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Abstract: In many situations, an expert must visually analyze an image arranged in grey levels.
However, the human eye has strong difficulty in detecting details in this type of image, making it
necessary to use artificial coloring techniques. The pseudo-coloring problem (PsCP) consists of
assigning to a grey-level image, pre-segmented in K sub-regions, a set of K colors that are as dissimilar
as possible. This problem is part of the well-known class of NP-Hard problems and, therefore, does not
present an exact solution for all instances. Thus, meta-heuristics has been widely used to overcome
this problem. In particular, genetic algorithm (GA) is one of those techniques that stands out in the
literature and has already been used in PsCP. In this work, we present a new method that consists of
an improvement of the GA specialized in solving the PsCP. In addition, we propose the addition of
local search operators and rules for adapting parameters based on symmetric mapping functions to
avoid common problems in this type of technique such as premature convergence and inadequate
exploration in the search space. Our method is evaluated in three different case studies: the first
consisting of the pseudo-colorization of real-world images on the RGB color space; the second
consisting of the pseudo-colorization in RGB color space considering synthetic and abstract images in
which its sub-regions are fully-connected; and the third consisting of the pseudo-colorization in the
Munsell atlas color set. In all scenarios, our method is compared with other state-of-the-art techniques
and presents superior results. Specifically, the use of mapped automatic adjustment operators proved
to be powerful in boosting the proposed meta-heuristic to obtain more robust results in all evaluated
instances of PsCP in all the considered case studies.

Keywords: adaptive operator; genetic algorithm; local search; pseudo-coloring problem; visualization

1. Introduction

There are situations of visual data analysis in which an expert must extract complex considerations
from images originally arranged in gray levels. In these situations, it is common to use the most diverse
tools, but the visual analysis is almost always present. For example, we can highlight some recent
challenges to detecting edges in sonar images [1], to detecting weapons in baggage [2], to visually
analyze medical images [3–7], to conduct visual routines in remote sensing [8,9], to detect crashes in
wire ropes [10], among other situations. Still, the human eye is not able to detect many details in an
image colored with different shades of the same color [11,12] because the human brain has difficulty in
the task of recognizing signals defined by similar frequencies. To solve this issue, one of the techniques
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most commonly used in specialized literature is the artificial attribution of colors in order to obtain a
visual enhancement in certain regions of the image.

In this case, it is necessary to define a set of colors for different regions of the original grey-level
image, so that these colors are as visually dissimilar as possible and make the task of visually
differentiating neighboring regions in an image easier. This problem is known in the specialized
literature as pseudo-coloring problem (PsCP), or as the definition of color sets of high visual
contrast [13]. This is a problem in which it is necessary to establish a finite set of elements belonging to
a given color space, such that these elements are as far distant as possible according to some measure of
distance. In this way, we can see that PsCP is an optimization problem. In addition, if the set of colors
to be calculated is defined by a few elements, then PsCP can be solved exactly by greedy algorithms;
however, if it is necessary to define a reasonably large amount of colors, the problem may not be
solved. This is because PsCP is a combinatorial problem of the well-known class of NP-Hard problems.
For this reason, many authors have proposed to solve it with the use of inexact methodologies; that is,
with the use of meta-heuristics. As an example, we can highlight the work of Radlak and Smolka [14],
who solve PsCP with the use of a GA. However, it is known that this meta-heuristic can have difficulty
in solving complex combinatorial problems since it is common to be stuck in local optima and present
premature convergence [15].

In the literature, we find strategies that can be used in GA to make it more efficient and less
susceptible to the difficulties mentioned. For example, Asadzadeh [16] proposed the use of local
search strategies across all standard GA operators. In addition, the author also defined an operator
specialized in massive local search, the “elite local search procedure”. The methodology is used in
the job shop scheduling problem, which is also an NP-Hard combinatorial problem. These strategies
proved to be effective and surpassed the other evolutionary techniques considered. Therefore, one of
the proposals of our work is to use these strategies in GA and adapt them to be able to solve PsCP.
In addition, we also propose to add in GA a step of auto adjustment of parameters [17,18], since the
use of this type of technique in the meta-heuristic in question proved to be useful when used to solve
other NP-Hard problems [19,20].

This paper is an extended version of our preliminary work [21]. In this text, we generalize
the adaptive rules of our technique using mapping functions that automatically update the
parameterization of the meta-heuristic. We also added a section of related works that address the
different types of pseudo-colorization in the specialized literature and a section that details the
methodology followed for the resolution of PsCP by the proposed method. This text is richer in
detail since we add descriptions of all the routines of operators of the method through flowcharts and
algorithms with comments. The computational experiments were also updated with more comparisons
taking into account more recent works.

The paper is organized into 7 sections. Specifically, in Section 2, we discuss the different types of
approaches that involve pseudo-colorization methods available in the current literature. In Section 3,
we describe the mathematical formulation of PsCP. In Section 4, we present the methodology used
in this work to solve the PsCP. The formulation of the proposed algorithm and the details of all its
operators are presented in Section 5. The proposed method is evaluated in three test scenarios and the
experimental results obtained are presented in Section 6. The manuscript ends with conclusions and
proposals for future work in Section 7.

2. Related Works

Associating different colors for partitions of an image is a problem from the well-known
four-color theorem [22], which establishes that, using four distinct colors, there is at least one possible
color configuration in which the vertices of any planar graph can be colored so that no pair of
neighboring vertices are colored with the same color. From this result, the graph coloring theory was
created, which concentrates around 200 problems still unsolved [23]. One of these problems is the
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pseudo-coloring problem (PsCP), which belongs to the class of NP-Hard problems [24] and that we
focus on this work.

PsCP can also be interpreted to keep semantic information during the association of colors in
regions of images. In this case, it is considered that the objective of the problem is to convert an
image available only in grey-level to a color version so that the color associations make sense and
preserve the original meaning of the represented components in the image [25]. One example in
this research field is [26], where the PsCP was addressed with the use of an architecture of multiple
Generative Adversarial Networks (GANs). The method, called Multi-GANs, has obtained results
with acceptable colors, presenting more realistic characteristics and meaning for the images generated.
On the other hand, Fang, et al. [27] addresses the problem of image colorization by exploring
measures of self-similarity and consistency constraints in the resolution of superpixels. More recently,
Wan, et al. [28] proposed a fully automatic method using neural networks and optimization to treat
image colorization. For a more comprehensive overview, we recommend the work of Li, et al. [29],
who present the most updated and deep review in this specific field.

In this work, our advances are contained in a sub-area of PsCP known as color coding [30].
In this type of research, the problem of associating artificial colors to sub-regions of a grey-level
image is a problem of combinatorial optimization defined in a graph [31], in which it is necessary to
establish a color for each sub-region considering a fixed set of colors and in such a way that the colors
chosen are as visually dissimilar as possible [32]. In other words, the objective of these problems is
to determine a high contrast set of colors [33]. In this field, one of the most recognized works is the
paper by Carter and Carter [13], which was the first work to propose a heuristic search that aimed to
explore the RGB color space for a set of colors that was as dissimilar as possible taking into account
distances in CIELUV space. In this case, the algorithm starts with several points in RGB, defined
through the Grassman’s laws [34], and in each iteration, one of these points was moved away from
the others as much as possible, so that, at the end of the method, all points were spread out in space
quasi-optimally. Glasbey, et al. [35] show an extension to this heuristic formulated by sequential sets.
In detail, the authors present a method of greedy behavior that begins with a set formed only by the
white color and to this set is added the most dissimilar color available in the entire color space, giving
rise to another set of two colors and so on until the set has a color for each sub-region to be colored.
In addition, to determine high contrast sets and taking into account multiple illuminant configurations,
Bianco and Citrolo [36] proposed a heuristic that performs local searches in the neighborhood of
possible PsCP solutions until no configuration that is better than the previous configuration is found.
The authors compare the performance of their technique with two basic meta-heuristics also proposed
in their work: simulated annealing (SA) [37] and genetic algorithm (GA) [38]. A generalization of
this local search heuristic is proposed in the form of an unsupervised high-contrast coloring (HCC)
algorithm [39].

Bioinspired meta-heuristics have also achieved advances in PsCP by determining high contrast
sets of colors. For example, Radlak and Smolka [14] proposes a GA that performs searches in the
RGB space in order to artificially color a pre-segmented grey-level image. In detail, the authors
divide the population of the algorithm into three sub-populations: one specific for the component
R; another for component G; and another for component B. In the same work, a new quantitative
measure of performance comparison is also proposed, which is described in details in the next sections
of our work. More recently, we proposed in our preliminary work [21] a new GA with local search
and adaptive operators specialized in solving the PsCP. In this text, we present the expansion of this
technique, in which the adaptive operator makes use of mapping functions to update the mutation
and crossover rates during the method iterations.

In the next section, we present in detail the mathematical formulation of PsCP treated in this work.
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3. Mathematical Formulation of Pseudo-Coloring Problem

To define PsCP, we will use in this work a model similar to that used by Radlak and Smolka [14].
For this, we will consider that we have as input a grey-level image I, pre-segmented in K disjunct
sub-regions, and we will obtain as output a set of K colors that are as visually dissimilar as possible in
neighboring regions. Mathematically, let I1, I2, ..., IK be the pre-segmented sub-regions of I, and let
∆ = (δi,j)

K
i,j=1 be the neighborhood matrix representing the connections between those sub-regions

whose coordinates δi,j are defined as follows in the Equation (1):

δi,j =

{
1, if Ii is neighbor of Ij in I,
0, if Ii is not neighbor of Ij in I or if i = j.

