
ε2

2m3

≤ 4π

3
ε2

2a3 , for all m ∈ [a, b].

Therefore ∣∣∣∣ε−3 I − 4π

3m

∣∣∣∣ < 2πε2

3a3 , (42)

for all m ∈ [a, b]

This lemma justifies the step of taking the limit under the integral sign (indicated by the symbol≈)
in the proof of Theorem 2.

More generally, suppose that µ : B0(R4) → C is a causal Lorentz invariant Borel measure on
Minkowski space with spectrum σ. Then, by the Lebesgue decomposition theorem there exist unique
measures σc, σs : B0([0, ∞))→ C such that σ = σc + σs where σc, the continuous part of the spectrum of
µ, is absolutely continuous with respect to Lebesque measure and σs, the singular part of the spectrum
of µ, is singular with respect to σc.

It is straightforward to prove the following.

Theorem 3. Suppose that a′, b′ ∈ R are such that 0 < a′ < b′, σc|(a′ ,b′) is continuous. Then for all a, b ∈ R
with a′ < a < b < b′, ga(b) defined by Equation (35) exists and is continuously differentiable. Furthermore
σc|(a′ ,b′) can be computed using the formula

σc(b) =
3

4π
bg′a(b), (43)

and
σs(E) = 0, ∀ Borel E ⊂ (a′, b′). (44)

Conversely suppose that a′, b′ ∈ R are such that 0 < a′ < b′ and for all a, b ∈ R with a′ < a < b < b′,
ga(b) defined by Equation (35) exists and is continuously differentiable. Then σc|(a′ ,b′) is continuous and can be
retrieved using the formula of Equation (43).

5. Investigation of the Measure Defined by the Convolution Ωm ∗ Ωm

5.1. Determination of Some Properties of Ωm ∗Ωm

Consider the measure defined by

µ(Γ) = (Ωm ∗Ωm)(Γ) =
∫

χΓ(p + q)Ωm(dp)Ωm(dq), (45)

where, for any set Γ, χΓ denotes the characteristic function of Γ defined by

χΓ(p) =

{
1 if p ∈ Γ
0 otherwise.

(46)
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µ exists as a Borel measure because as |p|, |q| → ∞ with p, q ∈ H+
m , (p + q)0 → ∞ and so p +

q is eventually /∈Γ for any compact set Γ ⊂ R4. Now

µ(Λ(Γ)) =
∫

χΛ(Γ)(p + q)Ωm(dp)Ωm(dq)

=
∫

χΓ(Λ−1 p + Λ−1q)Ωm(dp)Ωm(dq)

=
∫

χΓ(p + q)Ωm(dp)Ωm(dq)

= µ(Γ),

(47)

for all Λ ∈ O(1, 3)+↑, Γ ∈ B0(R4). Thus µ is a Lorentz invariant measure.
We will now show that µ is concentrated in the set

C2m = {p ∈ R4 : p2 ≥ 4m2, p0 > 0}, (48)

and therefore, that µ is causal. Let U ⊂ R4 be open. Then

µ(U) =
∫

R3

∫
R3

χU(ωm(
⇀
p ) + ωm(

⇀
q ),

⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

. (49)

Therefore, using continuity, it follows that

µ(U) > 0 ⇔ (∃
⇀
q 1,

⇀
q 2 ∈ R3) (ωm(

⇀
q 1) + ωm(

⇀
q 2),

⇀
q 1 +

⇀
q 2) ∈ U.

Suppose that p ∈ supp(µ) (the support of the measure µ) i.e., p is such that µ(U) > 0 for all open
neighborhoods U of p. Let U be an open neighborhood of p. Then, as µ(U) > 0, there exists

q ∈ U,
⇀
q 1,

⇀
q 2 ∈ R3 such that q = (ωm(

⇀
q 1) + ωm(

⇀
q 2),

⇀
q 1 +

⇀
q 2). Clearly q0 ≥ 2m. As this is true for

all neighborhoods U of p it follows that p0 ≥ 2m. By Lorentz invariance we may assume without loss

of generality that
⇀
p = 0. Therefore p2 ≥ 4m2. Thus supp(µ) ⊂ C2m.

For the converse, let p = (ωm(
⇀
p ),

⇀
p ), q = (ωm(

⇀
p ),−

⇀
p ) ∈ H+

m for
⇀
p ∈ R3. As

⇀
p ranges over

R3, p + q = (2ωm(
⇀
p ),

⇀
0 ) ranges over {(m′,

⇀
0 ) : m′ ≥ 2m}. It follows using Lorentz invariance that

supp(µ) ⊃ C2m.
Therefore the support supp(µ) of µ is C2m. Therefore by the spectral theorem µ has a spectral

representation of the form

µ(Γ) =
∫ ∞

m′=2m
Ωm′(Γ) σ(dm′), (50)

for some Borel measure σ : B0([2m, ∞))→ C.

