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Abstract: A micromechanical model is developed to study the creep phenomena with neat and
carbon-fiber-reinforced PEEK (Polyetheretherketon) and epoxy. The model considers that the
continuous elastic circular fibers form a regular array inside the matrix material. In this study, the fibers
are considered to be linear elastic and anisotropic, while the matrix has a nonlinear viscoelastic behavior.
The approach describes the time-dependent response of unidirectional viscoelastic composites
subjected to various types of loading conditions. A comparison between the finite element analysis
and the proposed micromechanical model shows a good agreement. Experimental tests validate the
results obtained using the proposed theoretical model.

Keywords: fiber composite; viscoelastic; carbon fiber; creep behavior; Young’s modulus;
engineering constants

1. Introduction

Creep phenomenon in viscoelastic materials is defined as primary, secondary, and tertiary creep
and represents a time-dependent deformation of the material subjected to a certain applied load [1,2]
(see Figure 1). Generally, this phenomenon occurs at high temperature but can be seen in certain
materials, too, at the room temperature. In time, the studied material can increase in length and this
can be dangerous in service.
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investigation by Schaffer and Adams [11]. Their analysis is based on an elastoplastic finite element 
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symmetry arguments of the fiber packing arrangement of the unidirectional composite, hence, 
simplifying the analysis so that only one-quarter of the circular fibers is to be modeled. Finite element 
method proves to be an important tool to determine the overall moduli of a composite. This method 
can be applied not only for a bi-phase material with a simple geometry of the fiber but also for a 
complex topology of the constituent material of composite. Any combination of longitudinal and 
transversal, as well as hygrothermal, loading history may be analyzed. Nonlinear viscoelastic 
constitutive equations developed by Schapery [12–14] were used to account for the viscoelastic 
material behavior. Further, the analysis provides an examination of the internal stresses of the 
composite under a variety of external conditions. In this approach, thermal- and moisture-dilatational 
effects were included by means of initial stress. Mohan and Adams [15] utilized the above program 
to determine the response of the unidirectional graphite- and glass-reinforced composites. They were 
able to find a good correlation between the time-dependent response and the predictions achieved 
by the finite-element micromechanics program of Schaffer and Adams [11]. 

Findley et al. [16–18] developed a procedure to accurately model the nonlinear creep compliance 
of a variety of materials. By applying the Findley approach, the nonlinear creep behavior of 
viscoelastic materials can be characterized using an empirical model. The technique is based on a 
creep power law. The method may conveniently be implemented into a numerical procedure. 
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Usually, engineering applications refer to the primary and secondary stages, when the creep strain
rate is much larger. The creep strain (deformation) rate is defined as the slope of the creep strain–time
curve. Generally, this is dependent on stress, temperature, and time. The primary creep starts with a
rapid rate that slows with time. The secondary creep has a relatively uniform rate. The tertiary creep
region is attributed to a rapid increase in creep strain rate. Here, we have an accelerated creep rate
and it ends when the material breaks. This third stage is usually brief and is normally associated with
geometric instabilities, leading quickly to failure and, therefore, is not of much interest in engineering
analysis. In practice, it is necessary to know the rate of deformation, provided by a creep test, in order to
be implemented directly in the design stage [2,3]. Studies on the creep phenomenon are numerous [4–6]
and the history of the field will be briefly reviewed in the following.

Different materials, such as metals, plastics, rubber, or concrete, have different behavior, and creep
in service can be influenced by existing loads and temperatures. To determine experimentally the creep
behavior of a material, measurements of dimensional changes at constant high temperature and constant
load must be performed. A comparison with the measurements at room temperature offers an image
of difference in behavior at different temperatures. The creep models are useful for long-term service
devices (pieces) which are strain limited and can provide a prediction of life expectancy. Because the
creep generally occurs at high temperatures, it is necessary to use an environmental chamber to ensure
precise heating control. This is critical to minimize the effects of the thermal expansion.

Brinson et al. [7] proposed an accelerated characterization scheme to predict the viscoelastic
behavior of general laminated composite materials. Their analysis is based on a reduced amount
of experimental measurements. In other words, the tests utilize short-term observation of the
unidirectional material at elevated temperature to predict long-term response based upon the
time–temperature superposition principle (TTSP) [8,9].

In this way, based on short-term measurements of the composite material at elevated temperature,
the long-term response of the material can be predicted based upon the time–temperature superposition
principle (TTSP) [10].