(1)

In other words, the neighborhood matrix ∆ describes the arrangement of all sub-regions in I and
can be interpreted as the adjacency matrix of a graph that represents the connections between the
sub-regions. This information is very important to solve the PsCP, since sub-regions that are neighbors
must be colored with the most different colors possible, while sub-regions that are not connected
can be colored with similar colors without much loss to the visualization. In Figure 1, we present a
schematic with a grey-level image I pre-segmented in K = 4 sub-regions, the neighborhood matrix ∆
defined by the positioning of these sub-regions and the graph that this matrix defines.

Figure 1. A grey-level image I; its sub-regions I1, I2, I3 and I4; the graph representing the connections
between the sub-regions; and its associated neighborhood matrix ∆.

Thus, to solve the PsCP, we have to determine a set of K colors C = {c1, c2, ..., cK} to
pseudo-coloring all the sub-regions of I, with neighborhood matrix ∆ = (δi,j)

K
i,j=1, such that the

value of the function F∆ of Equation (2), which can be interpreted as the lowest distance between the
colors of all neighbor sub-regions of I, is the greatest possible value, configuring this version of the
PsCP in a max–min optimization problem.

F∆(C) := min
{

d(ci, cj) | δi,j 6= 0, ∀ci, cj ∈ C
}

, (2)

in which d(·, ·) is a distance function in some color space. Even though d(·, ·) can be defined as
any distance between two given colors, it is common to define the distance function d(·, ·) to be the
Euclidean distance between colors in the perceptually uniform color space CIELab (Commission
Internationale de l’Eclairage) [40] with illuminant D50, since this space is favorable for performing
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tasks of visual distinction of colors [41]. In this case, mathematically, the distance measurement
between two colors ci and cj is defined in Equation (3).

d : Y× Y −→ R+

(ci, cj) 7−→
√(

Li − Lj

)2
+
(

ai − aj

)2
+
(

bi − bj

)2 , (3)

in which Y is some color space, and (Li, ai, bi) and (Lj, aj, bj) are the CIELab components of the colors
ci and cj, respectively.

We are defining the PsCP without any specification regarding the color space since our
methodology does not restrict the F∆ domain. In this way, each color ci of the problem can be
interpreted as belonging to any color space. For example, if the color space considered is the Y = sRGB
space, then each color ci must be represented by the three components Ri, Gi and Bi belonging to the
set {0, 1, 2, ..., 255}, so whereas these three components represent, respectively, the intensity of red,
the intensity of green and the intensity of blue of the color ci. Therefore, the sub-region Ii must be
colored with the color (Ri, Gi, Bi). As a consequence of this, the set of all K colors C would be a subset
of {0, 1, ..., 255}3·K.

Finally, the PsCP approached in this work consists of finding the set of colors C∗ with the
greatest possible dissimilarity between its elements c1, c2, ..., cK and that, therefore, is a solution to the
optimization problem presented in Equation (4).

C∗ = argmax
C

F∆(C)

subject to C ⊂ YK
. (4)

4. Methodology

To solve PsCP, we propose an approach that is configured mainly by four steps:

M1 Domain definition: This phase consists of defining the image in grey-levels that must be
pseudo-colored by our technique.

M1.1 However, all results can be easily extended to consider classes of images that have not
passed any segmentation process, given the advances achieved in recent years in the area of
image segmentation [42–44]. This type of consideration is outside the scope of the paper,
so we will assume in this work that the method must work on an image in grey levels I
pre-segmented into K sub-regions.

M1.2 Once we have the pre-segmented image I, we need to define the neighborhood matrix ∆
of this image so that the algorithm can perform the optimization having the information
of which subregions of I are neighbors to each other and, consequently, they are assigned
different colors.

M2 Proposed optimization method: In this step of the methodology, we use the proposed
meta-heuristic, which consists of a genetic algorithm that was specifically designed to search in a
color space for an optimal solution for PsCP. Our main contributions to the method are given in
the form of two operators:

M2.1 Local search strategies: As in our preliminary work [21], we will also use local search
strategies in our GA in two operators: the mutation operator and an exclusive operator
dedicated to conducting a local search with massive behavior.

M2.2 Adaptive rules: In this text, we generalize the use of the rules for self-adaptation of
parameters proposed in our preliminary work [21] having as inspiration ideas that have
been successfully used in other classes of combinatorial optimization problems [20]. In this



Symmetry 2020, 12, 1684 6 of 36

case, we make use of mapping functions to automate the way that mutation and crossing
rates are updated in the course of GA iterations.

M3 Algorithm responses: After the optimization process carried out by our technique, we obtain
two types of responses: a numerical and vector solution in the K-dimensional color space (M3.1)
and the pseudo-colored image (M3.2). In the first case, we have numerical and quantitative
information on how different are the colors attributed to I, calculated from the measures of Radlak
and Smolka [14]. In the second case, the method must establish the pseudo-colored version of I
from the obtained vector solution.

M4 Validation scenarios: In our methodology, we will validate the solutions found by our
meta-heuristics in a quantitative (M4.1) and in a qualitative (M4.2) ways through three different
case studies (CS):

- CS I: In the first CS, we will compare the quantitative and qualitative results obtained by our
method that represent information on how distant the colors attributed to the I regions are
in the CIELAB space and compare the results with the most recent color-coding techniques
available in the specialized literature.

- CS II: In the second CS, we will compare the quantitative results obtained by our method in
24 synthetic and abstract unreal images in comparison to the other existing techniques in this
field of study.

- CS III: In the third CS, we we will compare the quantitative results obtained by our method
considering the Munsell atlas color space in comparison to the other existing techniques in
the specialized literature.

In Figure 2, we present a pipeline of the proposed methodology to solve PsCP. So that the steps of
domain definition are colored blue, the steps of the proposed optimization method are colored green,
the steps of algorithm response are colored yellow and the steps of validation scenarios are colored red.

(M1.1) Insert a
pre-segmented

grey-level image I and
its sub-regions I1, I2, ..., IK

(M1.2) Calculate the
neighboring matrix ∆

between the K sub-regions

(M2) Genetic
Algorithm

specialized to
PsCP (standard

operators)

(M2.1) Local
Search Strategies

(M2.2)
Self-adjustment
with Mapped

Adaptive
Operator

(M3.1) A near
optimal solution

defining one
color for each

sub-region of I

(M3.2) A
high contrast

pseudo-colored
version of

I is defined

(M4.1)
Quantitative

analyzes (Case
studies I,
II and III)

(M4.2)
Qualitative

analyzes
(Case study I)

Figure 2. Pipeline of the proposed methodology for solve the pseudo-coloring problem (PsCP).
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5. Mapped Local Search Adaptive Genetic Algorithm for PsCP

In this section, we present the explanation of our method, which was developed specifically to
solve PsCP. All operators that make up the proposed meta-heuristic are discussed in detail. In addition,
to facilitate the reproduction of the technique, pseudo-codes and operating schemes of all operators
are presented throughout the manuscript. We highlight as the main innovations of our approach the
use of local search strategies in GA; in particular, the definition of a massive local search operator, and
the use of adaptive rules in order to perform parameter tuning. To the best of our knowledge, this
type of strategy, although widely used in other combinatorial optimization problems, has not yet been
employed in the PsCP solution. In addition, in this extended version of our work, we generalize the
adaptive operator through antisymmetric mapping functions. Thus, the main contributions of our
work are contained in the following topics:

1. A new meta-heuristic specialized in solving the PsCP with local search strategies in all operators.
Inspired by the works of Asadzadeh [16] and Viana, et al. [45], we developed a massive local
search operator that explores the best individual neighborhood.

2. A new self-parameter adjustment operator [17] to avoid well-known problems in GA such
as premature convergence and getting stuck in local optima. In addition, we present the
generalization of our preliminary adaptive strategy from [21] using mapping functions, which
proved to be favorable in studies related to other types of combinatorial optimization [19,20].

3. The advancement of experimental results in benchmarks that define the state-of-the-art.

5.1. Chromosome Decoding

A possible solution for the PsCP is defined by a set of K colors to be associated with the regions of a
pre-segmented gray-level image I. To make this computationally efficient, the chromosome must be the
vectorized version of the color set C = {c1, c2, ..., cK} ⊂ YK. In this way, each gene on this chromosome
is formed by a color ci that must be used to coloring the sub-region Ii. Mathematically, the chromosome
decoding adopted in this work that should represent the set C is the vector C defined in Equation (5).