5.2. Computation of the Spectrum of Ωm ∗Ωm Using the Spectral Calculus

Let a, b ∈ R with 0 < a < b. Let

ga(b, ε) = µ(Γ(a, b, ε)) for ε > 0. (51)

We would like to calculate
ga(b) = lim

ε→0
ε−3ga(b, ε), (52)

and then retreive the spectral function as

σ(b) =
3

4π
bg′(b). (53)
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To this effect we calculate

g(a, b, ε) = µ(Γ(a, b, ε))

=
∫

χΓ(a,b,ε)(p + q)Ωm(dp)Ωm(dq)

≈
∫

χ
(a,b)×Bε(

⇀
0 )

(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )

(
⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

≈
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q .

We will call this argument Argument 1. This argument is intuitively reasonable but it needs to be
justified rigorously. It is proved in the proof of Theorem 4 of the next section.

Given that Argument 1 is valid we now proceed to compute the spectrum of µ. We have

a < 2ωm(
⇀
q ) < b ⇔

( a
2

)2
−m2 <

⇀
q

2
<

(
b
2

)2
−m2

⇔ mZ(a) < |
⇀
q | < mZ(b),

where

Z(m′) = (
m′2

4m2 − 1)
1
2 , for m′ ≥ 2m. (54)

Thus

g(a, b, ε) ≈ 16π2

3
ε3
∫ mZ(b)

r=mZ(a)

r2

m2 + r2 dr. (55)

Hence

ga(b) =
16π2

3

∫ mZ(b)

r=mZ(a)

r2

m2 + r2 dr. (56)

Therefore ga is continuously differentiable and so Theorem 3 applies. Using the Leibniz integral rule

g′a(b) =
16π2

3
m2Z2(b)

m2 + m2Z2(b)
mZ′(b) =

16π2

3
mZ(b)

b
. (57)

Therefore we compute the spectrum σ of µ as

σ(b) =

{
4πmZ(b) for b ≥ 2m
0 otherwise.

(58)

6. Proof of the Validity of Argument 1

The following theorem establishes that Argument 1 is justified.
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Theorem 4. Let g(a, b, ε) be defined by g(a, b, ε) = µ(Γ(a, b, ε)) for a, b ∈ R, a < b, ε > 0, where µ =

Ωm ∗Ωm. Then the following formal argument (Argument 1)

g(a, b, ε) = µ(Γ(a, b, ε))

=
∫

χΓ(a,b,ε)(p + q)Ωm(dp)Ωm(dq)

≈
∫

χ(a,b)×Bε(0)(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χBε(0)(

⇀
p +

⇀
q )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

=
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(0)−
⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

≈
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q ,

is justified in the sense that

lim
ε→0

ε−3g(a, b, ε) =
4
3

π
∫

χ(a,b)(2ωm(
⇀
q ))

1

ωm(
⇀
q )2

d
⇀
q . (59)

Proof. There are 2 ≈ signs that we have to consider. The first is in line 3 and arises because we are
approximating the hyperbolic cylinder of radius ε between a and b with an ordinary cylinder of radius
ε. We will show that the error is of order greater than ε3. Let Γ = Γ(a, b, ε) be the aforementioned
hyperbolic cylinder. Then

Γ =
⋃

m′∈(a,b)

S(m′, ε). (60)

Let

Γ′ =
⋃

m′∈(a,b)

{m′} × Bε(
⇀
0 ) = (a, b)× Bε(

⇀
0 )

Γ′− =
⋃

m′∈(a,a+)

{(m′,
⇀
p ) :

⇀
p

2
> m′2 − a2}

⊂
⋃

m′∈(a,a+)

({m′} × Bε(
⇀
0 )) = (a, a+)× Bε(

⇀
0 )

Γ′+ =
⋃

m′∈(b,b+)

{(m′,
⇀
p ) :

⇀
p

2
> m′2 − b2}

⊂
⋃

m′∈(b,b+)

({m′} × Bε(
⇀
0 )) = (b, b+)× Bε(

⇀
0 ),

in which
a+ = (a2 + ε2)

1
2 , b+ = (b2 + ε2)

1
2 . (61)

Then Γ differs from (Γ′ ∼ Γ′−) ∪ Γ′+ on a set of measure zero,
It is straightforward to show that if Γ1, Γ2 ∈ B0(R4), Γ1 ∩ Γ2 = ∅ then∫

χΓ1∪Γ2(p + q)Ωm(dp)Ωm(dq) =
∫

χΓ1(p + q)Ωm(dp)Ωm(dq) +∫
χΓ2(p + q)Ωm(dp)Ωm(dq).
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Therefore

|
∫

χΓ(p + q)Ωm(dp)Ωm(dq)−
∫

χΓ′(p + q)Ωm(dp)Ωm(dq)| ≤∫
χΓ′−(p + q)Ωm(dp)Ωm(dq) +

∫
χΓ′+(p + q)Ωm(dp)Ωm(dq).