Studying nonlinear viscoelastic behavior of unidirectional composites has been the subject of
investigation by Schaffer and Adams [11]. Their analysis is based on an elastoplastic finite element
micromechanics program to model a unidirectional composite material. The authors used the symmetry
arguments of the fiber packing arrangement of the unidirectional composite, hence, simplifying the
analysis so that only one-quarter of the circular fibers is to be modeled. Finite element method proves
to be an important tool to determine the overall moduli of a composite. This method can be applied
not only for a bi-phase material with a simple geometry of the fiber but also for a complex topology
of the constituent material of composite. Any combination of longitudinal and transversal, as well
as hygrothermal, loading history may be analyzed. Nonlinear viscoelastic constitutive equations
developed by Schapery [12–14] were used to account for the viscoelastic material behavior. Further,
the analysis provides an examination of the internal stresses of the composite under a variety of
external conditions. In this approach, thermal- and moisture-dilatational effects were included by
means of initial stress. Mohan and Adams [15] utilized the above program to determine the response
of the unidirectional graphite- and glass-reinforced composites. They were able to find a good
correlation between the time-dependent response and the predictions achieved by the finite-element
micromechanics program of Schaffer and Adams [11].

Findley et al. [16–18] developed a procedure to accurately model the nonlinear creep compliance
of a variety of materials. By applying the Findley approach, the nonlinear creep behavior of viscoelastic
materials can be characterized using an empirical model. The technique is based on a creep power law.
The method may conveniently be implemented into a numerical procedure.

Dillard et al. [19,20] used a nonlinear viscoelastic model based on the Findley approach to represent
the creep of graphite/epoxy composites. This model, together with uniaxial tension tests on 0◦, 90◦,
and 10◦ off-axis specimens, allows complete characterization of the nonlinear viscoelastic compliance
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matrix of an orthotropic material, such as a unidirectional lamina. Furthermore, the basic procedure
was also utilized to characterize the long-term nonlinear behavior of general laminates.

In another study [21], creep behavior of carbon epoxy laminates was investigated by tensile creep
test on [+/−45]2s coupons. The authors reviewed the effects of temperature, moisture, and stress levels
on the time-dependent shear modulus for two carbon epoxy laminate systems. This study has shown
that a moisture concentration of about 1% may be considered as the critical limit for the investigated
system. In other words, the viscoelastic deformation occurs much more rapidly beyond this limit.
It was further demonstrated that for the above laminate, shear stresses in excess of 50% of the ultimate
tensile strength could lead to irreversible deformation during creep.

Measurement concerning the elastic/viscoelastic behavior of a unidirectional aramid
fiber-reinforced epoxy at room and elevated temperatures were performed by Walrath [22].
The “power law” was chosen as the appropriate mathematical model to describe linear, as well as
nonlinear, viscoelastic compliance. For the nonlinear characterization, the nonlinear viscoelastic
coefficients, which in general were shown to be functions of both stress and temperature,
were introduced into the model. This was in accordance with the Schapery [12] nonlinear viscoelastic
model, which was believed to adequately fit the response of the material to uniaxial loading.

Hashin [23] and Hashin et al. [24–26] used a variational principle in order to convert from elastic
to time-dependent behavior through comparatively simple equations. This formulation assumes
that a composite can be modeled as a random distribution of continuous fibers of varying diameters
with a constant fiber volume fraction throughout. Each circular fiber is surrounded by a circular
matrix bounded rigidly to it. It is, in fact, a collection of composite cylinders with differing sizes.
The requirement is that the strain energy stored in a representative element is equal to that existing in
an element of homogeneous material with the same effective properties. As a result of this, the stresses
and strains in a representative cylinder are representative of those in the real composite, but in the
average sense.

Bowles and Griffin [27] investigate the thermally induced stress fields in the two constituents of
polymer-based composites at cold temperatures which are typical for spacecraft operating temperature.
The study of the influence of microstructural geometry showed that this factor does indeed affect the
distributions and magnitudes of the induced stresses depending on whether a composite cylinder,
square, or hexagonal array of microstructural geometry is assumed. Furthermore, it was shown that
fiber properties did not strongly influence the matrix stresses, yet the absolute value of the latter
increased with higher values of fiber volume ratio v f .

In a study undertaken by Zhao et al. [28], all elastic constants which characterize an orthotropic
and a transversely isotropic composite were derived. It was shown that for the transversely isotropic
case, among the various investigations by Hill [29–32], the upper and lower bounds presented in
reference [32] and those of Hashin [23] could very well be used to estimate the effective elastic moduli,
when the ribbons are harder or softer than the matrix material, respectively.

