
symmetryS S

Article

Gravitating Bubbles of Gluon Plasma above
Deconfinement Temperature

Yves Brihaye 1 and Fabien Buisseret 2,3,∗

1 Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems,
Université de Mons, Place du Parc 20, 7000 Mons, Belgium; yves.brihaye@umons.ac.be

2 Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems,
Université de Mons, Place du Parc 20, 7000 Mons, Belgium

3 CeREF, Chaussée de Binche 159, 7000 Mons, Belgium
* Correspondence: fabien.buisseret@umons.ac.be

Received: 2 September 2020; Accepted: 8 October 2020; Published: 13 October 2020
����������
�������

Abstract: The equation of state of SU(3) Yang–Mills theory can be modelled by an effective
Z3−symmetric potential depending on the temperature and on a complex scalar field φ. Allowing φ

to be dynamical opens the way to the study of spatially localized classical configurations of the
scalar field. We first show that spherically symmetric static Q-balls exist in the range (1− 1.21)× Tc,
Tc being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical
within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that
spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and
boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean
radius is always smaller than 10 fm.
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1. Introduction

A fascinating feature of Yang–Mills theory is the existence of a deconfinement temperature,
Tc, above which free color charges (free gluons) may propagate without being confined into color
singlets [1,2]. This deconfined phase can be thought as a “gluon plasma”, in analogy with the celebrated
quark-gluon plasma experimentally created first at RHIC [3,4], i.e., the deconfined phase of full QCD.

In pure SU(Nc) Yang–Mills theory, deconfinement might be driven by the breaking of a global
center symmetry, i.e., ZNc symmetry [5,6], exemplified by the behavior of the Polyakov loop at

finite temperature T. The Polyakov loop is defined as L(T,~y) = 1
Nc

TrcP ei g
∫ 1/T

0 dτA0(τ,~y), with A0 the
temporal component of the Yang–Mills field and ~y the spatial coordinates. P is the path-ordering, g is
the strong coupling constant and units where h̄ = c = kB = 1 are used. Since gauge transformations
belonging to the center of the gauge group only cause L(T,~y) to be multiplied by an overall factor,
the Polyakov loop is such that the spatial average 〈L〉 = 0 ( 6= 0) when the ZNc symmetry is present
(broken), hence when the theory is in a (de)confined phase [2,7]. Hence 〈L〉 is commonly seen as an
order parameter for Yang–Mills theory at finite T, although it may not be the best physical candidate.
As shown in [8], distinct ZNc phases above Tc do not actually label different physical states. Moreover,
the value−T ln 〈L〉, giving the free energy of a static color source in the heath bath, may take unphysical
complex values above Tc. The real number | 〈L〉 |may be a better candidate, with a free energy given
by −T ln | 〈L〉 |. It is also argued in [8] that the correlator

〈
L(T,~y)L(T,~0)†

〉
at large distances may be a

proper order parameter. Another relevant order parameter for pure Yang–Mills theory has finally been
formulated in [9]: It is the spatial ’t Hooft loop V(C) [10], C being a closed spatial contour. V(C) shows
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a perimeter law in the confined phase and an area law in the deconfined phase: V(C) ∼ exp(−m P(C))
and V(C) ∼ exp(−α S(C)) respectively, with P and S the perimeter and the area of the closed contour.

In view of the above results we can safely assume that there exists one scalar field φ playing
the role of an order parameter. Moreover, there should exist a ZNc temperature-dependent potential
V(φ, φ∗, T), whose global minimum is different at T < Tc and T > Tc, reproducing the equation of
state computed in lattice QCD [11] in the mean-field approximation—recall that the pressure reads
p = −minφ,φ∗ V. In the case Nc = 3, the Z3-symmetry should be present through terms in φ3 + φ∗3 at
the lowest-order in a power expansion of V [12]: The explicit form we will use is given in Section 2.
In the following we go beyond mean-field theory and treat φ as a complex, position-dependent, scalar
field: This dynamical field mimics the behavior of pure Yang–Mills theory at finite T. The value of |φ|
being related to the phase of the gluonic matter, we can summarize the aim of our study as follows:
We search for configurations describing localized regions of (de)confined gluonic matter, either in flat
or curved 750/9.