We will show that
lim
ε→0

(ε−3
∫

χΓ′±(p + q)Ωm(dp)Ωm(dq)) = 0. (62)

It suffices to consider the − case. We have∫
χΓ′−(p + q)Ωm(dp)Ωm(dq) ≤

∫
χ(a,a+)×Bε(0)(p + q)Ωm(dp)Ωm(dq)

=
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(0)−
⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

.

(63)

We will come back to this equation later but will now return to the general argument Argument 1 and

consider the second and final ≈. This ≈ arises because we are approximating
⇀
p by −

⇀
q since

⇀
p ranges

over a ball of radius ε centred on −
⇀
q .

Suppose that
⇀
p and

⇀
q are such that χ

Bε(0)−
⇀
q
(
⇀
p ) = 1. Then |

⇀
p +

⇀
q | < ε. Thus ||

⇀
p | − |

⇀
q || < ε.

Hence

|ωm(
⇀
p )−ωm(

⇀
q )| = |(

⇀
p

2
+ m2)

1
2 − (

⇀
q

2
+ m2)

1
2 )|

=

∣∣∣∣∣∣
⇀
p

2
−

⇀
q

2

(
⇀
p

2
+ m2)

1
2 + (

⇀
q

2
+ m2)

1
2 )

∣∣∣∣∣∣
≤ |

⇀
p

2
−

⇀
q

2
|

2m

=
||
⇀
p | − |

⇀
q ||(|

⇀
p |+ |

⇀
q |)

2m

<
ε

2m
(|
⇀
p |+ |

⇀
q |).

We have |
⇀
p | ∈ (|

⇀
q | − ε, |

⇀
q |+ ε). Therefore |

⇀
p |+ |

⇀
q | < 2|

⇀
q |+ ε. Thus

|ωm(
⇀
p )−ωm(

⇀
q )| < ε

2m
(2|

⇀
q |+ ε).

Therefore
ωm(

⇀
p ) + ωm(

⇀
q ) = ωm(

⇀
p )−ωm(

⇀
q ) + ωm(

⇀
q ) + ωm(

⇀
q )

≤ |ωm(
⇀
p )−ωm(

⇀
q )|+ 2ωm(

⇀
q )

< 2ωm(
⇀
q ) +

ε

2m
(2|

⇀
q |+ ε).

(64)
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Now let

I(ε) =
∫

χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

J(ε) =
∫

χ(a,b)(2ωm(
⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

K(ε) =
∫

χ(a,b)(2ωm(
⇀
q ))

4
3 πε3

ωm(
⇀
q )2

d
⇀
q .

We will show that

lim
ε→0

ε−3(I(ε)− J(ε)) = 0, and lim
ε→0

ε−3(J(ε)− K(ε)) = 0. (65)

Concerning the first limit we note that χ(a,b)(ωm(
⇀
p ) + ωm(

⇀
q )) differs from χ(a,b)(2ωm(

⇀
q )) if and

only if

1. ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) but 2ωm(

⇀
q ) ≤ a or

2. ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) but 2ωm(

⇀
q ) ≥ b or

3. 2ωm(
⇀
q ) ∈ (a, b) but ωm(

⇀
p ) + ωm(

⇀
q ) ≤ a or

4. 2ωm(
⇀
q ) ∈ (a, b) but ωm(

⇀
p ) + ωm(

⇀
q ) ≥ b.

Thus
|I(ε)− J(ε)| = I1(ε) + I2(ε) + I3(ε) + I4(ε), (66)

where
I1(ε) =

∫
χ(a,b)(ωm(

⇀
p ) + ωm(

⇀
q ))χ(−∞,a](2ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

,
(67)

and I2, I3, I4 are defined similarly. We will show that

lim
ε→0

ε−3 I1(ε) = 0. (68)

I2, I3 and I4 can be dealt with similarly.
Using Equation (64)

ωm(
⇀
p ) + ωm(

⇀
q ) ∈ (a, b) and 2ωm(

⇀
q ) ≤ a⇒ a− ε

2m
(2|

⇀
q |+ ε) < 2ωm(

⇀
q ) ≤ a.

Therefore

I1(ε) ≤
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

1
m2 d

⇀
p d

⇀
q

=
4
3

πε3
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))

1
m2 d

⇀
q .

