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Abstract: This work proposes an intelligent visual technique for detecting phishing websites.
The phishing websites are classified into three categories: very similar, local similar, and non-imitating.
For cases of ‘very similar’, this study uses the wavelet Hashing (wHash) mechanism with a color
histogram to evaluate the similarity. In cases of ‘local similarity’, this study uses the Scale-Invariant
Feature Transform (SIFT) technique to evaluate the similarity. This work concerns ‘very similar’ and
‘local similar’ cases to detect phishing websites. The results of the experiments reveal that the wHash
mechanism with a color histogram is more accurate than the currently used perceptual Hashing
(pHash) mechanism. The accuracies of SIFT technique are 97.93%, 98.61%, and 99.95% related to
Microsoft, Dropbox, and Bank of America data, respectively.

Keywords: phishing website; wavelet Hashing (wHash); Scale-Invariant Feature Transform (SIFT);
visualization; image similarity

1. Introduction

With the rapid development of information technology, many Internet applications are attracting
increasing attention and becoming part of everyday life. Therefore, it brings all kinds of online
scams. Phishing is a scam that uses social engineering to induce users to disclose personal and private
information [1]. A phishing website imitates the website of a well-known brand to obtain the trust of
the user, who is therefore willing to provide sensitive information, such as an account name, password,
financial information, and more. As of 2017, according to the Anti-Phishing Working Group (APWG)
report, the average number of phishing websites that can be detected per month is as high as 55,232 [2].
Hence, this work proposes an approach to detecting phishing websites that is based on visual similarity.
The rest of the paper is organized as follows. Section 2 presents the background of this study. Section 3
introduces the proposed phishing detection mechanism. Section 4 presents the performance analysis
of this study. Finally, conclusions are drawn in Section 5.

2. Related Studies

To detect phishing websites effectively, many studies have used intelligent approaches with
features analysis. Jain et al. proposed a two-level authentication approach for declaring a webpage as
phishing [3]. Tan et al. proposed a phishing detection technique [4]. Bahnsen et al. proposed use of URLs
to classify phishing attacks, the authors claim that recurrent neural networks provide a good accuracy
rate than other approaches [5]. Buber et al. proposed use of Natural Language Processing (NLP) to
extract features for detecting phishing attacks [6]. Hu et al. proposed use of machine learning with
online credibility [7]. Zuhair et al. proposed a hybrid feature for detecting phishing attacks, the authors
claim that they use 58 hybrid features to analyze the prediction susceptibility [8]. The features
include HTTPs-based, TLD (Top-Level Domain)-based, WHOIS-based, and content-based features.
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Feature-based mechanisms can perform well, but the features will gradually become less effective over
time or the mechanism will induce phishing attackers to generate means of circumvention [9].

Many studies have addressed this problem. Mao et al. proposed using the CSS (Cascading Style
Sheets) webpage style code to test the similarity of two websites, but some phishing websites use
page screenshots as a background to avoid textual verification, making this method ineffective [10].
White et al. proposed a perceptual Hashing (pHash) technique for comparing webpages [11].
This method can be effective but only in cases of very high similarity. Rao et al. proposed Speeded
Up Robust Features (SURF) for comparing webpages [12]. This method is effective with very similar
and partially similar pages, but cannot identify small similarities. Asudeh proposed eight box-shaped
filters to detect a logo image and used the Histogram of Gradient (HoG) method to solve problems
of noise and rotation, but the method cannot identify phishing sites that use a page screenshot as its
background [13]. Wang et al. proposed the SIFT technique with WHOIS feature to detect the form
page [14].

3. Materials and Methods

Some phishing websites use screenshots of other websites as the background, adding only input
tags. Some features, like logos, are only partially similar. Since a phishing website may use the same
home page at various URLs to scam, the phishing webpage is not entirely like the copied webpage.
Phishing pages have three types of appearance: very similar to, locally similar to, and non-imitating of
a real website. Highly similar pages are detected using a Locality-Sensitive Hashing (LSH) technique
with image and color histograms. Locally similar pages are detected using the Scale-Invariant Feature
Transform (SIFT) technique.

Although SIFT performs well, its form detection may fail. Some phishing websites have two
stages. First, the user selects the account to be logged into, and then is sent to another page with a
form. Phishing pages of the cloud service Dropbox and Docusign often use the approach.