On one hand we have already shown the existence of nontrivial solutions for φ(~y), vanishing at
infinity, at the deconfinement temperature in flat space-time and at large Nc [13]. On the other hand,
nontrivial static configurations in Z3-symmetric potentials have already been found in [14,15]. Most of
the effort in the field has been devoted to study the temporal evolution of such solutions in close relation
with thermalization issues of experimentally observed quark-gluon-plasma [14,16–19]. In this work we
search for spherically symmetric static Q-ball solutions with a focus on conditions constraining their
existence: temperature range, radial nodes, etc. Less standard solitons as Q-holes [20], never studied
up to now within that framework, are also discussed. Q-balls and Q-holes are discussed in Sections 3
and 5.

Finally, we couple our Z3-symmetric Lagrangian to Einstein gravity. To our knowledge, very few
attempts to describe to interplay between gravity and confinement/deconfinement phase transition
can be found in the literature. One can quote [21,22], respectively discussing the loss of simultaneity
between chiral restoration and deconfinement in curved space, and the possible existence of deconfined
regions near a black hole horizon. Here we go one step further by building “particle-like” solutions
for our scalar field that are known to appear in pure 3 + 1-dimensional Yang–Mills theory coupled to
Einstein gravity, see the seminal paper [23]. Within our approach the Yang–Mills degrees of freedom
are replaced by a complex scalar field, whose associated Q-balls, when coupled to gravity, are called
boson stars—see the review [24] for more recent references. To our knowledge, such a problem has
never been addressed at finite temperature although research devoted to “QCD boson stars” (at T = 0)
is currently ongoing [25]. We build gravitating solutions of static-boson-star-type, i.e., spherically
symmetric localized configurations of the scalar field that lead to an asymptotically flat metric without
singularity, see Section 5.

2. The Model

2.1. Z3-Symmetric Potential

Let us model SU(3) Yang–Mills theory at finite temperature by an effective Lagrangian based on a
complex scalar field φ plus Z3−symmetry. We use the potential V of Ref. [26] which reads

U(φ, φ∗, T) =
V(φ, φ∗, T)

T4 , (1)

with

U(φ, φ∗, T) = − b2(T)
2
|φ|2 + b4(T) ln

[
1− 6|φ|2 + 4(φ3 + φ∗3)− 3|φ|4

]
, (2)

and

b2(T) = 3.51− 2.47
Tc

T
+ 15.22

(
Tc

T

)2
, b4(T) = −1.75

(
Tc

T

)3
. (3)
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We have retained the above parametrization because it to an optimal agreement with the equation
of state of pure SU(3) Yang–Mills theory computed in lattice QCD [11], and also with the full
N f = 2 lattice QCD equation of state at zero and nonzero chemical potential when coupled to a
Nambu–Jona–Lasinio (NJL) model [26]. We note that the latter reference explicitly identifies the scalar
field with the Polyakov loop. In fact, their result is more general since φ can be regarded as the actual
order parameter of the model, not necessarily the Polyakov loop.

Potential (1) is displayed in Figure 1 for the values (3) of the parameters and for several
temperatures. The change in minimum is clearly seen above and below Tc: A (non)vanishing value for
|φ| gives the minimum of U in the (de)confined phase. We notice that potential (1) is only Z3-symmetric
and not U(1)-symmetric as is often the case in Lagrangians based on a complex scalar field, with typical
potentials of the form |φ|6 − 2|φ|4 + b|φ|2 [27]. A U(1)-symmetry can be recovered in the large-Nc limit
of ZNc -symmetric potentials, see [13,28].

Figure 1. The potential U(φ, φ∗, T) versus φ for various temperatures. U is given by Equations (2)
and (3), and the plot is restricted to φ ∈ R for the sake of clarity.