Hence

ε−3 I1(ε) ≤
4
3

π
∫

χ
(a−(2|

⇀
q |+ε)ε/(2m),a]

(2ωm(
⇀
q ))

1
m2 d

⇀
q . (69)
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The integrand is integrable for all ε > 0, vanishes outside the compact set

C = {
⇀
q ∈ R3 : 2ωm(

⇀
q ) ≤ a},

is dominated by the integrable function

g(
⇀
q ) =

1
m2 χ[0,a](2ωm(

⇀
q )),

and converges pointwise to 0 everywhere on R3 as ε→ 0 except on the set ∂C = {
⇀
q ∈ R3 : 2ωm(

⇀
q ) = a}

which is a set of measure 0. Therefore by the dominated convergence theeorem

lim
ε→0

ε−3 I1(ε) = 0, (70)

as required.
Now regarding the second limit in Equation (65) consider the function f : [0, ∞) → (0, m−1]

defined by
f (p) = (m2 + p2)−

1
2 . (71)

f is analytic. Therefore by Taylor’s theorem for all q, p ≥ 0

f (p) = f (q) + f ′(q)(p− q) +
1
2

f ′′(ξ)(p− q)2, (72)

for some ξ between q and p. Now

f ′(p) = −p(m2 + p2)−
3
2

f ′′(p) = (m2 + p2)−
5
2 (2p2 −m2).

Therefore

| f ′′(ξ)| = (m2 + ξ2)−
5
2 |2ξ2 −m2|

≤ m−5(2(q + ε)2 + m2),

as long as |p− q| < ε. Thus

| f (p)− f (q)| = | f ′(q)(p− q) +
1
2

f ′′(ξ)(p− q)2|

< q(m2 + q2)−
3
2 ε +

1
2

m−5(2(q + ε)2 + m2)ε2

< m−1ε +
1
2

m−5(2(q + ε)2 + m2)ε2,

as long as |p− q| < ε. Hence
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|J(ε)− K(ε)| = |
∫

χ(a,b)(2ωm(
⇀
q ))(

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(

1

ωm(
⇀
p )
− 1

ωm(
⇀
q )

) d
⇀
p )

d
⇀
q

ωm(
⇀
q )
|

≤
∫

χ(a,b)(2ωm(
⇀
q ))(

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(| f (|

⇀
p |)− f (|

⇀
q |)|) d

⇀
p )

d
⇀
q

ωm(
⇀
q )

≤
∫

χ(a,b)(2ωm(
⇀
q ))

∫
χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
p d

⇀
q

ωm(
⇀
q )

=
4
3

πε3
∫

χ(a,b)(2ωm(
⇀
q ))(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
q

ωm(
⇀
q )

.

Therefore

lim
ε→0

ε−3|J(ε)− K(ε)| = lim
ε→0

4
3

π
∫

χ(a, b)(2ωm(
⇀
q ))(m−1ε +

1
2

m−5(2(|
⇀
q |+ ε)2 + m2)ε2)

d
⇀
q

ωm(
⇀
q )

= 0,

as required. We have therefore dealt with the second ≈ in Argument 1.
To finish dealing with the first ≈ suppose that ε1 > 0 is given. Choose c ∈ (a, b) such that

16
3

π2(Z(c)− Z(a)) <
ε1

2
. (73)

Now choose δ1 > 0 such that if 0 < ε < δ1 then

|ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )
−

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2
| < ε1

2
.

(We can do this because of the validity of the second ≈.) Choose δ2 > 0 such that if 0 < ε < δ2 then
a+ = a+(ε) < c. Let δ = min(δ1, δ2).



Symmetry 2020, 12, 1696 16 of 24

Then if ε < δ then

|ε−3
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )
|

≤ |ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )
|

≤ |ε−3
∫

χ(a,c)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )
−

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2
|+ |4

3
π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2
|

<
ε1

2
+

4
3

π
∫

χ(a,c)(2ωm(
⇀
q ))

d
⇀
q

ωm(
⇀
q )2

=
ε1

2
+

4
3

π
∫ Z(c)

Z(a)

4πr2

m2 + r2 dr

≤ ε1

2
+

16
3

π2(Z(c)− Z(a))

<
ε1

2
+

ε1

2
= ε1.

Thus

lim
ε→0

ε−3
∫

χ(a,a+)(ωm(
⇀
p ) + ωm(

⇀
q ))χ

Bε(
⇀
0 )−

⇀
q
(
⇀
p )

d
⇀
p

ωm(
⇀
p )

d
⇀
q

ωm(
⇀
q )

= 0, (74)

thereby completing the proof of the validity of the first ≈ and therefore the validity of Argument 1.

7. Investigation of the Measure Defined by the Convolution Ωim ∗ Ωim

The measure Ω+
im is defined by

Ω+
im(Γ) =

∫
π(Γ∩H+

im)

d
⇀
p

ωim(
⇀
p )

for Γ ∈ B0(R4), (75)

where
H+

im = {p ∈ R4 : p2 = −m2, p0 ≥ 0}. (76)

Ω+
im is a measure concentrated on the positive time imaginary mass hyperboloid H+

im corresponding to
mass im. There is also a measure Ω−im on H−im and we may define Ωim = Ω+

im + Ω−im, for m > 0. Ωim is
a Lorentz invariant measure on Him = {p ∈ R4 : p2 = −m2}.