3.1. Cases of Very High Similarity—‘Very Similar’ Cases

In cases of very high similarity, the screenshots of whole webpages must be compared. To improve
the rate of comparison without loss of accuracy, an LSH method wavelet Hashing (wHash) mechanism
with a color histogram is proposed herein. Data matching often takes a long time, especially when
high-dimensional data are involved, as with images. If the amount of data is large, then the time
complexity is large [15,16]. The pixels in an image are represented in RGB color space. RGB are the
three primary colors of light—red, green and blue, respectively. The intensity of these three colors
is given by one of 256 values. The values for three colors from 0 to 255 yield a RGB color histogram.
Accordingly, the color characteristics of an image can be represented and used to compare the colors of
the images. Directly comparing the colors in two images produces errors. The overall color similarity
of two images may be close without those images looking similar. Therefore, the images must be split
to improve the accuracy of the color comparison based on local color similarities [17].

3.2. Cases of Local Similarity—‘Local Similar’ Cases

The best way to avoid the problem of CSS solution is to treat the logo as a feature for detection [10].
The logo is a symbolic visual element, which uses graphics or text to represent the brand of a company.
References [13,14] used a logo comparison method, but it can cause some problems. Since a page
may have many pictures, a phishing website may use screenshots to form its background and avoid
detection. This study develops the SIFT image object detection technique to detect whether a logo has
been extracted from the screenshot of a whole webpage.

A. SIFT Technique

A SIFT technique is based on the feature of local appearance at a point of interest on an object.
Such features of an image are independent of its size and rotation. They are also robust against light,
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noise, and small viewing angle changes. Therefore, they are highly visible and more easily extract data.
A large feature database facilitates the identification of objects with few mismatches. SIFT feature
descriptors can be used to detect partial objects with quite high accuracy. Three of SIFT’s key points
suffice to calculate the position and orientation. The Difference of Gaussiane (DoG) algorithm is used
to find these feature points. Similar features can be found in spaces of different scales [18].

B. Feature Descriptor Generator

Create an 8 × 8 window (the unit is a pixel of the scale) that is centering on a key point, calculate
the gradient direction and magnitude of each pixel, and then calculate the gradient histogram for eight
directions in every group of 4 × 4 pixels [19]. A 128-dimensional vector is thus obtained.

C. Matcher

Feature matching mainly uses the K-NN (K nearest neighbor) algorithm with KD-tree as the key
points index to accelerate the matching process [20].

4. Proposed Phishing Detection Mechanism

Figure 1 presents the proposed system architecture. The system has three parts, which are cache,
webpage screenshot matcher, and logo finder. The cache is used mainly to record historical data to
accelerate the detection process. The webpage screenshot matcher is used to detect ‘very similar’ cases,
and cases of ‘local similar’ are analyzed using the logo finder.
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4.1. Detection Mechanism

The proposed mechanism comprises an offline phase and an online phase.

4.1.1. Offline Phase

The image is converted into a hash, and its contours are compared with those of the target webpage;
the contour similarity is thus calculated. The color histogram and color similarity are also calculated.



Symmetry 2020, 12, 1681 4 of 16

The key points in the screenshot image are detected in the logo finder. The logo finder obtains feature
descriptors at key points, and then tries to match to the target’s logo, yielding a matching number.
The system has three similarity indices, which are contour similarity, color similarity, and number of
matched key points of the logo. Subsequently, the known tags with these three indices are used to
calculate the performance. Figure 2 presents the operations of the contour, color matcher, and logo
finder operations.
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4.1.2. Online Phase

The URL of the unknown website is checked at the beginning of the online phase to determine
whether it has been detected before. If it has been detected, it is skipped directly. Otherwise, it is
entered into the contour matcher to compare its contours. The operations are shown in Figure 3.
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Figure 3. Operations in online phase.

The comparison is performed with the hash value of the target website and the hash value of
the blacklist. If the similarity exceeds the predefined threshold, then a color similarity comparison
is conducted to ensure that the screenshots are similar. Otherwise, the system will perform a logo
comparison. After the contours have been compared, the color histogram is calculated. The color
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histogram of the unknown website is compared with that of the target and the websites on the blacklist.
If the similarity exceeds the predefined threshold, then the URL, hash and color histogram of the
unknown website will be saved to the blacklist. Otherwise, the system performs a logo comparison.
Figure 4 shown the operations in online phase.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 17 

 

 
Figure 4. Contour and color matcher operations in online phase. 