C = [c1, c2, ..., cK] , (5)

in which ci ∈ Y is the color to be associated with the region Ii.
As an example, if the considered color space is the sRGB, then the chromosome will be in the

form: C = [(R1, G1, B1) , (R2, G2, B2) , ..., (RK, GK, BK)], with Ri, Gi, Bi ∈ {0, 1, 2, 3, ..., 255} for all i.
In general, the chromosome used in this work is a vector in the space Rn·K, with n being the

dimension of the space Y. Therefore, there is an ordering between the C coordinates that must be taken
into account to coloring the I sub-regions, since the first n coordinates of the chromosome C (first gene)
represent the components of the color c1 that should be used to coloring the I1 subregion, the following
n coordinates of C (second gene) represent the components of the color c2 that should be used to
coloring the subregion I2, and so on. In Figure 3, we present an example that outlines, according to the
proposed decoding, the relationship between the genes of a chromosome C, with Y = sRGB, and the
pseudo-coloring process in a pre-segmented grey-level image I in K = 4 sub-regions.
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Figure 3. Example of pseudo-coloring of a grey-level image I, pre-segmented in K = 4 regions,
according to a chromosome C in the color space Y = sRGB.

5.2. Fitness Function

According to the decoding proposed in Section 5.1, we can naturally define the fitness value
associated with a C chromosome as an isomorphism of the function F (Equation (2)), computationally
efficient, of its representation as a set of colors C. Mathematically, given a grey-level image I with
neighborhood matrix ∆, we define the fitness value of a chromosome C = [c1, c2, ..., cK] ∈ YK the
function F̄∆, presented in Equation (6).

F̄∆ : YK −→ R+

(c1, c2, ..., cK) 7−→ F̄∆ (c1, c2, ..., cK) := F∆ ({c1, c2, ..., cK})
. (6)

It is worth highlighting some considerations regarding the function F̄∆:

• Both F̄∆ and F∆ are defined taking into account the neighborhood matrix ∆. That is, both functions
are defined from the image structure that we intend to color.

• The main difference between F̄∆ and F∆ is that the first one takes into account the order of the
coordinates in the chromosome C, while the second one acts on a set C. Didactically, it is simpler
to reproduce F̄∆ and, therefore, we define the fitness function in this way.

• The meta-heuristic that finds the greatest values assumed by F̄∆ will find possible solutions to the
problem presented in Equation (4), since these two situations consist of determining K colors with
the greatest possible visual dissimilarity. In this way, the feasibility and the equivalence of the
problem are maintained.

5.3. Selection Process

The selection step in an evolutionary algorithm like GA is very important since it is from this
routine that we simulate the Darwinian phenomenon of “natural selection” [38], making good solutions
more likely to perpetuate their genes. In the case of GA, selection strategies are used to define which
chromosomes will pass through the crossover operator and which chromosomes will survive in the
stage of creating a new population. This step of the method takes into account the numerical fitness
value of each chromosome, and since the PsCP is a maximization problem, the higher the fitness value
of a chromosome, the greater the chance of being selected. In detail, we will use in this work the
strategy known as roulette wheel selection [46] in the case of the choice of individuals for the crossover
operator, and the roulette wheel selection retaining the best individual of the population [47] in the
case of the generation of new population.

5.4. Crossover Operator

It is at this stage of the method that we will carry out the genetic combination method between the
chromosomes selected in the previous section. In this case, the parent chromosomes must be combined
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two by two and this process should result in two child chromosomes. In order that no generated
chromosome is outside the limits that define the Y color space, we propose to use an adaptation of
the well-known convex crossover [48], in which the convex combination of two parent-chromosomes,
Parent1 and Parent2, is made, resulting in two offspring-chromosomes, Kid1 and Kid2, according to
Equation (7) given below.

Kid1 = projYK

(
αT · Parent1 + (~1− α)T · Parent2

)
, (7a)

Kid2 = projYK

(
(~1− α)T · Parent1 + αT · Parent2

)
, (7b)

where~1 is the Rn·K×1 vector whose coordinates are all equal to 1 and α is an Rn·K×1 vector whose
coordinates are taken randomly between [0, 1].

It is worth mentioning that we are using a projection function to ensure that Kid1 and Kid2 are,
in fact, feasible values of colors in the space Y. In general, this function projects the results obtained
by the convex combination between Parent1 and Parent2 of the Rn·K space for the respective closest
vectors in the YK space, with n being the dimension of Y. This projection, defined in Equation (8),
determines the generated offsprings: Kid1 and Kid2.

projYK (·) : RnK −→ YK

(x1, x2, ..., xnK) 7−→ arg min
(c1,c2,...,cK)∈YK

{
‖(x1, x2, ..., xnK)− (c1, c2, ..., cK)‖2

} . (8)

Note that in most cases, the projection function projYK (·) has an explicit and very simple form.
For example, in the special case where Y = sRGB, then projYK (·) = round (·), in which round (·) is
the well-known approximation function to the nearest integer.

A schematic of our crossover technique is presented in Figure 4.

Figure 4. Schematic of the proposed crossover operator. Such that αi is a random value taken in [0, 1]
for all i.
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5.5. Mutation Operator

The mutation operator proposed in this work uses inspiration from the local search strategies
presented by Asadzadeh [16] and Ombuki and Ventresca [49]. In fact, we propose an improvement
based on the union between the techniques of these two works. In this case, Asadzadeh [16] proposes
that successive local searches be carried out on the individuals in the mutation operator, while Ombuki
and Ventresca [49] suggests that, in some cases, successive local searches are carried out on the
individual and in other cases, only a simple mutation is applied on the individual. In this way,
our mutation operator is divided into two subroutines:

• Mut1: In this routine, a mutation function is randomly taken into a set of mutation functions,
and, using this function, NMut1 perturbations are performed on the chromosome, so that the good
perturbations are maintained and the bad ones are ignored.

• Mut2: In this routine, a simple Gaussian mutation is applied to the chromosome.

An individual who is generated on the crossover operator has a pmut chance of passing
through the mutation operator. In addition, to control the use of the Mut1 and Mut2 subroutines,
all individuals selected for the mutation will be perturbed according to only one of these subroutines.
Thus, these individuals have a pLS chance of being perturbed according to the Mut1 subroutine
and, consequently, these individuals have a chance 1 − pLS of being perturbed according to the
Mut2 subroutine.

To model this operation, a group of mutation functions given in the form of fmut(·, ·) is used in
Equation (9).

fmut : Y× {1, 2, ..., n · K}2 −→ Y
(C, (i, j)) 7−→ fmut (C, (i, j))

, (9)

where n is the dimension of Y.
The definition of the Mut1 subroutine establishes that it is necessary to randomly choose a

mutation function from a group of mutation functions. Thus, it is necessary to define a set formed
by possible mutation functions. In this work, as we are going to solve the NP-Hard combinatorial
problem PsCP, we are going to use mutation functions widely used in solving problems of this type.
In this case, we will use the functions [50]: fswap(·, ·), finvert(·, ·) and finsert(·, ·). These functions affect
perturbations on the chromosome in order to shift some of its coordinates. In Figure 5, we can see
the result of the disturbance made by all these functions on the same individual considering the
Y = sRGB color space and considering that the image to be pseudo-colored is pre-segmented in K = 3
sub-regions. Certainly, feasibility is maintained in cubic spaces defined by intervals of the same range,
as is the case of sRGB space. However, if at the end of the entire mutation procedure, the generated
individual is outside the color space, then it is necessary to make use of the projection function on the
mutant individual.

Figure 5. Schematic diagram of the functioning of three mutation functions on the same chromosome C.
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In Mut2, we propose to use only one mutation function. In this case, we apply a simple Gaussian
perturbation [51] on the color adding a Gaussian noise in each color component. In this way, all genes
in the chromosome receives a slightly random increase or decrease.

Specifically, we will suppose that the Y can be represented or approximated to a cube in
Y ⊂ Rn, such that Y := [l1, L1] × [l2, L2] × · · · × [ln, Ln]. In this way, if one color ci is in Y, then
ci = (ci,1, ci,2, ..., ci,n) and lj ≤ ci,j ≤ Lj for all j ∈ {1, 2, ..., n}. For example, if we choose Y as being the
sRGB color space, then all the colors would have three components (n = 3) and all ranges would be
defined by the following lower and upper bounds: l1 = l2 = l3 = 0 and L1 = L2 = L3 = 255.

Finally, we can define the mutation function used for this situation as the function
fGauss (·) : YK → YK defined in Equation (10).

fGauss





c1

c2

...

cK



T
= fGauss





c1,1
c1,2
...
c1,n

c2,1
c2,2
...
c2,n

...

cK,1
cK,2
...
cK,n



T

:= projYK





c1,1 + β1
c1,2 + β2
...
c1,n + βn

c2,1 + βn+1
c2,2 + βn+2
...
c2,n + βn+n

...

cK,1 + β(K−1)·n+1
cK,2 + β(K−1)·n+2
...
cK,n + β(K−1)·n+n



T

, (10)

in which β(r−1)·n+j is a random number obtained from a normal distribution with mean 0 and standard

deviation equals to
∣∣∣∣ Lj − lj

10

∣∣∣∣, for all r ∈ {1, 2, ..., K} and j ∈ {1, 2, ..., n}. We chose this configuration,

as it is a simple and well-established strategy in the specialized literature on gaussian disturbances in
GAs, as initially proposed by Hinterding [52]. Note that we are using the projection function in the
final disturbance of the chromosome since the addition of gaussian noise can remove the chromosome
from the feasible color space.

In the Algorithm 1, the proposed mutation procedure is summarized.
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Algorithm 1 Proposed mutation operator.