Define, for m ∈ C

J+m = {p ∈ C4 : p2 = m2, Re(p0) ≥ 0, Im(p0) ≥ 0}, (77)

where p2 = ηµν pµ pν (in which ηµν is the Minkowski space metric tensor). Then, for m > 0,

J+m ∩R4 = {p ∈ R4 : p2 = m2, p0 ≥ 0} = H+
m , (78)
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J+m ∩ (iR4) = {p ∈ iR4 : p2 = m2, Re(p0) ≥ 0, Im(p0) ≥ 0}
= {iq : q ∈ R4, q2 = −m2, q0 ≥ 0}
= iH+

im. (79)

Now if
⇀
p ∈ R3, m > 0, we may write

ωim(
⇀
p ) = ((im)2 +

⇀
p

2
)

1
2 = (−m2 +

⇀
p

2
)

1
2 = (−(m2 + (i

⇀
p )2))

1
2 = i(m2 + (i

⇀
p )2)

1
2 = iωm(i

⇀
p ).

One may consider the measure Ω+
m to be defined on iR4 as well as R4 and for all m ∈ R or m ∈ iR

according to

Ω+
m(Γ) =

∫
π(Γ∩J+m )

d
⇀
p

ωm(
⇀
p )

. (80)

Then from Equation (79)

Ω+
m(iΓ) =

∫
iπ(Γ∩H+

im)

d
⇀
p

ωm(
⇀
p )

. (81)

Now make the substitution
⇀
p = i

⇀
q . Then d

⇀
p = −id

⇀
q . Thus

Ω+
m(iΓ) =

∫
π(Γ∩H+

im)

−id
⇀
q

−iωim(
⇀
q )

= Ω+
im(Γ). (82)

Now suppose that
ψ = ∑

k
ckχEk , (83)

where ci ∈ C and Ek ∈ B0(R4), is a simple function. Then∫
R4

ψ(p)Ω+
im(dp) = ∑

k
ckΩ+

im(Ek)

= ∑
k

ckΩ+
m(iEk)

= ∑
k

ck

∫
iR4

χiEk (p)Ω+
m(dp)

= ∑
k

ck

∫
iR4

χEk (
p
i
)Ω+

m(dp)

=
∫

iR4
ψ(

p
i
)Ω+

m(dp).

(84)

As this is true for every such simple function ψ it follows that∫
R4

ψ(p)Ω+
im(dp) =

∫
iR4

ψ(
p
i
)Ω+

m(dp), (85)

for every function ψ which is integrable with respect to Ω+
im. Therefore

(Ω+
im ∗Ω+

im)(Γ) =
∫
(R4)2

χΓ(p + q)Ω+
im(dp)Ω+

im(dq)

=
∫
(iR4)2

χΓ

(
p + q

i

)
Ω+

m(dp)Ω+
m(dq)

=
∫
(iR4)2

χiΓ(p + q)Ω+
m(dp)Ω+

m(dq)

= (Ω+
m ∗Ω+

m)(iΓ),

(86)



Symmetry 2020, 12, 1696 18 of 24

for all Γ ∈ B0(R4).
Now in general, suppose that a measure µ has a causal spectral representation of the form

µ(Γ) =
∫ ∞

m′=0
Ω+

m′(Γ) σ(m′), (87)

for some Borel spectral measure σ : B0([0, ∞))→ C. Then µ extends to a measure defined on iR4 by

µ(iΓ) =
∫ ∞

m′=0
Ω+

m′(iΓ) σ(dm′) =
∫ ∞

m′=0
Ω+

im′(Γ) σ(dm′), (88)

for Γ ∈ B0(R4). Therefore since, as we have determined above, Ω+
m ∗Ω+

m is a causal spectral measure
with spectrum

σ(m′) =

{
4πmZ(m′) for m′ ≥ 2m
0 otherwise,

(89)

it follows that
(Ω+

m ∗Ω+
m)(iΓ) =

∫ ∞

m′=0
Ω+

im′(Γ) σ(dm′). (90)

Therefore using Equation (86) Ω+
im ∗Ω+

im is a measure with spectral representation

(Ω+
im ∗Ω+

im)(Γ) =
∫ ∞

m′=0
Ω+

im′(Γ) σ(m′) dm′, (91)

where σ is the spectral function given by Equation (89). Note that Ω+
im ∗Ω+

im is not causal, it is a type
III measure, and

supp(Ω+
im ∗Ω+

im) = {p ∈ R4 : p2 ≤ −4m2, p0 ≥ 0}. (92)