Figure 5 presents the operations that are performed at the key points of the screenshot of the 
webpage and the generation of a feature descriptor. If the number of matched key points exceeds the 
predefined threshold, then the URL, hash and color histogram of the unknown website is saved in 
the blacklist. Otherwise, the URL, hash and color histogram of the unknown website is saved in the 
whitelist. 

 
Figure 5. Logo finder in online phase. 

4.2. System Modules 

Three modules cache, screenshot matcher, and logo finder are presented. 

Figure 4. Contour and color matcher operations in online phase.

Figure 5 presents the operations that are performed at the key points of the screenshot of the
webpage and the generation of a feature descriptor. If the number of matched key points exceeds
the predefined threshold, then the URL, hash and color histogram of the unknown website is saved
in the blacklist. Otherwise, the URL, hash and color histogram of the unknown website is saved in
the whitelist.
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4.2. System Modules

Three modules cache, screenshot matcher, and logo finder are presented.

4.2.1. Cache

Cache contains a blacklist and a whitelist. It stores URLs, hashes, webpage screenshot data, and
feature descriptors, among other information. A URL can be used to determine whether the webpage
has been previously detected, and other data are used to accelerate the detection of the webpage if it
has not already been detected.

4.2.2. Screenshot Matcher

The screenshot matcher is mainly used to compare the webpage screenshots. Its two modules are
contour matcher and color matcher, as shown in Figure 6.
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Contour Matcher Hash Generator

Since one web screenshot is compared with another, the involved data are numerous and
high-dimensional, so a hash generator converts image to a hash value to reduce the time complexity.
The hash generator module will convert an image to a hash value by wHash mechanism. The process
comprises the following five steps:

1. Normalize image: the image is compressed such that one of its sides has a specific length.
The image size that is used in the comparison may not be the same length. Thus, it must be
converted to ensure that the hash values are the same length.

2. Transform to gray: the image is transformed to grayscale to reduce the amount of
information involved.

3. Wavelet transform: the low-frequency element of the image is extracted using by a discrete
wavelet transformation.

4. Binarization: transformation of the image by DWT makes it rough. In the next step, the average
value of the grayscale pixels of the image is calculated, and then compared to that of other pixels.
If the value is greater than the average value, then it is set to 1; otherwise, it is 0.



Symmetry 2020, 12, 1681 7 of 16

5. Encode to hash: the pixels in the image are arranged in a certain order onto a hash.

Contour Matcher Hash Matcher

After the hash value has been obtained, the hash matcher compares hashes using the Hamming
distance. The Hamming distance is expressed as ∆H, which is the sum of bits after exclusive or
operations, as in Equation (1), in which n is the length of the hash; ai is the hash value of the ith bit in
image a, and bi is the hash value of the ith bit in image b.

∆H =
n∑

i=1

ai ⊕ bi (1)

After the Hamming distance has been obtained, n and ∆H are used to yield the similarity α, as in
Equation (2).

α =
n− ∆H

n
(2)

After the comparison has been made, if the similarity α exceeds the predefined threshold, then next
step will involve the color matcher, which will compare the colors; otherwise, it will involve the logo
finder and determine whether the image includes a logo.

Color Matcher

If the contour similarity reaches the predefined threshold, then it must be confirmed, so a color
histogram of the images is compared. The operations are shown in Figure 7.
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Color Matcher Histogram Generator

wHash mechanism compresses image information, yielding a rough image, which is converted
into a hash. However, using only contour similarity may result in a mismatch, so the color histograms
are used to confirm the similarity of colors to increase accuracy. The color histogram is generated in
the following three steps:

1. Normalize image: this step compresses the image to one with a specific side of a particular length.
The image size may not be the same length, but the number of pixels is fixed, so all compared
images must be normalized.

2. Split the image: the compared images are split into nxn blocks, which are then compared, yielding
greater accuracy than a comparison of whole images, because the color differences between
corresponding parts may vary.
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3. Count the color histogram of each part.