Weng and Wang [33] extended the Mori–Tanaka method [34] into the Laplace domain to investigate
the viscoelastic behavior of an isotropic composite containing randomly oriented inclusions.

The nonlinear viscoelastic/viscoplastic behavior of IM6/5260 graphite/bismaleimide has been the
subject of investigation by Pasricha et al. [35]. Schapery’s nonlinear formulation [12] was used to
characterize the response of the above material at 93 ◦C by testing the 0-, 90-, and 45-degree specimens.
The 90-degree specimen showed a nonlinearly elastic but linearly viscoelastic behavior, while the
45-degree specimen was both nonlinearly elastic as well as nonlinearly viscoelastic.

A micromechanical analysis to investigate the overall viscoelastic behavior of a unidirectional
composite has been proposed by Aboudi [36,37]. Good agreement has been shown to exist between the
finite element results obtained by Schaffer and Adams ([11]) and the proposed micromechanical analysis.

The subject related to the properties of biphasic materials has been studied by numerous papers
in recent years [38–49].
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In the paper, the authors propose a micromechanical model in order to study the creep behavior
of a composite material reinforced with carbon fiber. The model was used to obtain the creep curve
for different load applied to the test specimen. An experimental procedure was used to verify the
obtained results.

2. Micromechanical Model

In a micromechanical approach, the global composite properties are determined from the properties
of the individual constituents, i.e., fiber and matrix, as well as the interaction between them. Indeed,
in a unidirectional composite, the fibers are distributed randomly in the matrix material. However,
it is reasonable to consider some periodicity in the distribution of the fibers. The symmetries and the
periodicity help us to simplify the proposed model. An example of this situation is depicted by the
square array in Figure 2. The following assumptions are made in the present micromechanical analysis:

• Continuous fibers, circular in cross section and extended in the X1-direction, are arranged in a
rectangular array in the X2–X3 plane.

• The fibers are supposed to be linearly elastic and anisotropic while the polymeric matrix is
nonlinearly viscoelastic but isotropic.

• The interaction between fibers and matrix is merely mechanical and no crack or holes may develop
under load.
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Figure 2. Square fiber packing geometry of a unidirectional composite.

The above regular and periodic packing allows the analysis of a representative cell and thereby
reduces the size and complexity of the problem. Note that Figure 3 shows one of the repeating units
of the periodical pattern shown in Figure 2. Thus, the representative unit cell (RUC) can consist of
two subcells modeling only one-quarter of a fiber with the corresponding matrix material as shown in
Figure 4. Moreover, the unit cells are considered to be small in size compared to all dimensions in
the composite.
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Figure 4. The representative unit cell with local coordinates.

For each subcell in the representative cell, a local reference frame (X1, x(λ)2 , x(λ)3 ) with its origin
located as shown in Figure 4 is introduced. Furthermore, the displacement in each of the two subcells
is expressed in a first-order linear expansion as a function of the distance from the origin to the local
coordinate axes [27,28]. This means that the displacement at any point in the subcell is:

u(λ)
i = uo(λ)

i + x(λ)2 ξ
(λ)
i + x(λ)3 ζ

(λ)
i ; i = 1, 2, 3. (1)

In this equation, uo
i represents the displacement components of the origin of the local coordinate

axes. The functions ξ(λ)i and ζ(λ)i are used to represents linear dependence of the displacements at any

point in the subcell in x(λ)2 and x(λ)3 directions, respectively. It should be pointed out the “λ“ is used to
symbolically represent both fiber (λ = f ) and matrix (λ = m) constituents in the representative cell.
An example of this is the expression given by Equation (1) which applies to both phases, fiber as well
as matrix. For an expression applying exclusively to only one of the constituents in the representative
cell, the proper notation “f ” or “m” is used.
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It is now necessary to establish a relation between the average stresses and average strains in
the composite from which the overall behavior of the composite can be determined. The familiar
strain–displacement relations of anisotropic bodies,

εi j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
; i, j = 1, 2, 3, (2)

Applied to each subcell of the representative cell and written in an alternative form, yields

ε
(λ)
i j =

1
2

∂u(λ)
i
∂x j

+
∂u(λ)

j

∂xi

 ; i, j = 1, 2, 3 (3a)

If i , j we have the notation:

ε
(λ)
i j =

1
2

∂u(λ)
i
∂x j

+
∂u(λ)

j

∂xi

 = γ
(λ)
i j

2
; i, j = 1, 2, 3 ; i , j (3b)

where γ(λ)i j = 2ε(λ)i j ; i, j = 1, 2, 3 ; i , j is the engineering shear strain.
Substituting Equation (1) into Equation (2) and considering Equation (3a,b) yields:

ε
(λ)
11 =

∂uo(λ)
i
∂X1

(4)

ε
(λ)
11 =

∂uo(λ)
i
∂X1

(5)

ε
(λ)
33 = ζ

(λ)
3 (6)

γ
(λ)
23 =

[
ξ
(λ)
3 + ζ

(λ)
2

]
. (7)

γ
(λ)
31 =

∂uo(λ)
3

∂X1
+ ζ

(λ)
1

 (8)

γ
(λ)
12 =

∂uo(λ)
2

∂X1
+ ξ

(λ)
1

. (9)

The constitutive equation of a linear and transversely isotropic material is:

ε11

ε22

ε33

γ23

γ31

γ12



(λ)

=



S11 S12 S12 0 0 0
S12 S22 S23 0 0 0
S12 S23 S22 0 0 0
0 0 0 S44 0 0
0 0 0 0 S66 0
0 0 0 0 0 S66



(λ)

σ11

σ11

σ11

τ23

τ31

τ12



(λ)

(10a)
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or: 

ε11

ε22

ε33

γ23

γ31

γ12



(λ)

=



1
E11

−
ν12
E22

−
ν12
E22

0 0 0

−
ν12
E22

1
E22

−
ν23
E22

0 0 0

−
ν12
E22

−
ν23
E22

1
E22

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12



(λ)

σ11

σ22

σ33

τ23

τ31

τ12



(λ)

. (10b)

where E11 and E22 = E33 are the Young’s moduli, G23 and G12 = G13 are the shear moduli and ν23 and
ν12 = ν13 are the Poisson’s ratio. It is appropriate to write this equation in the inverse form as it applies
to the elastic fiber material (λ = f ). Note that X1 is the direction of anisotropy and the X2–X3 plane is
the plane of isotropy.

σ11

σ22

σ33

τ23

τ31

τ12



( f )

=



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 C66 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44



( f )

ε11

ε22

ε33

γ23

γ31

γ12



( f )

, (10c)

with:
C66 =

C22 −C23

2
. (10d)

The other components of the stiffness matrix Ci j are obtained from Equation (10b). In compact
form, Equation (10c) can be written as:

σ( f ) = C( f )ε( f ). (11)

Due to the presence of polymeric matrix in composite materials, the overall behavior of the
fiber-reinforced plastics should be considered as viscoelastic. The viscoelastic material response of the
composite, for a creep type loading in which the applied stress is kept constant, can be described with
the help of the Boltzmann’s superposition principle.

For the nonlinear viscoelastic material behavior under uniaxial creep loading and isothermal
conditions, however, Schapery’s equation [12], written here in a modified form yields:

ε(t) = Dn σn. (12)

where:

Dn = goDo + g
m∑

j=1

D j
(
1− e−t/r j

)
. (13)

For the isotropic nonlinear viscoelastic material, (subcell “m” in the representative cell) under
multiaxial loading, the constitutive equations can be written in a tensor form as follows:

ε
(m)
i j = Dn[1 + ν(t)]σ(m)

i j −Dn ν(t) σ
(m)

kk δi j. (14)

In Equation (14), Dn is given by Equation (13), ν(t) is the time-dependent Poisson’s ration, and δi j
is the Kronecker’s delta. For the materials examined in the present study, it has been determined
experimentally that Poisson’s ratio is a very weak function of time so that it can be taken to be practically
time independent.
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The problem is now reduced to the following steps to determine the overall behavior of the
composite. First, the induced stresses in each subcell resulting from an externally applied constant
load are to be determined. Continuity of tractions along the interfaces of the phases has to be satisfied.
Then, the strains in the representative cell need to be calculated using the induced strains in each
subcell. It should be noted that all stresses and strains are evaluated in an average sense. Continuity of
displacements throughout the composite requires that all displacements be continuous over the
boundary of the subcells inside the unit cell, as well as between the adjacent cells. Finally, the overall
behavior of the composite is determined by relating the average stresses and the average strains
evaluated above.