According to the suggestion of e.g., Ref. [29], we choose for φ a kinetic part of the form
N2

c T2∂µφ∂µφ∗/λ, which has both the correct energy dimensions and the expected Nc-scaling when the
gauge group SU(Nc) is chosen. λ is the ’t Hooft coupling. Minkowski metric has signature (+−−−).
In our SU(3) case, recalling that αs = λ/(12π), we can write our Lagrangian as

Lphys =
3T2

4παs
∂µφ∂µφ∗ − T4U(φ, φ∗, T), (4)

where φ = φ(yµ), yµ are the space-time coordinates. It is convenient to further define dimensionless
variables xµ related to the original (physical) ones by

yµ = lphys xµ, with lphys =

√
3

T
√

4παs
, (5)

so that the above Lagrangian can be replaced by the dimensionless one

L =
Lphys

T4 = ∂µφ∂µφ∗ −U(φ, φ∗, T), (6)

where φ = φ(xµ) and where T is expressed in units of Tc.
It is worth estimating the physical length used in the model. First, a typical value for the

deconfinement temperature in pure gauge QCD is Tc = 0.3 GeV [30]. Second, a way to estimate αs

is to note that the short-range part of the static interaction between a quark and an antiquark scales
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as −(4/3)αs/r, at least from T = 0 to Tc. Lattice studies, performed at Nc = 3, favor αs = 0.2 up to
T = Tc [31], which is the value we retain here. We are then in position to estimate that, at T = Tc,

lphys = 3.6 GeV−1 = 0.72 fm. (7)

2.2. Coupling to Einstein Gravity

The coupling of the above Lagrangian to gravity can be performed by minimally coupling the
scalar field to Einstein gravity: The action reads

S =
∫

d4x
√
−g
(

R
α
+ L

)
, (8)

with the effective coupling constant
α = 16πGN l2

physT4. (9)

The replacement of the partial derivatives by covariant ones in (6) must be performed.

3. Q-Balls

3.1. Ansatz and Existence Conditions

We begin by considering Lagrangian (6) where φ3 and φ∗3 are replaced by |φ|3 in order to recover
the usual U(1)-symmetry needed to build Q-balls solutions.

The classical equations of motion in flat space-time with potential U(|φ|, T) = − b2(T)
2 |φ|2 +

b4(T) ln
[
1− 6|φ|2 + 8|φ|3 − 3|φ|4

]
read

∂µ∂µφ = ∂φ∗U = − b2(T)
2

φ + 6b4(T)
−φ + 2|φ|φ− |φ|2φ

1− 6|φ|2 − 3|φ|4 + 8|φ|3 (10)

plus the complex conjugated equation. We then perform the usual Q-ball ansatz on the scalar field:

φ = exp(iωt)φ(r), (11)

where t = x0 and where r =
√
(x1)2 + (x2)2 + (x3)2. The solutions we will build can be characterized

by their mas M and by a dimensionless conserved charge Q, respectively defined by

M = Mphys

∫
d3x T00 (12)

with Mphys = 1/lphys and

Q = 2ω
∫

d3x |φ|2. (13)

The temporal component of the energy-momentum tensor represents the energy density, given by

T00 = ω2|φ|2 + ~∇φ · ~∇φ∗ + U(|φ|). (14)

The conserved charge Q finds its origin in the (artificially restored) U(1)-symmetry of the
considered Lagrangian, leading to a conserved Noether current of the form Jµ = i(φ∂µφ∗ − φ∗∂µφ),
Q being the space integral of J0. Axially symmetric solutions with k 6= 0 are spinning Q-balls
whose angular momentum J is related to the charge Q according to J = kQ [27]. Here we focus on
non-spinning Q-balls.

We have studied the equations for generic values of ω although it is clear that only the solutions
corresponding to ω = 0 are physically relevant for the potential under consideration: The original
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potential is Z3-symmetric, not U(1). Note also that if φ(r) is a real solution of the equations of motion,
e

ikπ
3 with k ∈ Z is also a solution because of the system’s symmetry.

The mass term of the potential plays a crucial role in the existence of the solutions. In a power
expansion in |φ|,

U(|φ|, T) = m2(T)|φ|2 + ‘higher order” , with m2(T) = − b2(T)
2
− 6b4(T). (15)

General results on Q-balls [27] state that the soliton exist for ωmin ≤ ω ≤ ωmax with

ωmin = min
|φ|

U(|φ|, T)
|φ|2 , ωmax = m(T). (16)

In particular, if the potential U(|φ|) is negative in some interval of values of |φ|, the value ω = 0
belongs to the spectrum of the boson star. This turns out to be the case for T > Tc. The condition
m(T)2 > 0 also needs to be fulfilled; in terms temperature, this corresponds to T/Tc > 1.21. As a
consequence, the general properties of Q-balls solutions suggest that Q-ball solutions with zero
frequency will exist for 1 < T/Tc < 1.21.