Color Matcher Histogram Matcher

Histogram matcher uses the Jaccard index, which is obtained from images a and b, as in Equation (3):

a∩ b
a∪ b

= J (3)

Calculate the Jaccard index, Ji for each pixel color intensity, as in Equation (4):

ai ∩ bi
ai ∪ bi

=
Min(ai, bi)

Max(ai, bi)
= Ji (4)

Calculate the Jaccard index, Jk, for each block, as in Equation (5):∑n
i=1 Ji

n
= Jk, n = 768 (5)

Calculate the Jaccard index of the entire image, which is the color similarity β, as in Equation (6):∑m
k=1 Jk

m
= β (6)

If color similarity β is lower than the predefined threshold, the logo finder makes a
further evaluation.

4.2.3. Logo Finder

After the image has been loaded, the feature descriptor is extracted, and a KD-tree is then
constructed to accelerate feature matching. The feature descriptor is matched by the K-NN algorithm.
Figure 8 shown the logo finder operation.
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5. Performance Analysis

The performance of the proposed phishing websites detection system was analyzed using cases
of high similarity ‘very similar’, local similarity ‘local similar’, and a complete test. In the ‘very similar’
cases, the main considerations are the setting of the best threshold and the comparison of efficiencies
of the pHash and wHash mechanisms. In the ‘local similar’ cases, the main considerations are the
selection of the best number of matching key points and the performance comparison of the SIFT and
SURF mechanisms. Finally, the performance that is related to the classification effect was evaluated by
performing the complete test.

Table 1 presents the studied data. The source of the phishing website used in the experiment
was found from PhishTank, some invalid websites were deducted from the more than 20,000 websites
found in PhishTank. The three most imitated sites are Microsoft, Dropbox, and Bank of America.
Additionally, 1171 legal websites were collected from Internet. The websites of Microsoft, Dropbox,
and Bank of America, for use in that involve ‘very similar’ and ‘local similar’. ‘Very similar’ cases
involve whether the unknown webpage is similar to a legal webpage or the webpages on the blacklist.
‘Local similar’ cases involve whether the webpages contain a logo. ‘Non-imitating’ cases involve the
webpages that are normal. The complete test determines whether a website is a phishing website by
identifying imitation. The balanced data set in Table 2 was used to analyze phishing websites to ensure
that the results of the performance evaluation were not biased by the amount of data. The phishing
website that was used in this work was taken from PhishTank. Additionally, 1267 legal websites
collected from the Internet were used.

Table 1. Imbalanced data set.

Website Owner Microsoft Dropbox Bank of America Others
Very similar webs 276 94 70 1267
Local similar webs 394 207 152

Table 2. Balanced data set.

Website Owner Microsoft/Dropbox/Bank of America Others
Number webs 150 150

5.1. ‘Very Similar’ Cases

Of the 1937 websites, 276 were ‘very similar’ to Microsoft’s websites and 1661 were non-similar
websites. The blue line in Figure 9 represents contour similarity. The orange line indicates the type of
site; type 0 is not similar to a Microsoft website, whereas type 1 is ‘very similar’. Sites are sorted from
small to large similarity. A site with greater similarity is more likely to be a phishing website. Only two
websites with a contour similarity α that exceeds 0.85 are mismatches. The good performance in the
studied data is at similarity β ≥ 0.78, as shown in Figure 10. The existing pHash mechanism is effective
for classification when the threshold exceeds 0.65, but it still results in several misclassifications.
The analysis result is shown in Figure 11.

The proposed screenshot matcher can accurately classify ‘very similar’ cases, as shown in Figure 12.
The detection results reveal that color similarity compensates for a lack of contour similarity, and the
predicted results (blue line) and the labeled values (orange line) all then overlap.

The analysis result with Dropbox data is shown in Figure 13. The good performance of the studied
data is at similarity β ≥ 0.94. The existing pHash mechanism is effective for classification when the
threshold exceeds 0.78, and can be completely classified into two classes. The analysis result is shown
in Figure 14.
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The proposed screenshot matcher can accurately classify cases of ‘very similar’, as shown in
Figure 15. The detection results reveal that color similarity compensates for a lack of contour similarity,
and the predicted results (blue line) and labeled values (orange line) then all overlap.
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For the Bank of America website, when the contour similarity α exceeds 0.85, the good performance
of the studied data is at similarity β ≥ 0.78. The existing pHash mechanism is effective for
classification when the threshold exceeds 0.75, and can be completely classified into two classes.
The proposed screenshot matcher can accurately classify the cases of ‘very similar’, as shown in
Figure 16. The detection results reveal that color similarity compensates for a lack of contour similarity,
and the predicted results (blue line) and labeled values (orange line) then all overlap.
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Table 3 presents the computation time. Although the time taken by the wHash mechanism slightly
exceeds that by pHash mechanism, the analysis results reveals that the former is more adaptable to
various images. The overall performance of the three cases is shown in Table 4.