3. Calculation of the Average Stresses in the Unit Cell

The composite specimen under consideration is in the shape of a rectangular parallelepiped with
edges parallel to the coordinate axes (X1, X2, X3) and has a volume V. The problem to be discussed
now is that of computing the average stress σi j in the representative volume cell. This is a sample
of the whole composite which contains a sufficient number of the constituent materials and, at the
same time, is representative of the bulk material, as far as the structural point of view is concerned.
Therefore, the representative volume cell retains the same properties as those of the entire composite.
The volume average of the stress distribution can be written as:

σi j =
1
V

∫
V

Si jdV. (15)

For the representative cell containing one-quarter of a fiber and the corresponding matrix, the above
equation is written in an alternative form as:

σi j =
1
A

(
S
( f )
i j A f + S

(m)
i j Am

)
, (16)

where S
(λ)
i j are the average stresses in the subcells and A and Aλ are the areas of the representative cell

and of the subcells, respectively. Note that for the sake of simplicity in computation, a unit depth of
the composite has been considered, i.e., V = A × 1. It follows from Figure 3 that

A = (R + h/2)2; A f = πR2/4 ; Am = (R + h/2)2
−πR2/4; (17)

σi j =
1(

R + h
2

)2

πR2

4
S
( f )
i j +

(R +
h
2

)2

−
πR2

4

S(m)
i j

. (18)

The average stress in each of the two subcells is written in a similar way as:

S
(λ)
i j =

1
Aν

∫
A

σ
(λ)
i j dA =

1
Aν

x
σ
(λ)
i j dx2dx3. (19)

It seems appropriate at this point to change the variables of integration in the above double
integral and perform the integration in polar coordinate system. This is achieved by using the following
Jacobian transformation:

J =
∂(x2, x3)

∂(r,θ)
=

∣∣∣∣∣∣ cosθ sinθ
−r sinθ r cosθ

∣∣∣∣∣∣ = r. (20)

Equation (19) for subcell “f ” can therefore be written in the polar coordinate system as follows:

S
( f )
i j =

4
πR2

∫ π/2

0

∫ R

0
σ
( f )
i j rdrdθ, (21)
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where σ( f )
i j for the transversely isotropic fiber has the components introduced in Equation (12).

Substitution of Equations (4)–(9) and (10b) into Equation (21) leads to the following average stresses in
the fiber material:

S
( f )
i j =



C11ε
( f )
11 + C12

(
ε
( f )
22 + ε

( f )
33

)
C12ε

( f )
11 + C22ε

( f )
22 + C23ε

( f )
33

C12ε
( f )
11 + C23ε

( f )
22 + C22ε

( f )
33

C66γ
( f )
23

C44γ
( f )
31

C44γ
( f )
12



. (22)

This is written in an alternative form as:

S
( f )
i j =



C11
∂uo( f )

1
∂X1

+ C12

(
ξ
( f )
2 + ζ

( f )
3

)
C12

∂uo( f )
1
∂X1

+ C22ξ
( f )
2 + C23ζ

( f )
3

C12
∂uo( f )

1
∂X1

+ C23ξ
( f )
2 + C22ζ

( f )
3

C66

[
ξ
( f )
3 + ζ

( f )
2

]
C44

[
∂uo( f )

3
∂X1

+ ζ
( f )
1

]
C44

[
∂uo( f )

2
∂X1

+ ξ
( f )
1

]



. (23)

Next, the average stresses for subcell “m” are determined. For this purpose, it is convenient to
calculate the total stress in the unit cell as if it consisted only of matrix material. Subsequently, the stress
in subcell “m” is computed by subtracting that of subcell “f ” from the total stress of the unit cell as
computed above. Based on the local coordinate of subcell “m”, the following relation is obtained:

S
(m)
i j =

1(
R + h

2

)2
−
πR2

4

∫ R+h/2

0

∫ R+h/2

0
σ
(m)
i j dx2dx3 −

∫ π/2

0

∫ R

0
σ
(m)
i j rdrdθ

 (24)

This equation together with Equations (4)–(9) and (14) yields:

∂uo
1

∂X1
= Dn[1 + ν(t)]S

(m)
11 −Dn[ν(t)]S

(m)

kk ; (25)

ξ
(m)
2 = Dn[1 + ν(t)]S

(m)
22 −Dn[ν(t)]S

(m)

kk ; (26)

ζ
(m)
3 = Dn[1 + ν(t)]S

(m)
33 −Dn[ν(t)]S

(m)

kk ; (27)

ξ
(m)
3 + ζ

(m)
2 = 2Dn[1 + ν(t)]S

(m)
23 ; (28)

∂uo(m)
3

∂X1
+ ζ

(m)
1 = 2Dn[1 + ν(t)]S

(m)
31 ; (29)

∂uo(m)
2

∂X1
+ ξ

(m)
1 = 2Dn[1 + ν(t)]S

(m)
12 . (30)
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Note that Equations (25)–(30) is a system of nonlinear equations relating the subcell stresses in the
matrix S(m)

i j indirectly to the micro-variables ξ(m)
i and ζ(m)

i .