The parametrization (2) of the potential is not unique. In particular, a power expansion of the form

U = − b2

2
|φ|2 − b3

6
(φ3 + φ∗3) +

b4

4
|φ|4 (17)

is often used in effective YM theories at finite T, the choice b2 = 6.75− 1.95(Tc/T) + 2.63(Tc/T)2 −
7.44(Tc/T)3, b3 = 0.75, b4 = 7.5 leading to a good agreement with lattice QCD data [32]. Using this
alternative choice would not forbid the existence of Q-ball solutions: The mass term b2 is positive
above Tc and the criterion (16) leads to ωmin < 0, so ω = 0 solitons are allowed also in this case.

3.2. Numerical Results

A numerical resolution of the equations (10) can now be performed. We use a collocation
method for boundary-value ordinary differential equations, equipped with an adaptive mesh selection
procedure [33]. The regularity of the solution at the origin implies dφ

dr (r = 0) = 0, the finiteness of the
energy and the charge impose φ(∞) = 0. These are the boundary conditions.

We present in Figure 2 the spectrum of the Q-balls for T/Tc = 0.83, 1.01, 1.18. It can be observed
that no Q-ball solution with ω = 0 can be found below Tc: It is a nice feature of our model that it does
not lead to solutions modelling deconfined matter below Tc. In the range 1 < T/Tc < 1.21 suggested
by the above analysis however, such solutions can be found. From now on, we concentrate on the
latter ω = 0 solutions. Our results are summarized in Figures 3 and 4.

Our numerical analysis shows that in the limit T/Tc → 1.21 the scalar function φ(r) approaches
uniformly the null function as expected by the existence criterion discussed before. The limit T → Tc

reveals a peculiar behavior of the solitons: Their mean radius and mass increase considerably. In this
limit the scalar function φ(r) is closer and closer to a nonzero constant solution, leading to the observed
increase in mass and mean radius.

All the Q-balls we find have a mean radius smaller than 14× lphys = 10 fm and are lighter
than 140 × Mphys = 38.9 GeV. Similar solutions were found in [14] with a simpler, power-law,
Z3−symmetric potential of the form |φ|2 − a(φ3 + φ∗3) + b|φ|4. At T = 1.1 Tc they find a soliton
with a typical size of 1.5−2 fm while we find a Q-ball with mean radius 1.43 fm and mass 200 MeV at
the same temperature. Other results are obtained in [14] but in 2 + 1 dimensions so they cannot be
compared to ours.

We have tried to construct radially excited solutions, i.e., solutions where the radial function
presents one or more nodes, but so far, we cannot find any. The absence of solutions presenting nodes
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for our model can be explained by the following argument. In general, the existence of node solutions
is closely related to the shape of the effective potential

Ve f f (|φ|) =
ω2

2
|φ|2 − 1

2
U(|φ|) . (18)

Several conditions are necessary for node solutions to exist [27,34]: (i) φ = 0 should be a local
maximum of Ve f f , (ii) the effective potential should admit local minima for both signs of φ. It would
be challenging to have a generic proof of the absence of node solutions with our potential but an
inspection of the potential U(|φ|) quickly reveals that no local minimum exist for φ < 0 when φ ∈ R
(see Figure 1), so the condition (ii) cannot be fulfilled when ω = 0.

Figure 2. Relation between ω and Ω ≡
√

m2(T)−ω2 versus φ(0) for three values of T/Tc in flat
space-time (α = 0) (solid lines). The dotted lines represent ω and gtt(0) in the case T/Tc = 1.01 for
gravitating solutions (α = 1).

Figure 3. Profiles of φ(r) for several values of T/Tc. Distances are in units of lphys.