Table 3. Time of wHash and pHash mechanisms for Microsoft’s data.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Avg.
wHash (s) 484 478 486 472 471 472 478 477 478 477 477.3
pHash (s) 389 392 387 399 398 390 392 392 395 399 393.3

Table 4. Overall performance.

Target Webpage Similar Webpages Detected Webpages Accuracy Precision Recall F1-Score
Microsoft 276 276 100.00% 100.00% 100.00% 100.00%
Dropbox 94 94 100.00% 100.00% 100.00% 100.00%

Bank of America 70 70 100.00% 100.00% 100.00% 100.00%

5.2. ‘Local Similar’ Cases

The logos were studied, as shown in Figure 17. The best number of key matches for classification
was found, as shown in Figure 18, the best match between Microsoft and Dropbox data is three key
points. As the number of key points increases, the F1-score drops. Bank of America’s data did not
work well at first, but as the number of matched key points gradually increased, and the best number
of points was found to be 11–17. The number of key points that are required for images that are smaller
than 100 × 100 is about 3–4.
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Although SURF technique has a higher processing speed, it is susceptible to noise interference
and found fewer key points than the SIFT technique. Table 5 compares the computation times of SIFT
and SURF methods with Microsoft’s data. The average time taken by SIFT method is about 2980.5 s.
The average time taken by SURF method is about 1270.1 s. The speed of SURF method is about 2.3
times that of SIFT method, but its accuracy is lower. Table 6 presents the overall performance of the
logo finder. The number of false positives is always 0.

Table 5. Time taken by SIFT and SURF for Microsoft’s data.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Avg.
SIFT (s) 2980 2977 2985 2978 2980 2979 2983 2982 2983 2978 2980.5
SURF (s) 1270 1263 1269 1266 1268 1277 1269 1266 1278 1275 1270.1

Table 6. Overall performance of logo finder (SIFT method).

Target Webpage Have Logo Webpages Match Points Etected Webpages Accuracy Precision Recall F1-Score
Microsoft 393 3 353 97.93% 100.00% 89.85% 94.65%
Dropbox 207 3 178 98.61% 100.00% 99.71% 94.51%

Bank of America 152 11 151 99.95% 100.00% 99.34% 99.67%

5.3. Complete Test

Tables 7 and 8 present the overall performance of the studied data. From the observation of the
two tables, the performance difference is not obvious.

Table 7. Overall performance using unbalanced data set.

Target Webpage Imitation Webpages Match Points Detected Webpages Accuracy Precision Recall F1-Score
Microsoft 393 3 363 98.14% 99.17% 91.60% 95.24%
Dropbox 207 3 180 98.61% 100.00% 99.71% 94.51%

Bank of America 152 11 151 99.95% 100.00% 99.34% 99.67%

Table 8. Overall performance using balanced data set.

Target Webpage Imitation Webpages Match Points Detected Webpages Accuracy Precision Recall F1-Score
Microsoft 150 3 143 96.33% 98.60% 94.00% 96.25%
Dropbox 150 3 143 97.67% 100.00% 95.33% 97.61%

Bank of America 150 11 150 99.67% 100.00% 99.34% 99.67%

6. Conclusions

This study proposed an effective visual mechanism for detecting ‘very similar’ and ‘local similar’
phishing websites. In the case of ‘very similar’, the wHash mechanism with the color histogram has a
higher accuracy than the pHash mechanism, and the former is more stable than the pHash mechanism.
In the case of ‘local similar’, logo detection by SIFT technique is a suitable choice. This study also adds
a cache to reduce the detection time, increasing the detection speed up to 4.6 times. In a complete test
with imbalanced data, the accuracies of Microsoft, Dropbox, and Bank of America data were 98.14%,
98.61%, and 99.95% separately. However, the performance difference is not obvious in a complete test
with balanced data. The threshold setting and processing speed should be discussed in the future.
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