4. Determination of the Continuity Conditions

As mentioned earlier, throughout the representative cell, the continuity conditions of displacements
at the interface between the subcells and the adjacent unit cells must be fulfilled. This turn means that
the continuity conditions must be satisfied in both ×2 and ×3 directions within the composite, as it will
be described below.

It is obvious from Figure 5 that for subcells “f ” and “m”, the following relations hold

x( f )
2 = Xi

2 ∓X( f )
2 = ∓R cosθ (31)

and:

x(m)
2 = Xi

2 ∓X(m)
2 = ±

(
h
2
+ R−R cosθ

)
(32)

where Xi
2 is to imply the location of the interface between the subcells of the representative cell in the

X2 direction and θ located points on the interface.
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Upon substitution of Equations (31) and (32) into Equation (1) for λ = f and λ = m, viz.

u( f )
i = uo( f )

i ∓R cosθξ( f )
i + x( f )

3 ζ
( f )
i (33)

u(m)
i = uo(m)

i ±

(
h
2
+ R−R cosθ

)
ξ
(m)
i + x(m)

3 ζ
(m)
i (34)

where:
uo( f )

i = uo( f )
i (X( f )

2 ), (35)

uo(m)
i = uo(m)

i (X(m)
2 ). (36)

The condition for continuity of displacements at the interface between the two subcells must be
considered in the average sense. This means:

∫ π/2
−π/2

[
uo( f )

i ∓R cosθξ( f )
i + x( f )

3 ζ
( f )
i

]
R cosθdθ =

∫ π/2
−π/2

[
uo(m)

i ±

(
h
2 + R−R cosθ

)
ξ
(m)
i + x(m)

3 ζ
(m)
i

]
R cosθdθ. (37)
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The above integration is simplified to:

uo( f )
i

(
X( f )

2

)
±
πR
2
ξ
( f )
i = uo(m)

i

(
X(m)

2

)
∓

(
h + 2R−

πR
2

)
ξ
(m)
i (38)

Attention is drawn to the fact that the above quantities are as yet evaluated at X( f )
2 and X(m)

2 .
Addition and subtraction of the above equations provides the continuity conditions of

displacements described above in X2 direction as:

uo( f )
i = uo(m)

i = uo
i . (39)

Equation (39) is the expression which describes the continuity of displacement for the two
neighboring cells, λ = f and λ = m.

5. Calculation of the Average Strains in the Unit Cell

For the composite specimen introduced earlier and making use of the continuity of displacements
just discussed, the volume average of the internal strain can be shown to be:

εi j =
1
V

∫
V
εi jdV, (40)

and, for the representative cell under investigation

εi j =
1
A

∑
λ= f ,m

ε
(λ)
i j Aλ, (41)

where A and Aλ have the same definition as before and ε(λ)i j are the strain components in the subcells
as defined in Equations (4)–(9).

Substituting Equation (1) in (3) leads to the following relation for i = j = 1

ε
(λ)
i j =

∂uo
1

∂X1
. (42)

This equation together with Equation (41) yields:

ε11 =
1(

R + h
2

)2

πR2

4

∂uo
1

∂X1
+

(R +
h
2

)2

−
πR2

4

 ∂uo
1

∂X1

, (43)

which can be simplified to:

ε11 =
∂uo

1

∂X1
. (44)

Having established all the necessary equations for the prediction of the overall behavior of the
composite, it is now appropriate to work out examples to examine the applicability of the analysis.
It was mentioned earlier that even in a uniaxial test, the specimen experiences a three-axial state of stress
which is very complex. It is, therefore, appropriated to have be octahedral shear stress in the matrix
to let the stress-dependent material properties go, g1, g2 and aσ depend on a single invariant rather
than the applied stress given in Equations (12)–(13). This so-called equivalent stress was introduced
to be the octahedral shear stress in matrix. The same analogy can be used here to let the material
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properties be a function of S(m)
oct , an equivalent stress in the subcell “m” defined below, since the analysis

is performed on the micro-level.

S(m)
oct =

{
1
2

[(
S
(m)
11 − S

(m)
22

)2
+

(
S
(m)
22 − S

(m)
33

)2
+

(
S
(m)
33 − S

(m)
11

)2
]
+ 3

[(
S
(m)
12

)2
+

(
S
(m)
23

)2
+

(
S
(m)
31

)2
]} 1

2

(45)

It should be noted that the procedure by which the unknowns are solved for is of an incremental
nature. This means that the unknown variables are evaluated stepwise in time and that the procedure
is continued until the variables of interest are determined at the requested time. At each time step,
however, a system of 13 algebraic equations is to be solved. These equations are summarized below
and contain the following as unknown variables:

• the six subcell stresses S
(λ)
11 , S

(λ)
22 , and S

(λ)
33 ;

• the four micro-variables ξ(λ)2 and ζ(λ)3 ;

• and the three composite strains ε11, ε22, and ε33.