Input:

Pkids Offsprings generated in crossover

F̄∆ Fitness function

pmut Probability of mutation

pLS Probability of Mut1

NMut1 Number of mutation function applications for Mut1

1: fmut := rand_take
(
{ fswap, finvert, finsert}

)
. The function rand_take (·) randomly returns an

element from a set.
2: Pmut := {}
3: for C ∈ Pkids do
4: if rand([0, 1]) ≥ pmut then . Apply mutation in pmut percent of kids.
5: break
6: else if rand([0, 1]) ≤ pLS then . Apply Mut1 in pLS percent of cases.
7: FC := F̄∆(C)
8: for k := 1 to NMut1 do . Apply fmut NMut1 times.
9: i := rand_take ({1, 2, ..., 3K})

10: j := rand_take ({1, 2, ..., i− 1, i + 1, ..., 3K})
11: Ĉ := fmut (C, (i, j))
12: FĈ := F̄∆(Ĉ)
13: if FĈ ≥ FC then . If the perturbation is beneficial, then it must be maintained.
14: C := Ĉ
15: FC := FĈ
16: end if
17: end for
18: else . (Mut2) Apply fGauss only once.
19: C := fGauss (C)
20: end if
21: Pmut := Pmut ∪ {C}
22: end for

Output: Pmut Population of mutated individuals

5.6. Massive Local Search Operator

The main objective of a massive local search operator [45] is to perform a more elaborate and
systematic search around good solutions. Already used to solve other combinatorial works, the idea
behind this type of operator is that we are more inclined to find better solutions when examining
the neighborhood of chromosomes with better fitness than when investigating randomly in space.
For example, Asadzadeh [16] proposes to apply this strategy to the best individual in the population.
Specifically, the author performs, in a controlled manner, successive disturbances with the function
fswap(·, ·) so that all the coordinates of the chromosome can be swapped if convenient. In this
work, we propose a new massive local search operator that specializes in disturbing, one by one,
the colors represented by the genes of the best individual in a population. In detail, we will consider
that CBest = (c1, c2, ..., cK) is the best individual in a population and, in sequence, for each color ci
represented by the genes of CBest we will perform the following four steps:

• Step 1: The color ci receives a random increase, making it lighter.
• Step 2: The perturbation is maintained only if it is beneficial, increasing the fitness value of CBest.
• Step 3: If ci was not modified in the previous step, then a random decrease in ci is applied,

making it darker.
• Step 4: The perturbation should be maintained if it is beneficial.
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Therefore, in the Algorithm 2, we can see details about our proposed massive local search operator
to solve the PsCP.

Algorithm 2 Proposed massive search operator.

Input:
CBest = (c1, c2, ..., cK) Best chromosome in the population

F̄∆ Fitness function

1: for i = 1 to K do
2: ĉi := ci . Initially, ĉi is equal to ci.
3: γ := rand ((0, 1])
4: c′i := (1 + γ)ci . (Step 1) Random increase.
5: C′ := projYK

(
c1, c2, ..., ci−1, c′i, ci+1, ..., cK

)
6: if F̄∆(C′) > F̄∆(CBest) then . (Step 2) If the perturbation is beneficial, then update ĉi to c′i.
7: ĉi := c′i
8: else . If the increase wasn’t beneficial, then try apply a decrease on ci.
9: c′i := (1− γ)ci . (Step 3) Random decrease.

10: C′ := projYK
(
c1, c2, ..., ci−1, c′i, ci+1, ..., cK

)
11: if F̄∆(C′) > F̄∆(CBest) then . (Step 4) If the perturbation is beneficial, then update ĉi to c′i.
12: ĉi := c′i
13: end if
14: end if
15: end for
16: Ĉ := projYK ((ĉ1, ĉ2, ..., ĉK)) . The new chromosome is updated considering only the perturbations

that were beneficial and contributed to improving the fitness value of CBest.

Output: Ĉ Best individual in the neighborhood of CBest

5.7. Mapped Adaptive Rules

Adaptive operators are defined as self-tuning strategies of parameters that are useful to assist
the meta-heuristic to avoid problems that can compromise its performance such as the phenomena
of premature convergence and getting stuck in local optima. It is common that, during the method
iterations, parameters that represent the percentage of individuals selected for the crossover (p×)
and the percentage of individuals selected for the mutation (pmut) are updated according to the
genetic variability present in the populations of individuals in GA. In this work, we propose to
update these parameters according to the fitness values of two consecutive populations. More
specifically, we will use the concept of “improvement”, which represents a measure that models
the degree of growth considering the fitness values of one population to another. For this, we
will consider that the proposed meta-heuristic works on populations with Npop individuals and,

we will define the vectors Fit,Fit+1 ∈ RNpop
+ so that its coordinates are the fitness values of two

consecutive populations, i.e., considering the it-th and (it + 1)-th iterations of the method, respectively.
To numerically measure how much a population has improved in relation to the previous population,
we will use the function fimprovement (·, ·), considering as a prerequisite that all functions used in this
section are continuous, structured in Equation (11), which aims to measure how much the fitness of
the population of the iteration “it+ 1” (Fit+1) has improved considering the fitness of the previous
population (Fit). Thus, the greater the value of fimprovement (Fit,Fit+1) the greater the improvement of
the values of Fit+1 in relation to the values of Fit. Likewise, if Fit+1 has the same fitness values as Fit,
then fimprovement (Fit,Fit+1) must be equal to 0.

fimprovement (·, ·) : RNpop
+ ×RNpop

+ −→ R+

(Fit,Fit+1) 7−→ fimprovement (Fit,Fit+1).
(11)
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Specifically, we proposed to measure the fitness improvement considering two consecutive
populations using an average between the absolute value of the difference of four well-established
statistical concepts [53] of those population fitness: standard deviation (STD (·)), the average (AVG (·)),
the best fitness (max{·}) and the worst fitness (min{·}). These measures are directly associated
with fitness variability and with the improvement of fitness values from one population to another.
Mathematically, we define in the Equation (12) the function fimprovement (·, ·), which represents the
value of improvement considering two consecutive populations of the technique.

fimprovement (Fit,Fit+1) :=
1
4

∣∣∣∣STD
(

1
M
Fit

)
− STD

(
1
M
Fit+1

)∣∣∣∣+
+

1
4

∣∣∣∣AVG
(

1
M
Fit

)
−AVG

(
1
M
Fit+1

)∣∣∣∣+
+

1
4

∣∣∣∣max
{

1
M
Fit

}
−max

{
1
M
Fit+1

}∣∣∣∣+
+

1
4

∣∣∣∣min
{

1
M
Fit

}
−min

{
1
M
Fit+1

}∣∣∣∣ ,

(12)

in which M := max{max{Fit}, max{Fit+1}} is the maximum fitness value considering all the
coordinates of Fit and Fit+1.

It is worth to point out some facts about the function fimprovement (·, ·) defined in Equation (12):

• Fact 1: The statistical measures used are calculated using the vectors 1
MFit and 1

MFit+1. Since the
coordinates of these vectors are contained in the interval [0, 1] due to the normalization caused by
the multiplication of the factor 1

M , then all the statistical measures are contained in the interval
[0, 1]. In this way, each one of the four addends of fimprovement (·, ·) can account for a maximum of
1
4 |0− 1| = 0.25 and, therefore, the values assumed by the function fimprovement (·, ·) are contained
in the range [0, 1].

• Fact 2: If there are no changes between two consecutive generations, then there will be no
differences between Fit and Fit+1. Thus, Fit = Fit+1 and, therefore, fimprovement (Fit,Fit+1) = 0.

• Fact 3: From the two previous facts, we can easily deduce that the greater the differences between
the fitness of two consecutive generations, the closer to 1 will be the value of fimprovement (·, ·)
associated with these values of fitness. At the same time, the more similar the fitness values of
two consecutive generations, the closer to zero will be the respective value of fimprovement (·, ·).
This means that the function defined in Equation (12) is able to establish a good numerical
correspondence between changes in fitness values between two consecutive populations and can
be used as an indicator of population stagnation.

In this text, we propose to adjust the parameters using mapping functions. These functions
should be responsible for updating the mutation and crossover rates in all iterations of the method
according to the improvement measure provided by the function fimprovement (·, ·) taking into account
the fitness values of two consecutive populations. In this way, we will proceed in the same way as
Xing, et al. [20] and Lin [17], in the sense that if the consecutive populations considered show a great
amount of similarities, then the mutation and crossing rates should be changed according to the degree
of stagnation established between these two populations. In fact, we will follow the same line of
reasoning as we have done in our preliminary work [21], defined by the following two situations:

• Situation 1: There are signs of stagnation in relation to the populations Fit and Fit+1: In this case,
we will have fimprovement (Fit,Fit+1)→ 0 and, to reverse this situation we are going to increase
the mutation rate and decrease the crossover rate.

• Situation 2: There is a significant improvement in the population Fit+1 compared to the
population Fit. In this case, we will have fimprovement (Fit,Fit+1)→ 1 and, therefore, we can start
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to return the mutation and crossover rates to their initially defined values. For that, we must
decrease the mutation rate and increase the crossover rate.

In order to satisfy both described situations, we will use a symmetric (translated-odd) mapping
function ( fmapping (·)) that must act according to the improvement measure of two consecutive
populations. In detail, if, in an iteration of the method, we come across Situation 1, then our mapping
function must represent a negative value and if we come across Situation 2, then the mapping function
must represent a positive value. Following these requirements, a possible structure for the mapping
functions used for adjusting the crossover rate and for adjusting the mutation rate is presented in
Equation (13).

fmapping (·) : [0, 1] −→ [−1, 1]
x 7−→ fmapping (x).