The spectrum of the fundamental Q-ball appears quite different with the present potential than
in more conventional U(1)-symmetric potentials. For example, one of us previously studied Q-balls

with the SUSY-inspired potential USUSY(|φ|) ∼ 1− exp
(
− |φ|

2

η2 )
)

, with η ∈ R+
0 [35]. In contrast to our

potential, solutions can be constructed for arbitrarily large values of the central density φ(0) with the
latter potential, and radially excited solitons can be obtained. We considered an effective potential
consisting of a linear superposition of our potential and the SUSY-potential. The latter is known to
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admit node solutions: Ue f f = cos(y)USUSY + sin(y) U with y ∈ [0, π/2]. It turns out that when
we progressively deform the SUSY-potential into our potential (say with a fixed value φ(0) < 1) the
zero-node solutions get continuously deformed and the frequency ω decreases with increasing the
mixing parameter y. By contrast, for the one node solution, the ω quickly reaches ω = 1 and the
solution becomes oscillating.

Figure 4. Evolution of the mean radius 〈R〉 as a function of T/Tc, the insert contains φ(0) and the
mass (12) of the scalar field. Distances are in units of lphys and masses are in units of Mphys.

3.3. Symmetry Breaking

An obvious outlook is to include the matter sector of QCD in our approach. As discussed in [12],
an immediate effect of quarks is the breaking of Z3−symmetry in the potential and the simplest
way to mimic that symmetry breaking is to add a term proportional to (φ + φ∗) or even (φ + φ∗)2

to the potential. A more rigorous treatment of quark fields may be achieved by coupling φ to a
NJL Lagrangian [15,36]. Within mean-field approximation for quarks, it has been show in [37] that
complex-valued solutions of Q-ball-type still exist with broken Z3-symmetry. A question arising at
this stage is therefore: May the ω = 0 Q-balls we constructed “survive” to such a symmetry breaking?

We propose to perform the substitution U → Uβ = U + β (φ + φ∗)2 with β a real constant
parameter. This ansatz breaks the Z3-symmetry while still allowing analytical calculations. In a
power expansion in φ on the real axis, the β-term shifts the mass term: m2(T) → m2(T) + 4β.
Graphical inspection of the modified potential shows that there is always an interval of φ values
in which Uβ is negative above Tc if β < 0. Nevertheless a negative value of β lowers m2 and therefore
lowers the maximal temperature at which Q-balls may be expected (m2 is indeed a decreasing function
of T). If −0.5 < β < 0, there always exists an interval of temperatures above Tc for which the existence
of Q-balls is guaranteed. We can thus safely assume that the solutions we find will not necessarily
disappear in a more realistic theory including quarks.

4. Q-Holes

Q-holes are configurations of the scalar field behaving like (11) but such that |φ(r = 0)| > 0 and
|φ(r → ∞)| = φc > |φ(r = 0)|, with φc a local minimum of the potential under study [20]. Are ω = 0
Q-holes solutions worth being constructed within the present approach?

A necessary condition for Q-holes to exist is that the second maximum of the effective potential (18)
is lower than the maximum at the origin [38]. As illustrated in Figure 1, it can only happen below Tc in
our model since Ve f f (|φ|) = − 1

2 U(|φ|) at vanishing ω. A configuration where φ is everywhere nonzero
at a temperature below the deconfinement one is not physically relevant; although the problem is
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interesting from a technical point of view we have thus to discard Q-hole solutions in the present work.
The same conclusion holds for the parameterization (17).

5. Boson Stars

The action (8) leads to the Einstein equation

Gµν =
α

2
Tµν (19)

where the energy-momentum tensor is given by Tµν = (Dµφ)∗(Dνφ) + (Dµφ)(Dνφ)∗ −
gµν(Dαφ)∗(Dαφ) + gµνL. The metric defines ds2 = gµνdxµdxν and Dµ is the covariant derivative.
An estimation of this coupling constant α in the temperature range under study is 16πGN l2

physT4
c =

3.58× 10−38. It is so small that no significant change of the solutions can be observed by numerical
investigation. To appreciate more clearly the influence of gravity on the system we will construct
solutions with α = 0.01 and 1.

We search for boson-star solution. First, the ansatz (11) and the boundary conditions are kept for
the scalar field. Second, we choose a spherically symmetric ansatz for the metric:

ds2 = − f (r)dt2 +
l(r)
f (r)

(
dr2 + r2 dθ2 + r2 sin2 ϕ dϕ2

)
, (20)

with the boundary conditions f (r = +∞) = l(r = +∞) = 1 (asymptotically flat space-time) and
f ′(r = 0) = l′(r = 0) = 0 (no singularity at origin). The gravitational mass MG of these gravitating
objects is defined as usual according to f (r → ∞) ∼ 1− 2MGGN

r . The explicit equations involving
φ, f and l can be found in Appendix B of [34]; we do not recall them here for the sake of simplicity.
The same numerical method as for Q-balls is used to construct boson-star solutions [33].