8. Determination of the Density Defining a Causal Lorentz Invariant Borel Measure from
Its Spectrum

Suppose that µ is of the form of Equation (30) where σ is a well behaved (e.g., locally integrable)
function. We would like to see if µ can be defined by a density with respect to the Lebesgue measure,
i.e., if there exists a function g : R4 → C such that

µ(Γ) =
∫

Γ
g(p) dp. (93)

Well we have that

µ(Γ) =
∫ ∞

m=0
σ(m)Ω+

m(Γ) dm =
∫ ∞

m=0
σ(m)

∫
π(Γ∩H+

m )

d
⇀
p

ωm(
⇀
p )

dm. (94)

Now

⇀
p ∈ π(Γ ∩ H+

m ) ⇔ (∃p ∈ R4)
⇀
p = π(p), p ∈ H+

m , p ∈ Γ

⇔ (ωm(
⇀
p ),

⇀
p ) ∈ Γ

⇔ χΓ(ωm(
⇀
p ),

⇀
p ) = 1.

Therefore
µ(Γ) =

∫ ∞

m=0
σ(m)

∫
R3

χΓ(ωm(
⇀
p ),

⇀
p )

1

ωm(
⇀
p )

d
⇀
p dm. (95)
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Now consider the transformation defined by the function h : (0, ∞)×R3 → R4 given by

h(m,
⇀
p ) = (ωm(

⇀
p ),

⇀
p ). (96)

Let

q = h(m,
⇀
p ) = (ωm(

⇀
p ),

⇀
p ) = ((m2 +

⇀
p

2
)

1
2 ,

⇀
p ). (97)

Then
∂q0

∂m
= mωm(

⇀
p )−1,

∂q0

∂pj = pjωm(
⇀
p )−1,

∂qi

∂m
= 0,

∂qi

∂pj = δij, (98)

for i, j = 1, 2, 3. Thus the Jacobian of the transformation is

J(m,
⇀
p ) = mωm(

⇀
p )−1. (99)

Now q = (ωm(
⇀
p ),

⇀
p ). Therefore q2 = ωm(

⇀
p )2 −

⇀
p

2
= m2. So m = (q2)

1
2 , q2 > 0. Thus

µ(Γ) =
∫

q∈R4,q2>0,q0>0
χΓ(q)

σ(m)

ωm(
⇀
p )

dq

J(m,
⇀
p )

=
∫

q2>0,q0>0
χΓ(q)

σ(m)

m
dq.

(100)

Hence

µ(Γ) =
∫

q2>0,q0>0
χΓ(q)

σ((q2)
1
2 )

(q2)
1
2

dq

=
∫

Γ
g(q) dq,

where g : R4 → C is defined by

g(q) =

{
(q2)−

1
2 σ((q2)

1
2 ) if q2 > 0, q0 > 0

0 otherwise.
(101)

We have therefore shown how, given a spectral representation of a causal Lorentz invariant Borel
complex measure in which the spectrum is a complex function, one can obtain and equivalent
representation of the measure in terms of a density with respect to Lebesgue measure.

9. Convolutions and Products of Causal Lorentz Invariant Borel Measures

9.1. Convolution of Measures

Let µ and ν be causal Lorentz invariant Borel complex measures. Then (up to possible atoms
at the origin which can be dealt with in a straightforward way) there exist Borel spectral measures
σ, ρ : B0([0, ∞))→ C such that

µ =
∫ ∞

m=0
Ωm σ(dm),

ν =
∫ ∞

m=0
Ωm ρ(dm).

(102)

We will assume, without loss of generality, that σ and ρ are complex measures, i.e. σ, ρ : B([0, ∞))→ C
and are countably additive. The convolution of µ and ν, if it exists, is given by

(µ ∗ ν)(Γ) =
∫

χΓ(p + q) µ(dp) ν(dq). (103)
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Now let ψ = ∑i ciχEi with ci ∈ C, Ei ∈ B0(R4) be a simple function. Then∫
ψ(p) µ(dp) =

∫
∑

i
ciχEi µ(dp)

= ∑
i

ciµ(Ei)

= ∑
i

ci

∫ ∞

m=0
Ωm(Ei) σ(dm)

= ∑
i

ci

∫ ∞

m=0

∫
R4

χEi (p)Ωm(dp) σ(dm)

=
∫ ∞

m=0

∫
R4

ψ(p)Ωm(dp) σ(dm).

Therefore for any sufficiently well behaved measurable function ψ : R4 → C (e.g. bounded measurable
functions of compact support) ∫

ψ(p)µ(dp) =
∫

ψ(p)Ωm(dp) σ(dm). (104)

(Note that the integral exists because σ is a Borel measure.) Hence for all Γ ∈ B0(R4)

(µ ∗ ν)(Γ) =
∫

χΓ(p + q) µ(dp) ν(dq)

=
∫

χΓ(p + q)Ωm(dp) σ(dm)Ωm′(dq) ρ(dm′)

=
∫

χΓ(p + q)Ωm(dp)Ωm′(dq)σ(dm) ρ(dm′),

(105)

by Fubini’s theorem, as long as∫
χΓ(p + q)Ωm(dp)Ωm′(dq)|σ|(dm) < ∞, ∀m′ ∈ [0, ∞), (106)

where |σ| is the total variations of the measure σ.