(13)

In addition, for the function fmapping (·) to satisfy the proposed modeling, it is necessary
that the following equalities are valid: fmapping (0) = 1 and fmapping (1) = −1. Therefore,
if the improvement of two consecutive populations Fit and Fit+1 is close to 0, then we have
fmapping

(
fimprovement (Fit,Fit+1)

)
→ fmapping (0) = 1. Likewise, if the improvement of two

consecutive populations is close to 1, then fmapping

(
fimprovement (Fit,Fit+1)

)
→ fmapping (1) = −1.

This symmetric behavior is useful to update the mutation rate values taking into account the
improvement measure between two consecutive populations. Finally, this mapping function must
update the mutation rate (pmut) following the procedure presented in Equation (14):

pit+1
mut := min

{
pmax

mut , max
{

pmin
mut,

[
pit

mut + ηmut · fmapping

(
fimprovement (Fit,Fit+1)

)]}}
, (14)

in which, pmin
mut and pmax

mut are the minimum and maximum acceptable values for the mutation rate and
ηmut > 0 is a fixed numeric parameter that controls the update value that the mutation rate receives
in each iteration. Note that the terms “max” and “min” act only to keep the mutation rate within the
range defined as feasible for the method.

Additionally, note that according to Equation (14), if two consecutive populations are similar, then
the mutation rate will receive an increase and, likewise, if two consecutive populations are significantly
different, then the mutation rate will receive a decrease.

Proceeding similarly, we defined an update process for the crossover rate in Equation (15):

pit+1
× := min

{
pmax
× , max

{
pmin
× ,

[
pit
× − η× · fmapping

(
fimprovement (Fit,Fit+1)

)]}}
, (15)

in which, pmin
× and pmax

× are the values that define an acceptable range for the crossover rate and
η× > 0 is the control parameter that determines the step size used to update this rate. Note that
the crossover rate update defined in this case occurs in the opposite way compared to what occurs
in the case of the mutation rate update. That is, if two consecutive populations are similar, then the
crossover rate will receive a decrease and, likewise, if two consecutive populations are significantly
different, then the crossover rate will receive an increase.

For the experiments, we will consider three mapping functions: a linear function (Equation (16a));
a sigmoid function (Equation (16b)); and a cubic function (Equation (16c)).
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f lin
mapping (x) := 1− 2x, (16a)

f sig
mapping (x) :=

2

1 + e
100

(
1
2
− x

) − 1, (16b)

f cub
mapping (x) := (1− 2x)3 . (16c)

In Figure 6, we present the graph of all mappings defined in Equation (16). In all the cases, we
can see that the range [0, 1] is mapped origin-symmetrically to the range [−1, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

sigmoid

linear

cubic

Figure 6. The plot of the graph of the mapping functions considered for the proposed mapped
adaptive operator.

We can easily see that the adaptive rules presented in our preliminary work [21] make up only a
special case of the adaptation strategy through mapping functions discussed in this section.

5.8. Proposed Algorithm

The proposed method consists of the sequential use of all the operators discussed. As input,
we must present the neighborhood matrix defined by the K sub-regions of a pre-segmented gray-level
image I to the meta-heuristic. In this case, the following sequence of steps must be performed in order
to obtain an artificial coloring with a high contrast set of colors for the image I:

Step 1 A population of chromosomes must be generated, each of which must be defined by K colors
taken randomly in space Y;

Step 2 Select individuals taking into account their fitness values for the crossover operator;
Step 3 Evaluate these individuals;
Step 4 Randomly select individuals to undergo mutation;
Step 5 Select the best individual among all those considered so far;
Step 6 Massively search its neighborhood for individuals with a better fitness value;
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Step 7 Adjust the method parameters with the adaptation operator;
Step 8 Create a new population and evaluate it;
Step 9 If the maximum number of iterations has not been reached, then you need to go back to

step 2.

This sequence of steps is detailed in the flowchart of the method, shown in Figure 7.

Set the parameters

it = 0

Generate initial population P0

Evaluate Pit

Select N× individuals
from Pit using roulette

wheel for crossover and
store them in Pselected

Build Pkids using crossover
operator of Figure 4 on
individuals of Pselected

Create Pmut using
Algorithm 1

Take the best individual
CBest from Pit ∪ Pmut

Apply Algorithm 2
on CBest and get Ĉ

it== Max
Iteration?

it = it + 1

Update mutation and
crossover rates according
to adaptive rules defined
in Equations (14) and (15)

Create Fit+1 and Fit

Evaluate Pit+1

Create Pit+1 from
Pit ∪ Pmut ∪ {Ĉ} using

roulette wheel retaining
the best individual

End of method

yes

no

Figure 7. Flow chart of our proposed mapped local search adaptive genetic algorithm.

6. Experiments and Results

To evaluate the proposed methodology, we defined three distinct case studies (CS). In the first
CS, we conduct a quantitative and a qualitative analysis of the proposed method considering a set of
real world images. In the second CS, we compare the proposed method considering an extension of a
well-established benchmark [54] of 24 synthetic and abstract unreal images in which its sub-regions
are fully-connected. In the third CS, we conduct quantitative experiments considering the Munsell
atlas color space. In addition, the experiments must confirm that the proposed method obtains the best
performance in comparison with the current state-of-the-art techniques.
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6.1. Setup and Implementation

The authors Radlak and Smolka [14] shared with us their GA code so that we could conduct
computational analysis and comparisons fairly. In this way, our methodology is configured in order to
keep the parameterization as similar as possible with their GA. In detail, we use as population size
Npop = 30; the initial probabilities of mutation and crossover are defined as pmut = 0.1 and p× = 0.85,
respectively; half of the individuals selected to mutation operator must go through the subroutine
Mut1 and the other half must go through the subroutine Mut2, that is pLS = 0.5; the step-sizes ηmut

and η× from Equations (14) and (15), respectively, are both considered equals to 0.01, in order to avoid
abrupt changes in mutation and crossover rates; and the method runs for 104 iterations (generations).
The computational experiments were performed at MATLAB environment on an i5-4460 PC with 8GB
of ram.

6.2. Case Study I: Qualitative and Quantitative Analysis Considering Real World Images and Y = sRGB

In this case study, we intend to evaluate the performance of the developed material taking into
account the sRGB color space. That is, the PsCP solution defined by each image must be into Y = sRGB.
For this, the proposed technique is evaluated on a set of eight images: four images used for experiments
in the work of Radlak and Smolka [14] and in our preliminary work [21]; and the pre-segmented
grey-level version of four images of the public dataset presented in the Pascal VOC 2012 segmentation
challenge [55,56]. In Table 1, we present some structural details about the considered images, such
as: the number (K) of sub-regions (I1, I2, ..., IK) of the image; the number of nonzero values in the
neighborhood matrix (∆) of the image; and the number of connections on the graph defined by the
neighborhood matrix. We also present in Figure 8 the graph that describes the connections between
the sub-regions of each image considered for this CS. In detail, the presented images that make up the
evaluation benchmark for this CS are: “Brains”, in Figure 9a; “Two Brains”, in Figure 10a; “Maps”,
in Figure 11a; “Mosaic”, in Figure 12a; “Bicycle”, in Figure 13a (File name in VOC 2012 dataset:
“2007_000129.png”); “Horses”, in Figure 14a (File name in VOC 2012 dataset: “2008_004892.png”);
“Motorcycle”, in Figure 15a (File name in VOC 2012 dataset: “2007_005173.png”); and “Lunch”,
in Figure 16a (File name in VOC 2012 dataset: “2011_003066.png”).

Table 1. Structural details about the used images.

Image Number of Subregions (K) Nonzero Values in ∆ Number of Connections in the Graph

Brains 6 24 12
Two Brains 31 132 66

Maps 38 174 87
Mosaic 100 502 251
Bicycle 7 22 11
Horses 13 58 29

Motorcycle 18 96 48
Lunch 20 110 55
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(a) Brains. (b) Two Brains.

(c) Maps. (d) Mosaic.

(e) Bicycle. (f) Horses.

(g) Motorcycle. (h) Lunch.
Figure 8. Graph of the neighborhood matrix between the sub-regions of each grey-level image.
The number in each node is the associated index of the sub-region.
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GA [14] was selected for comparison because it is the most recent method that was published
in this field and it is the most similar approach of our proposed method. We also selected for
comparison the material that were developed in our previous work [21]: a method without the
addition of adaptive rules, entitled local search genetic algorithm (LSGA); and another method
with the addition of basic adaptive rules, entitled local search adaptive genetic algorithm (LSAGA).
In addition, we evaluated three different versions of our method using the adaptive rules described
in Section 5.7: the lin-LSAGA, the sig-LSAGA and the cub-LSAGA. For this, we will evaluate the
LSAGA considering in the adaptive operator, respectively, the functions f lin

mapping (·, ·), f sig
mapping (·, ·)

and f cub
mapping (·, ·), defined in Equation (16), as the mapping function. In Table 2, we present a summary

of the compared methods and some of its respective specifications.

Table 2. Methods used for comparison. The symbol “-” means that the method does not use a
mapping function.