As mentioned earlier, it is desired to establish a relation between the average stress in the matrix
and that of the fiber in the representative unit cell. It should be pointed out that the assumption of
equal average stresses in the neighboring subcells of the representative unit cell (RUC) in Aboudi’s
model [36,37] may be an oversimplification of the real case. In reality, the average stresses and strains
in the two phases of the unit cell may be different. In general, if the unidirectional composite is under a
biaxial state of stress transverse to the fiber direction, namely in the (X2, X3) plane, the relations which
can be applied in the X2 direction are

S
( f )
22 = α fσ22, (46)

and:
S
(m)
22 = αmσ22, (47)

which are written in a simplified form as:

S
( f )
22 =

α f

αm
S
(m)
22 . (48)

A similar relation can be obtained in X3 direction:

S
( f )
33 =

β f

βm
S
(m)
33 . (49)

It should be mentioned at this point that the concentration factors αλ and βλ should satisfy the
relation:

α f v f + αmvm = 1, (50)

And
β f v f + βmvm = 1. (51)

For the special case when the composite is loaded in only one of the directions, X2 or X3, the relation
corresponding to the direction with no applied load should be replaced accordingly by either:

S
( f )
33 = −

vm

v f
S
(m)
33 , (52)

or:
S
( f )
22 = −

vm

v f
S
(m)
22 . (53)
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For the biaxial loading conditions as described above, the concentration values in an average sense
have to be determined accordingly. A few biaxial cases were examined, but since all the experiments
carried out in the present study were under uniaxial tension test, only these values are considered here.

The 13 equations containing the 13 unknowns listed before are the following:

S
( f )
11 = C11ε11 + C12

(
ξ
( f )
2 + ζ

( f )
3

)
; (54)

S
( f )
22 = C12ε11 + C22ξ

( f )
2 + C23ζ

( f )
3 ; (55)

S
( f )
33 = C12ε11 + C23ξ

( f )
2 + C22ζ

( f )
3 (56)

ε11 = Dn[1 + ν(t)]S
(m)
11 −Dn[ν(t)]S

(m)

kk ; (57)

ξ
(m)
2 = Dn[1 + ν(t)]S

(m)
22 −Dn[ν(t)]S

(m)

kk ; (58)

ζ
(m)
3 = Dn[1 + ν(t)]S

(m)
33 −Dn[ν(t)]S

(m)

kk ; (59)

ε22 =
1
A

[
A fξ

( f )
2 + Amξ

(m)
2

]
; (60)

ε33 =
1
A

[
A f ζ

( f )
3 + Amζ

(m)
3

]
; (61)

S
( f )
22 =

α f

αm
S
(m)
22 ; (62)

S
( f )
33 =

β f

βm
S
(m)
33 ; (63)

σ11 =
1
A

[
A f S

( f )
11 + AmS

(m)
11

]
; (64)

σ22 =
1
A

[
A f S

( f )
22 + AmS

(m)
22

]
; (65)

σ33 =
1
A

[
A f S

( f )
33 + AmS

(m)
33

]
. (66)

However, the relations above containingαλ andβλ should be modified when necessary. The properties
for the two types of fibers together with the associated resins are given in Table 1. For the fibers, the
longitudinal elastic modulus El was supplied by the manufacturer. Since the transverse properties of the
fibers (i.e., Et, υlt,υtt) are not available, their values were computed based on an inverse technique.

Table 1. Elastic constituent material properties.