Suppose that Γ ∈ B0(R4). Then there exists a, R ∈ (0, ∞) such that Γ ⊂ (−a, a) × BR(
⇀
0 ),

where BR(
⇀
0 ) = {

⇀
p ∈ R3 : |

⇀
p | < R}. Now∫

χΓ(p + q)Ωm(dp) =
∫

Γ−q
Ωm(dp) = Ωm(Γ− q) < ∞, (107)

for all q ∈ R4 because Ωm is Borel and Γ is compact.
Now suppose that m, m′ > a. Then

p ∈ H+
m , q ∈ H+

m′ ⇒ (p + q)0 = p0 + q0 ≥ m + m′ > 2a⇒ (p + q)/∈Γ. (108)

Thus ∫
χΓ(p + q)Ωm(dp)Ωm′(dq) = 0. (109)

Therefore since σ and ρ are Borel, (µ ∗ ν)(Γ) exists, is finite and is given by Equation (105).
Now let Λ ∈ O(1, 3)+↑, ψ : R4 → C be a measurable function of compact support. Then

< µ ∗ ν, Λψ > =
∫

ψ(Λ−1(p + q))Ωm(dp)Ωm′(dq) σ(dm) ρ(dm′)

=
∫

ψ(p + q)Ωm(dp)Ωm′(dq) σ(dm) ρ(dm′).

= < µ ∗ ν, ψ >
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Therefore µ ∗ ν is Lorentz invariant. It can be shown, by an argument similar to that used for the case
Ωm ∗Ωm that µ ∗ ν is causal.

We have therefore shown that the convolution of two causal Lorentz invariant Borel complex
measures exists and is a causal Lorentz invariant Borel complex measure.

9.2. Product of measures

We now turn to the problem of computing the product of two causal Lorentz invariant Borel
complex measures. The problem of computing the product of measures or distributions is difficult in
general and has attracted a large amount of research [10,19,20]. In such work one generally seeks a
definition of the product of measures or distributions which agrees with the ordinary product when
the measures or distributions are functions (i.e., densities with respect to Lebesgue measure). The most
common approach is to use the fact that, for Schwartz functions f , g ∈ S(R4) multiplication in the
spatial domain corresponds to convolution in the frequency domain, i.e., ( f g)∧ = f∧ ∗ g∧ (where ∧
denotes the Fourier transform operator). Thus one defines the product of measures or distributions
µ, ν as

µν = (µ∧ ∗ ν∧)∨. (110)

However, this definition is only successful when the convolution that it involves exists which may not
be the case in general. If µ, ν are tempered measures then µ∧ and ν∧ exist as tempered distributions,
however, they are generally not causal, even if µ, ν are causal.

We will therefore not use the “frequency space" approach to define the product of measures but
will use a different approach. Our approach is just as valid as the frequency space approach because
our product will coincide with the usual function product when the measures are defined by densities.
Furthermore, our approach is useful for the requirements of QFT because measures and distributions
in QFT are frequently Lorentz invariant and causal.

Let int(C) = {p ∈ R4 : p2 > 0, p0 > 0}. Suppose that f : int(C)→ C is a Lorentz invariant locally
integrable function. Then it defines a causal Lorentz invariant Borel measure µ f which, by the spectral
theorem, must have a representation of the form

µ f (Γ) =
∫

Γ
f (p) dp =

∫ ∞

m=0
Ωm(Γ) σ(dm), (111)

for some spectral measure σ : B0([0, ∞))→ C. As µ f is absolutely continuous with respect to Lebesgue
measure it follows that σ must be non-singular, i.e., a function. By the result of the previous section a

density defining µ f is
∼
f : int(C)→ C defined by

∼
f (p) = (p2)−

1
2 σ((p2)

1
2 ), p ∈ int(C). (112)

We must have that
∼
f = f (almost everywhere). Therefore (almost everywhere on int(C))

f (p) = (p2)−
1
2 σ((p2)

1
2 ). (113)

Without loss of generality, it can be assumed that equality holds everywhere in Equation (113).
f (p) depends only on p2. Therefore for all m > 0, σ(m) = m f (p) for all p ∈ int(C) such that
p2 = m2. In particular

σ(m) = m f ((m,
⇀
0 )T), ∀m > 0. (114)

Now we are seeking a definition of product which has useful properties. Two such properties would be
that it is distributive with respect to generalized sums such as integrals and also that it agrees with the
ordinary product when the measures are defined by functions. Suppose that we had such a product.
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Let f , g : int(C)→ C be Lorentz invariant locallly integrable functions. Let µ, ν : B0(int(C))→ C be
the associated measures with spectra σ, ρ. Then

µν =
∫ ∞

m=0
Ωm σ(dm)

∫ ∞

m′=0
Ωm′ ρ(dm′)

=
∫ ∞

m=0
Ωm m f ((m,

⇀
0 )T) dm

∫ ∞

m′=0
Ωm′ m

′g((m′,
⇀
0 )T) dm′

=
∫ ∞

m=0

∫ ∞

m′=0
ΩmΩm′m f ((m,

⇀
0 )T)m′g((m′,

⇀
0 )T) dm dm′.