Method Local Search Simple Adaptive Rules Mapped Adaptive Rules Mapping Function

GA No No No -
LSGA Yes No No -

LSAGA Yes Yes No -
lin-LSAGA Yes No Yes Yes (Equation (16a))
sig-LSAGA Yes No Yes Yes (Equation (16b))
cub-LSAGA Yes No Yes Yes (Equation (16c))

The best solution obtained for the PsCP using these techniques after 50 independent executions
of each one, is shown in the Figures 9–16, so that in Figures 9–12 we present only the pseudo-colored
pre-segmented image, while in Figures 13–16 we present a fusion between the grey-level version of the
original image with its pseudo-colored pre-segmented version.

(a) Greylevel image. (b) GA. (c) LSGA. (d) LSAGA.

(e) lin-LSAGA. (f) sig-LSAGA. (g) cub-LSAGA.

Figure 9. Pseudo-colored results for the grey-level image “Brain”.
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(a) Greylevel image. (b) GA. (c) LSGA. (d) LSAGA.

(e) lin-LSAGA. (f) sig-LSAGA. (g) cub-LSAGA.

Figure 10. Pseudo-colored results for the grey-level image “Two Brains”.

(a) Greylevel image. (b) GA. (c) LSGA. (d) LSAGA.

(e) lin-LSAGA. (f) sig-LSAGA. (g) cub-LSAGA.

Figure 11. Pseudo-colored results for the grey-level image “Maps”.
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(a) Greylevel image. (b) GA. (c) LSGA. (d) LSAGA.

(e) lin-LSAGA. (f) sig-LSAGA. (g) cub-LSAGA.

Figure 12. Pseudo-colored results for the grey-level image “Mosaic”.

(a) Original image. (b) GL PS image. (c) GA. (d) LSGA.

(e) LSAGA. (f) lin-LSAGA. (g) sig-LSAGA. (h) cub-LSAGA.

Figure 13. Pseudo-colored results for the grey-level image “Bicycle”.



Symmetry 2020, 12, 1684 23 of 36

(a) Original image. (b) GL PS image. (c) GA. (d) LSGA.

(e) LSAGA. (f) lin-LSAGA. (g) sig-LSAGA. (h) cub-LSAGA.

Figure 14. Pseudo-colored results for the grey-level image “Horses”.

(a) Original image. (b) GL PS image. (c) GA. (d) LSGA.

(e) LSAGA. (f) lin-LSAGA. (g) sig-LSAGA. (h) cub-LSAGA.

Figure 15. Pseudo-colored results for the grey-level image “Motorcycle”.

(a) Original image. (b) GL PS image. (c) GA. (d) LSGA.

(e) LSAGA. (f) lin-LSAGA. (g) sig-LSAGA. (h) cub-LSAGA.

Figure 16. Pseudo-colored results for the grey-level image “Lunch”.

Considering all the images in Figures 9–16, we can see a evolution in the efficiency of visually
detect a greater number of regions if we observe the image in greyscale and compare its respective
pseudo-colored version. However, in some cases, one technique performs better than another.
As highlighted in some examples in the sequence:
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• Brains: This image is not very complex, as it has only six sub-regions. However, we can see
that, in the case of the pseudo-colorization obtained by GA (Figure 9b), the colors used in the
central part of the brain are two different shades of green, which can cause some visual confusion.
This does not occur with the pseudo-colorizations obtained by the other methods.

• Two Brains: Concerning the images of the Two Brains, we can see that basic GA (Figure 10b)
obtains a reasonably good visual separation between the sub-regions, presenting some confusion
only with the colored regions in shades of red and pink in the central-left region of the image.
In the pseudo-colorized image calculated by the LSGA method, there is also a confusion problem
as well as in the basic GA. When analyzing Figure 10c, the central right region has a dark blue
color very close to a region that was colored with black. These problems do not occur in the
pseudo-colorization performed by the proposed technique with the addition of adaptive rules.

• Maps: All methods used many shades of blue to pseudo-color this image, which can cause some
visual confusion. For example, in the top-right section of the pseudo-colored image using the
LSAGA technique (Figure 11d), we can see three colored regions with similar shades of blue.
In addition, the pseudo-colored image with GA (Figure 11b) presents more serious issues. In detail,
note that there is a small circular subregion in the right section of all pseudo-colored images,
however, this subregion is almost visually imperceptible in the pseudo-colored image with GA.

• Mosaic: That is an image in which the methods have great difficulty for pseudo-coloring due to
their high number of sub-regions. However, even though all pseudo-colored images have a high
degree of visual separability between their regions, it is possible to see that the pseudo-colorized
version by GA (Figure 12b) has in its top-left part several shades of yellow in neighboring areas
and has in its bottom-right section neighboring regions colored with similar shades of red and
pink. Something similar also occurs with the pseudo-colorized image with the LSGA (Figure 12c).

• Bicycle: The image has K = 6 sub-regions and a small number of connections are defined by the
neighborhood matrix. Therefore, all techniques have good visual results. However, all images
show shades of blue in some pair of neighboring sub-regions, but this does not compromise the
visual distinction of each sub-region, since the shades of blue used are very dissimilar.

• Horses: Analyzing the image, we can see that all methods present good pseudo-coloring results,
with dissimilar color assignments in neighboring areas. However, this fact does not happen,
for example, in the GA pseudo-colored image (Figure 14c), in which the blue horse in the central
part of the image is pseudo-colored with a color visually similar to the background color.

• Motorcycle: This image has a reasonably large number of sub-regions (K = 18), yet all the
techniques were able to associate a good pseudo-coloring for each sub-region, we highlight
some negative points, such as in the case of the pseudo-colorized image by LSAGA (Figure 15e),
which contains two people in the top-left part of the background that represent adjacent areas and
that have been colored with shades visually similar in blue.

• Lunch: That image is also highly complex, due to the number of sub-regions (K = 20) that define
a connection in the neighborhood matrix. Thus, not all techniques perform well. For example,
in the pseudo-colorized image by our LSGA (Figure 16d), the table in the top-right part of the
image receives a color similar to the background color. Something similar occurs with the color of
the chair in the top-left section. Another example is presented by the pseudo-coloring obtained by
our LSAGA (Figure 16e), which contains shades of blue in very close areas, such as the person in
blue, in the central part of the image, sitting in a blue chair, in the case of the pseudo-colorized
image by mapped methods this does not occur.

The numerical evaluations performed for this set of images confirm that the proposed
methodology achieves superior performance. Table 3 shows a set of statistical values that were
calculated using the fitness value obtained by each technique after 50 executions, in which the used
measures are: the best presented fitness (Max); the worst presented fitness (Min); the mean value of the
presented fitness (Mean); the standard deviation (STD); and the average time (AT) for each execution
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in seconds. In detail, we can see that the cub-LSAGA, the sig-LSAGA and the LSAGA methods find
the best results in most images. Considering the nine images tested, cub-LSAGA found the best result
in three images, sig-LSAGA found it in one image and LSAGA found it in five images. The methods
that have an adaptation operator obtained the best results in the images, except for the Maps image
that the best result was obtained by the LSGA method, however, the second-best value is presented
by the sig-LSAGA, which is a method that also contains the mapped adaptive operator. In all the
cases, a method that uses a mapped adaptive operator obtains the best Min value. In all images,
the best statistical mean value was found by the methods that use the mapped adaptive operator. In
addition, these same methods showed the smallest standard deviation in 7 of the 9 images considered,
which shows that the methods proposed in this paper obtain more stable results when compared to
other methods present in the literature, including our preliminary LSGA and LSAGA [21]. Analyzing
the improvement of the results that were obtained by methods that make use of adaptive operator it is
possible to verify that this operator has the capacity to guide LSGA and GA to find better solutions.
However, GA is the method that obtained the lowest standard deviation in the case of the image
“Mosaic”, which has a larger number of sub-regions. This fact occurred because the solutions obtained
by GA are restricted to a lower set of fitness values, with the average values obtained by GA being
around 25 units less than the average values obtained by our techniques in the image “Mosaic”.

In Figure 17, a visual comparison of the performance of the techniques evaluated in the box plots
is presented, so that we highlight information about the fitness values presented by the techniques
during the 50 evaluations in each image that makes up the benchmark.

In images with a low number of regions, such as the image “Brains” which has K = 6 sub-regions
and the image “Bicycle” which has K = 7 sub-regions, the proposed methodology presented a
lower level of complexity and was able to obtain better results (Figure 17a) with less computational
time, as shown in Table 3. This occurs because our methods do not create a parallel population
for each color component of the RGB color space as the basic GA of Radlak and Smolka [14] does.
If we observe cases where the number of regions increases, such as the cases of the images “Horses”
(K = 13), “Motorcycle” (K = 18) and “Lunch” (K = 20), the difference between GA computational time
compared to our techniques decreases. It is clear that considering more complex images (Figure 17c,e,g),
that is, images with a greater number of sub-regions, our methodology also obtains better numerical
performance. However, the technique is more computationally costly compared to basic GA. This fact
is due to the number of generations used, which, as we can analyze in the convergence curves presented
in Figure 18 , is a much larger number than necessary since our technique reaches the value equal to
that obtained by GA or, at least, a very close value with less than 20% of the total number of iterations.
This is an indication that our methodology could present the same performance with only 20% of the
total number of iterations used and, therefore, would consume only 20% of the total time presented.