Even for such large values as α = 1, our results indicate that gravitating solutions with ω = 0 still
exist on roughly the same interval of T/Tc, see Figure 5. However, the numerical analysis turns out to
be tricky in the limit T → Tc likely because the local minimum of the potential disappears. Our results
strongly suggest that the gravitational mass and mean radius increase considerably in the limit T → Tc

as shown by Figure 5, similarly as what is observed in the Q-ball case. As expected, the metric gets more
deviated from the Minkowski metric in the central region of the soliton: for instance g00 � 1 (see the
blue line of Figure 5) and one can expect an essential singularity of the metric to be formed at Tc.

The profiles of the solution corresponding to T/Tc = 1.01 are presented in Figure 6 for α = 1
(solid lines). This plot clearly demonstrates that the soliton splits the space into two distinct regions:
an interior region where φ is practically constant and strongly curving space-time and a region with
φ ∼ 0 where space-time is essentially Minkowski. These regions are separated by a “wall” of the
scalar field. The profile of a solution at an intermediate temperature T/Tc = 1.11 is also shown in
Figure 6; the same qualitative features are observed. The boson star finally presents different features
for T/Tc → 1.21, i.e., the limit of vanishing m(T). In this limit the scalar field approaches uniformly
the null function and the Minkowski space-time is approached.

The existence of boson-star configurations for α = 1 implies the existence of such solutions for
much smaller, “realistic”, values of the coupling constant around Tc, see Figure 5. Since potential (17)
will also lead to Q-balls above Tc, we can state that boson stars also exist with that parameterization.
We choose however not to perform full numerical computations since potential (2) leads to a more
accurate modelling of QCD equation of state as computed on the lattice.
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Figure 5. Evolution of the mean radius < R > (black line, in units of lphys) and of the gravitational
mass MG (red lines, in units of Mphys) as function of Tc/T for ω = 0 boson stars. The metric component
g00 = f (0) is represented by the solid (resp. dashed) blue lines for α = 1 (resp. α = 0.1). These values
depend very weakly on α and the curves are mostly superimposed.

Figure 6. Profiles of the metric functions f , l and of the scalar field φ for α = 1, ω = 0 and two values
of the temperature : T/Tc = 1.01 (solid lines) T/Tc = 1.11 (dashed lines). The radial variable r is in
units of lphys.

6. Summary and Outlook

We have built Q-balls and boson stars from a model with a complex scalar field plus a
temperature-dependent Z3-symmetric potential mimicking Yang–Mills theory at finite temperature.
We have shown that static Q-balls only exist between 1 and 1.21 Tc with a mean radius smaller than
10 fm and that they cannot have radial nodes. The solutions we find are spherically symmetric and the
scalar field is such that |φ(r = 0)| 6= 0 and |φ(r → ∞)| = 0; they can be interpreted as “bubbles” of
deconfined gluonic matter. We also showed that Q-holes solutions should be discarded from a physical
point of view since they are solutions modelling a deconfined phase, but that can only exist below
Tc within our approach. Static boson stars exist in roughly the same temperature range as Q-balls.
Their qualitative features are almost independent on the value of the matter-Einstein gravity coupling
constant α.
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To our knowledge, it is the first time that boson stars are constructed from an effective potential
such as (2). Typical potentials used in boson-star-related studies are such that solutions exist for
0 < ωmin ≤ ω ≤ ωmax, see i.e., [35]. It is worth pointing out that the potential used here even allows
the existence of static solutions with ωmin = 0.

Computation of the QCD equation of state in curved space-time shows that the latter may affect
the phase-diagram of the theory by increasing the splitting between the critical points for chiral and
deconfinement transitions [21]. We hope to present generalizations of our boson-star configurations
to the case of a nontrivial quark field in a future work; they could shed new light on the interplay
between confinement, chiral symmetry and gravity.
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