Material El (MPa) Et (MPa) vl vt

T-800 Carbon Fiber 294.00 13.46 0.336 0.281

IM-6 Carbon Fiber 272.00 15.95 0.356 0.261

6373 Epoxy Resin 3.79 3.79 0.32 0.32

APC-2 PEEK Resin 4.54 4.54 0.34 0.34

Glass Fiber 77 77 0.2 0.2

In order to verify the applicability of the presented procedure, a creep curve of the glass/epoxy
system used in Schaffer and Adams’s study [11] was obtained. This together with the results computed
with the finite element method is shown in Figure 6. It is readily seen that the results of the proposed
micromechanical approach agree very well with those obtained using Finite Element Method.
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Figure 6. Comparison between micromechanical and Finite Element prediction for ε22 of glass epoxy
composite subjected to σ22 = 103.4 MPa and σ33 = 34.5 MPa

For the purpose of illustration, in Figure 7 through 11, the above micromechanics procedure
was used to obtain the creep curve at different temperatures and stress levels for the two composites
and resin materials mentioned earlier. It can be easily observed that the proposed micromechanical
analysis can be used for accurate predictions of the experimental data under various loading conditions
(temperature 23 ◦C, see Figure 7; temperature 80 ◦C, see Figure 8). We mention that 23 ◦C represents
the room temperature where the reference experiments were made. The temperature of 80 ◦C is the
temperature at which the experiments were done for this study and represents a temperature that is
found in some practical applications of carbon fibers. It should be pointed out that the present analysis,
as opposed to the one presented in [15,16], assumes the fibers have a circular cross section. Calculus was
performed in the environment programming MATLAB. The studied cases are summarized in Table 2.
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Table 2. Cases verified by experimental tests.

Case Components Stress (MPa) Temperature (◦C) Figure
No.

1 Neat PEEK Resin 26 23 Figure 7

2 Neat PEEK Resin 13 80 Figure 8

3 Carbon/PEEK 26 80 Figure 9

4 Carbon/PEEK 47 80 Figure 10

5 Carbon/Epoxy 30 80 Figure 11

6 Carbon/Epoxy 36 80 Figure 12
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6. Results and Discussion

In Figure 7, the response of the neat PEEK resin subjected to an applied uniaxial stress of
σ = 26 MPa at 23 ◦C is shown together with the experimental result. Examination of Figure 7 indicates
that a good prediction of the experimental results is achieved by using the proposed micromechanical
approach. In Figure 8, the same tests performed at 80 ◦C is presented. A significant difference can be
observed. The temperature changes the creep diagram and the strain in the specimen is half as much
as in the first case.

In Figure 9, the overall creep response of a one-dimensional carbon/PEEK composite subjected to
a transverse stress of σ22 = 26 MPa at 80 ◦C is shown along with the experimental result. It is readily
seen that the deviation of the present micromechanical prediction from the experimental result is
around 5%. The effect of non-linearity can be seen in Figure 10 where the applied stress is increased to
σ22 = 47 MPa while the temperature is kept unchanged. Fair to good agreement seems to exist between
the experimental and computed results for the presented loading condition. Analogous results are
obtained for the transverse creep response of carbon/epoxy composite for which the graphs are shown
in Figures 11 and 12.

It is shown that excellent modeling of the experiments is possible by using Schapery’s approach
for nonlinear viscoelastic characterization. The results show that the stress range, in which linear
viscoelasticity can be assumed, is shifted to lower values with increasing temperature. This is true for
the meat resins and the [±45]2s laminates investigated. However, temperature seems to have a much
lower effect on the linear viscoelastic limit of the [90]4s laminates. The influence of the temperature on
the time-dependent response was found to be nonlinear.

7. Conclusions

A combined experimental–analytical study to investigate the temperature dependence of the
nonlinear viscoelastic response of two composite materials—a thermoset and a thermoplastic matrix
system—was undertaken. The following remarks are made with regard to the results presented in
the paper.

An excellent modeling is possible using Schapery’s result [11] for nonlinear and creep response of
viscoelastic materials. For the temperature considered in the paper (80 ◦C), it can be assumed that the
instantaneous response is linear and temperature independent over the range of stress levels relevant
in practical applications. This result can be useful in the study of thermoviscoelastic response analysis
of composite materials.

Concerning the micromechanics procedure of the present study, the analysis is capable of
modeling a unidirectional composite subjected to longitudinal and/or transversal normal loading.
A finite element procedure is used to model an RVE(representative volume element). The constitutive
material parameters which are functions of time and temperature are input to the program through
appropriate subroutines. Schapery’s nonlinear constitutive equation for isothermal uniaxial loading
condition is incorporated into the analysis to account for nonlinear viscoelastic behavior. From the
numerous experimental results, the several examples presented demonstrate the potential application
of the present method. For the three-axial state of stress which is presented in the composite as a result
of uniaxial loading, the equivalent stress in the matrix is considered so that all viscoelastic parameters
are dependent on a single invariant. Poisson’s ratio has been shown to be a very weak function of time
or nearly time independent, an observation which has greatly simplified the constitutive equations.

In summary, the creep data generated through the use of the above micromechanical approach
show good correlation with those obtained experimentally.
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