In this way, we conclude this CS noting that all the proposed techniques surpass basic GA in all
the compared images. In addition, the mapped adaptive operators presented in this work produce
more stable results in the RGB color space, in addition to producing pseudo-colorizations satisfactory
to human vision. In contrast, computational time can be an opponent of our methodology in some
situations, which must be circumvented by using more flexible configurations with fewer iterations.
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Table 3. Statistical measurements of the fitness values presented in 50 runs of each method for the case
study (CS) I images. The values highlighted in bold represent the best value of the evaluated measure
available in the line.

Cub-LSAGA Sig-LSAGA Lin-LSAGA LSAGA LSGA GA

Image Brain

Max 111.5897 111.5897 111.5685 111.5897 111.5897 110.4434
Min 103.4240 103.4240 103.4240 103.4240 93.8159 88.6637

Mean 109.2113 109.9077 109.7841 109.5214 107.9427 100.2385
STD 2.9257 2.3071 2.4198 2.3563 3.9305 5.2523

AT (s) 39.9599 46.4401 45.1142 44.4965 33.9584 66.9531

Image Two Brains

Max 103.8950 95.5579 103.2217 105.3690 103.2437 92.4752
Min 65.8645 80.4354 76.6066 74.1934 74.9277 62.6070

Mean 87.0920 87.4156 85.8846 87.0389 85.7157 78.3665
STD 9.4722 4.3749 6.8571 6.2291 6.9172 6.9151

AT (s) 160.4555 157.1275 163.7412 158.64375 144.0959 97.7062

Image Maps

Max 93.7054 94.5564 91.4757 93.5399 97.0676 85.1661
Min 64.4656 66.1475 71.2507 66.8662 64.9360 55.9863

Mean 79.1163 83.6823 79.2163 81.2258 80.9922 72.4412
STD 8.0998 7.6433 6.1562 6.6415 6.4602 6.2322

AT (s) 222.9510 226.4532 226.4238 224.1458 203.8438 130.4597

Image Mosaic

Max 80.4838 82.2895 80.6392 83.7880 81.5133 53.8912
Min 69.8773 63.7500 64.4427 61.2706 56.4168 43.3865

Mean 75.1833 73.5342 72.8356 73.5591 72.1155 48.7392
STD 3.4294 4.9239 5.1849 6.2869 5.7767 2.4751

AT (s) 990.0295 992.4713 991.2589 989.3925 936.8443 331.4825

Image Bicycle

Max 130.4377 129.6426 129.6426 130.5154 130.2436 129.3809
Min 129.1017 129.3329 128.6836 123.3457 123.3457 93.9292

Mean 129.5630 129.5257 129.4862 129.3585 129.2352 123.2097
STD 0.2439 0.1219 0.2094 1.2629 1.2606 8.5688

AT (s) 40.3541 42.4896 48.4984 45.5781 34.0573 68.9844

Image Horse

Max 111.4548 110.3349 111.0386 110.5609 108.4003 104.8786
Min 87.9770 89.0085 85.7987 85.3845 87.4883 79.3059

Mean 100.5157 100.6137 102.0270 97.4747 98.1981 90.5370
STD 7.6174 5.6810 6.5707 7.2756 5.8545 6.0897

AT (s) 72.5547 73.9412 75.2496 69.1302 53.5729 74.4583

Image Motorcycle

Max 105.8383 101.0411 101.9775 103.5309 97.8846 101.8992
Min 76.7733 77.0004 80.2057 72.0469 74.3101 68.4586

Mean 90.3223 88.7403 89.1553 87.0939 87.0660 82.5259
STD 7.1476 6.4653 6.1515 6.6437 6.0711 8.9604

AT (s) 89.7412 85.9214 86.6647 89.6563 73.5052 85.3021

Image Lunch

Max 98.6577 103.8848 99.3338 105.9357 100.8967 95.3289
Min 75.2950 75.2677 73.4639 70.43786 70.1481 65.2178

Mean 84.7076 88.4268 87.1569 82.81681 85.0893 80.1618
STD 6.0211 7.3464 6.1305 7.3561 7.2866 7.7565

AT (s) 103.2497 99.1463 98.8976 100.8177 82.4479 87.6302
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(a) Fitness in Brain. (b) Fitness in Bicycle.

(c) Fitness in Two brains. (d) Fitness in Horse.

(e) Fitness in Maps. (f) Fitness in Motorcycle.

(g) Fitness in Mosaic. (h) Fitness in Lunch.
Figure 17. Numerical results (fitness values) displayed in boxplots of 50 independent runs of
each technique.
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(a) Brain classes. (b) Bicycle.

(c) Two brain classes. (d) Horses.

(e) Map classes. (f) Motorcycle.

(g) Mosaic classes. (h) Lunch.
Figure 18. Convergence analysis.
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6.3. Case Study II: Quantitative Analysis Considering a Synthetic Benchmark of Images and Y = sRGB

This second case study consists of evaluating the proposed techniques in 24 synthetic and abstract
images, which are divided into fully-connected regions. In other words, this CS differs from the
previous one in that we are going to evaluate the techniques in an extension of the Kelly [54] benchmark
containing 24 images that do not necessarily exist in the real world. That is, in this CS, we are going
to assume that we have available only the matrix of neighborhoods of a given grey-level image and
execute the optimization methods on these matrices considering the Y as being the sRGB color space.
Specifically, we will evaluate the methodology in images IK divided into K sub-regions IK,1, IK,2, ..., IK,K,
such that the neighborhood matrix between these regions is in the form ∆K = (δK

i,j)i,j, with δK
i,j = 1 in

the case of i 6= j and δK
i,j = 0 otherwise, for K ∈ {2, 3, ..., 25}, as mathematically defined in Equation (17).

∆K := 1K×K − IK×K =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0


K×K

, (17)

in which, 1K×K is the K× K matrix with all the coordinates equals to 0, IK×K is the identity matrix with
dimension K× K and K is the number of sub-regions considered for each case for K ∈ {2, 3, ..., 25}.

In this evaluation, we will take in comparison the same techniques considered in the previous CS
(Table 2) with the same configuration used in CS I, and a Greedy Algorithm [14,36]. Table 4 shows the
maximum fitness found for each technique between K colors, with K ∈ {2, 3, ..., 25}. All techniques
were performed 50 times.

Table 4. Max distance of colors in a fully-connected images. Green numbers are the max (best) values
in line and red numbers are the min (worst) values in line.

Regions (K) Cub-LSAGA Sig-LSAGA Lin-LSAGA LSAGA LSGA GA [14] Greedy [14]

2 249.2 249.2 249.2 249.2 249.2 249.2 233.85
3 166.11 166.11 166.11 166.11 166.11 166.11 164.64
4 130.64 130.64 130.64 130.64 129.64 130.21 129.64
5 111.59 111.59 111.59 111.59 111.59 111.43 108.81
6 102.58 102.58 102.58 102.58 102.58 102.48 93.78
7 94.7 94.7 94.7 94.7 93.75 93.04 86.95
8 86.15 86.15 86.15 86.15 86.13 84.78 80.03
9 81.49 81.49 81.49 81.49 80.43 78.68 74.45

10 77.8 77.8 77.8 77.8 74.9 74.65 71.92
11 68.1 69.43 69.43 69.43 68.1 66.71 65.77
12 65.61 65.61 65.61 65.61 64.65 64.84 61.86
13 64.26 64.26 64.26 64.26 62.5 63.13 57.79
14 60.89 60.89 60.89 60.89 59.1 58.8 57.32
15 57.16 57.16 57.16 57.16 56.7 53.52 55.27
16 51.53 55.82 55.82 55.82 51.53 51.01 53.4
17 53.56 53.56 53.56 53.56 52.55 49.67 51.32
18 50.56 50.56 50.56 50.56 50.47 48.17 49.42
19 45.08 50.5 47.9 50.5 48.24 45.08 47.9
20 44.67 49.26 49.26 49.26 45.83 44.67 47.57
21 46.54 45.68 45.68 45.68 44.78 42.66 46.54
22 46.36 46.36 44.23 46.36 44.87 41.63 44.23
23 44.74 44.74 44.74 43.62 43.28 41.3 44.74
24 39.77 43.86 39.77 43.86 42.22 39.77 43.61
25 38.55 43.09 38.55 43.09 41.82 38.55 41.98

In this scenario, sig-LSAGA presented the best performance in 23 of the 24 images considered.
The sig-LSAGA was the method that obtained the best results in the comparison. In addition,
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this technique did not present any worse results. Subsequently, our preliminary LSAGA method was
the second method that presented the best values without presenting any worse value. Our lin-LSAGA
method had the best result in 19 cases and the worst result in 2 cases; similar behavior to our
cub-LSAGA, which had the best result in 18 cases and the worst result in 4 cases. These techniques
present greater difficulties in images with more subregions (K larger). In addition, our LSGA technique
presented the worst performance on only one occasion (K = 4), unlike the Greedy Algorithm which
presents the worst performance in simpler images (2 ≤ K ≤ 14) and the basic GA that presents the
worst performance in more complex images (15 ≤ K ≤ 24). This fact demonstrates that the technology
proposed in this work is robust in comparison to the other techniques, especially when we use adaptive
rules since our methods showed the best results in all the synthetic images considered and numerically
surpassing the values presented by the GA and Greedy Algorithm.