Now we want this to be equal to ∫ ∞

m=0
Ωmm( f g)((m,

⇀
0 )T) dm (115)

This will be the case (formally) if we have

ΩmΩm′ =
1
m

δ(m−m′)Ωm, ∀m, m′ > 0. (116)

Physicists will be familiar with such a formula (e.g., the equal time commutation relations). Rather
than attempting to define its meaning in a rigorous way, we will simply carry out the following formal
computation for general Lorentz invariant Borel measures µ, ν with spectra σ, ρ

µν =
∫ ∞

m=0
Ωm σ(dm)

∫ ∞

m′=0
Ωm′ ρ(dm′)

=
∫ ∞

m=0

∫ ∞

m′=0
ΩmΩm′σ(m)ρ(m′) dm dm′

=
∫ ∞

m=0

∫ ∞

m′=0

1
m

Ωmδ(m−m′)σ(m)ρ(m′) dm′ dm

=
∫ ∞

m=0

1
m

Ωmσ(m)ρ(m) dm.

Therefore we can simply define the product µν in general by

µν =
∫ ∞

m=0

1
m

Ωm (σρ)(dm), (117)

i.e.,

(µν)(Γ) =
∫ ∞

m=0

1
m

Ωm(Γ) (σρ)(dm), (118)

for Γ ∈ B0(R4).
We have therefore reduced the problem of computing the product of measures on int(C) to the

problem of computing the product of their 1D spectral measures. The problem of multiplying 1D
measures is somewhat less problematic than the problem of multiplying 4D measures. A large class
of 1D measures is made up of measures which are of the form of a function plus a finite number of
“atoms” (singularities of the form cδa where c ∈ C\{0}, a ∈ [0, ∞), where δa is the Dirac delta function
(measure) concentrated at a). There are other pathological types of the 1D measure but these may not
be of interest for physical applications.

In the general non-pathological case, if µ, ν are causal Lorentz invariant Borel measures with
spectra σ(m) = ξ(m) + ∑k

i=1 ciδ(m− ai), ρ(m) = ζ(m) + ∑l
j=1 djδ(m− bj) where ξ, ζ : [0, ∞)→ C are

locally integrable functions, ci, dj ∈ C\{0}, k, l ≥ 0, ai, bj ∈ [0, ∞) are such that ai 6= bj, ∀i, j then we
may define the product of µ and ν to be the causal Lorentz invariant measure µν given by

µν =
∫ ∞

m=0
Ωmτ(dm), (119)
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where

τ(m) =
1
m
(ξ(m)ζ(m) + ζ(m)

k

∑
i=1

ciδ(m− ai) + ξ(m)
l

∑
j=1

djδ(m− bj))

=
1
m
(ξ(m)ζ(m) +

k

∑
i=1

ζ(aj)ciδ(m− ai) +
l

∑
j=1

ξ(bj)djδ(m− bj)),

for m > 0.

10. Conclusions

We have defined a spectral calculus that enables one to compute the spectrum of any causal
Lorentz invariant Borel complex measure on Minkowski space whose spectrum is a continuous
function. This calculus can be used in many applications in QFT and leads to a method called spectral
regularization [21].

We have computed the spectra associated with certain elementary convolutions involving
Feynman propagators of mass m scalar particles. It has been shown how one can compute the
density associated with a causal Lorentz invariant Borel complex measure from its spectrum.

We have shown that the convolution of arbitrary measures of the prescribed type exists and how
their product exists in a wide class of cases of physical interest. Methods for the computation of these
objects from the spectra of their components have been presented.

The spectral calculus can be used to compute the spectrum, and hence density, associated with the
contraction of the vacuum polarization tensor [21]. A generalization of the spectral calculus to Lorentz
invariant tensor valued measures on Minkowski space can be used to compute the form of the vacuum
polarization tensor and therefore to compute the vacuum polarization function. This function is
shown to have a close agreement, up to finite renormalization, with the vacuum polarization function
obtained using dimensional regularization /renormalization. This can be used to compute the Uehling
potential function without using renormalization from which the Uehling contribution to the Lamb
shift for the H atom can be computed exactly.
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