6.4. Case Study III: Quantitative Analysis Considering Real World Images and Y as Munsell Atlas Color Set

In this case study, we will evaluate our methodology on a set of real-world images, with the
exception that we will consider Y to be the well-established Munsell color set [57] with 1269 colors,
also known as Munsell atlas color set [58]. This set of colors is a perceptually uniform color space and,
like the sRGB space, it is also defined by three components: hue, value and chroma [59].

To the best of our knowledge, the most recent technique in the literature that evaluates this
color space to obtain a high contrast set of colors is the local search (LS) technique by Bianco and
Schettini [39]. The authors rate their methodology on a set of 5 real-world images. However, not all
images used are available in the specialized literature. Therefore, to make the results reproducible,
the authors make available the graphs that describe the neighborhood relationships between the
subregions of each image. In this way, this CS, like the CS II, has only a quantitative assessment
character, since we are not going to deal with the original images, but only with their neighborhood
matrices. In this case, to conduct our analysis in this CS, we will consider all images used in [39]
in which their sub-regions are connected by different graphs, totaling 4 out of 5. In this case,
the images considered here are “Basketball”, “Texture”, “Oscar” and “Webpage”. The graph between
the subregions of each of these images is represented in Figure 19. In addition, numerical details about
these images can be viewed in Table 5.

Table 5. Details about the used images for the CS III.

Image Number of Subregions (K) Nonzero Values in ∆ Number of Connections in the Graph

Basketball 4 10 5
Texture 8 38 19
Oscar 5 14 7

Webpage 8 24 12

For the evaluations of this case study, we will consider the same techniques considered in the
previous case studies with the same configuration for each one. However, the basic GA compared in
this situation is a version presented by Bianco and Schettini [39], which, according to the author,
is an adaptation of the GA of Radlak and Smolka [14] to solve PsCP in Munsell’s color space.
The authors also compare their methodology with a technique of randomly associating colors to
images. Thus, we will also use the random association of colors for the sub-regions of the images
for comparison, which is denoted by “Random”. This technique consists of randomly producing
1, 000, 000 possible color settings for each image and selecting the solution with the highest fitness
value as a solution. Finally, we will present the values obtained by the Local Search (LS) technique
of Bianco and Schettini [39]. In fact, the results of these last three techniques (GA, Random and LS)
were collected directly from their original work. Whereas, our LSGA, LSAGA, lin-LSAGA, sig-LSAGA
and cub-LSAGA techniques were executed 50 times independently of the configuration presented in
the previous case studies. In Table 6, some statistical measures are presented regarding the 50 fitness
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values obtained by each of our techniques and their comparison with the results presented by the
techniques discussed by Bianco and Schettini [39].

According to Table 6, the proposed methods show superior performance concerning most of
the statistical measures considered. Below we highlight some details regarding each of the images
in isolation:

• Basketball: All the proposed methods have the same best value (Max) considering the 50
iterations. However, our cub-LSAGA method presents superior results considering the other
statistical measures: worst value (Min), mean and standard deviation (STD). The LS method is
deterministic and, therefore, presents the same solution in every evaluation. However, all of our
methods have the worst values (Min), results higher than the result obtained by LS.

• Texture: In this case, LS presents competitive results to our techniques. However, except for our
cub-LSAGA, all the techniques proposed in this text have the best fitness value greater than the
value obtained by LS. In addition, all techniques that make use of adaptation strategies presented
a value of fitness as the worst value (Min), better than the best value presented by the Random
technique. Likewise, our lin-LSAGA had the worst value greater than the best value presented by
GA. This technique also presented the best average among all the compared techniques.

• Oscar: In this case, except for cub-LSAGA, all of our techniques showed the highest best value.
In addition, except for computational time, our sig-LSAGA presents the best statistical measures.
It is worth mentioning that, all of the proposed techniques obtain a worse value for fitness than a
better result than the other techniques with more than 10 units of difference.

• Webpage: For this image, our sig-LSAGA presents the best fitness and average value.
Meanwhile, our cub-LSAGA stands out considering the worst fitness value and the standard
deviation. However, all the proposed techniques have higher average values than the best values
presented by the other techniques.

(a) Basketball. (b) Oscar.

(c) Texture. (d) Web.
Figure 19. Graph of the neighborhood matrix between the sub-regions of each grey-level image used
in the work of Bianco and Schettini [39]
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Table 6. Optimization in Munsell Atlas color space with 1269 colors. The symbol “-” means that the
respective measurement is not available in the original work. The values highlighted in bold represent
the best value of the evaluated measure available in the table line.

Cub-LSAGA Sig-LSAGA Lin-LSAGA LSAGA LSGA GA [14,39] Random [39] LS [39]

Image Basketball

Max 83.8193 83.8193 83.8193 83.8193 83.8193 70.1 60.95 70.1
Min 80.9203 80.2733 80.9203 78.1239 74.6126 - - -

Mean 82.5140 82.2057 82.2179 82.0358 81.8048 61.68 17.76 -
STD 0.7331 0.8182 0.7500 1.2027 1.4551 - - -

AT (s) 38.3354 40.4001 38.7352 39.6563 32.3594 15.08 0.0013 3.03

Image Texture

Max 58.7465 63.5075 63.0651 66.3612 63.0651 47.45 45.15 60.63
Min 46.7823 46.0836 47.7114 45.8120 36.5557 - - -

Mean 53.0731 54.4095 55.4383 54.6570 52.4303 43.75 17.78 -
STD 3.3279 4.0777 3.4021 4.6342 5.7014 - - -

AT (s) 58.1205 59.9801 59.2552 50.5365 35.8229 29.48 0.0021 18.87

Image Oscar

Max 82.4165 83.8193 83.8193 83.8193 83.8193 59.76 56.44 63.5
Min 78.1239 79.5652 78.1239 77.3148 76.4953 - - -

Mean 81.8081 82.0605 81.9420 81.7832 81.2568 54.74 18.74 -
STD 1.3161 0.9360 1.0757 1.4110 1.6553 - - -

AT (s) 39.8854 42.1464 40.7552 39.0000 28.5573 17.93 0.0015 5.56

Image Webpage

Max 80.9203 82.3743 82.2811 82.1702 80.9203 50.13 42.93 62.33
Min 67.2430 62.8774 64.4095 62.8774 62.2342 - - -

Mean 75.7342 76.9152 76.1263 76.0651 73.6511 44.15 14.89 -
STD 4.0863 4.7845 4.6217 4.6063 5.5967 - - -

AT (s) 50.1254 47.8946 47.7740 48.6667 37.0156 30.36 0.002 18.99

In summary, we can see by observing Table 6 that our techniques surpass the results that make
up the current state-of-the-art with special emphasis on the stability of techniques that use mapped
adaptive operators. For example, considering the image “Basketball”, our cub-LSAGA, sig-LSAGA and
lin-LSAGA methods showed standard deviations less than 1. In this case, our cub-LSAGA presented a
standard deviation of 0.7331. Something similar occurs in the image “Oscar”, in which our sig-LSAGA
has a standard deviation of 0.9360. Thus, this case study also confirms that the mapped adaptive
methods proposed in this text help to maintain the stability of the method.

Regarding the average processing time of each technique, we realized that our methodology
is, in fact, more computationally costly in all cases of this CS. Making our methodology used only
in offline applications and it is not ideal to use it in applications that require real-time response.
However, it presents superior results in comparison to the other techniques that define the state of
the art.

7. Conclusions

In this paper, a new GA was proposed with the addition of specialized operators to reinforce
the local search and with the addition of rules to adjust the parameters using symmetric mapping
functions to treat the PsCP. All the steps contained in the proposed technique were presented in detail
to facilitate the reproduction of the methodology.

We evaluated the proposed material in three case studies: in the first, our techniques were
used to assign artificial coloring to real-world images and we performed qualitative and quantitative
analyzes of the results obtained; in the second, our techniques were evaluated quantitatively in a
benchmark of theoretical and synthetic images whose sub-regions are fully-connected; and in the third,
we quantitatively evaluate our methodology when performing optimization in the Munsell color space.
In the three case studies, the proposed methods obtained superior results when compared with other
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techniques presented in the state of the art. The proposed technique with the mapped adaptive rules
presented the best results and it is the most stable version of our method. The combination of the
inclusion of local search procedures and the use of more elaborate adaptive rules helped the method
to obtain better results while maintaining a good genetic variability in the population and avoiding
possible premature convergence.

In future works, we intend to expand the use of our mapped adaptation operators to update any
GA configuration, such as the number of individuals in the population, the number of generations of
the method, etc. In addition, we intend to study the effect that these strategies can have on other types
of recent proposed meta-heuristics, such as the squirrel search algorithm [60], when applied to solve
the PsCP. We believe that, even though the results obtained by the proposed method surpass the other
state-of-the-art techniques, it is still necessary to conduct a study on techniques that can be used to
reduce the computational time necessary to obtain the solutions to the problem, since if the image to
be colored has a high number of sub-regions then the proposed method will need a very large amount
of computational time to obtain good solutions. We also intend to use the proposed methodology to
solve another class of problems in the literature, such as visual threat detection in X-ray scans [2,61].
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