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Abstract: Not all features in many real-world applications, such as medical diagnosis and fraud 

detection, are available from the start. They are formed and individually flow over time. Online 

streaming feature selection (OSFS) has recently attracted much attention due to its ability to select 

the best feature subset with growing features. Rough set theory is widely used as an effective tool 

for feature selection, specifically the neighborhood rough set. However, the two main neighborhood 

relations, namely k-neighborhood and   neighborhood, cannot efficiently deal with the uneven 

distribution of data. The traditional method of dependency calculation does not take into account 

the structure of neighborhood covering. In this study, a novel neighborhood relation combined with 

k-neighborhood and   neighborhood relations is initially defined. Then, we propose a weighted 

dependency degree computation method considering the structure of the neighborhood relation. In 

addition, we propose a new OSFS approach named OSFS-KW considering the challenge of learning 

class imbalanced data. OSFS-KW has no adjustable parameters and pretraining requirements. The 

experimental results on 19 datasets demonstrate that OSFS-KW not only outperforms traditional 

methods but, also, exceeds the state-of-the-art OSFS approaches. 

Keywords: online stream feature selection; class imbalanced data; neighborhood rough set; 

weighted dependency degree 

 

1. Introduction 

The number of features increases with the growth of data. A large feature space can provide 

much information that is useful for decision-making [1–3], but such a feature space includes many 

irrelevant or redundant features that are useless for a given concept. It is of necessity to remove the 

irrelevant features so that the curse of dimensionality can be relieved. This motivates some sort of 

research for feature selection methods. Feature selection, as a significant preprocessing step of data 

mining, can select a small subset, including the most significant and discriminative condition features 

[4]. Traditional methods are developed based on the assumption that all features are available. Many 

typical approaches exist, such as ReliefF [5], Fisher Score [6], mutual information (MI) [4], Laplacian 

Score [7], LASSO [8], and so on [9]. The main benefits of feature selection include speeding up the 

model training, avoiding overfitting, and reducing the impact of dimensionality during the process 

of data analysis [4]. 

However, features in many real-world applications are individually generated one-by-one over 

time. Traditional feature selection can no longer meet the required efficiency with the growing 

volume of features. For example, in the medical field, a doctor cannot easily obtain the entire features 

of a patient. In bioinformatic and clinical medicine situations, acquiring the entire features in a feature 

space is expensive and inefficient because of high-cost laboratory experiments [10]. In addition, for 

the task of medical image segmentation, acquiring the entire features is infeasible due to the infinite 
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number of filters [11]. Furthermore, the symptom of a patient persistently changes over time during 

the treatment, and judging whether the feature contains useful information is essential for identifying 

the patient’s disease after a new feature has emerged [12]. In these cases, waiting a long time until 

entire features are available and then performing the feature selection process is the primary method. 

Online streaming feature selection (OSFS), presenting a feasible precept to solve feature 

streaming in an online way, has recently attracted wide concern [13]. The OSFS method must meet 

the following three criteria [14]: (1) Not all features are available, (2) the efficient incremental 

updating process for selected features is essential, and (3) accuracy is vital each time. 

Many previous studies have proposed some different OSFS methods. For example, a grafting 

algorithm [15], which employed a stagewise gradient descent approach to feature selection, during 

which a conjugate gradient procedure was used to carry out its parameters. However, as well as the 

grafting algorithm, both fast OSFS [16] and a scalable and accurate online approach (SAOLA) [13] 

need to specify some parameters, which requires the domain information in advance. Rough set (RS) 

theory [17], which is an effective mathematic tool for features selection, rules extracting, or 

knowledge acquisition [18], needs no domain knowledge other than the given datasets [19]. In the 

real world, we usually encounter many numerical features in datasets, such as medical datasets. 

Under this circumstance, a neighborhood rough set is feasible to analyze discrete and continuous 

data [20,21]. Nevertheless, all these methods proposed have some adjustable parameters. 

Considering that selecting unified and optimal values for all different datasets is unrealistic [22], a 

new OSFS method based on an adapted neighborhood rough set is proposed, in which the number 

of neighbors for each object is determined by its surrounding instance distribution [22]. Furthermore, 

in the view of multi-granulation, multi-granulation rough sets is used to compute the neighborhoods 

of each sample and extract neighborhood size [23]. For the above OSFS methods based on 

neighborhood relation, dependency degree calculation is a key step. However, very little work has 

considered the neighborhood structure in the granulation view during this calculation. In additional, 

the phenomenon of uneven distribution of some data, including medical data, is common, and few 

works focus on the challenge of the uneven distribution of data. 

In this paper, focusing on the strength and weakness of the neighborhood rough set, we 

proposed a novel neighborhood relation. Further, a weighted dependency degree was developed by 

considering the neighborhood structure of each object. Finally, our approach, named OSFS-KW, was 

established. Our contributions were as follows: 

(1) We proposed a novel neighborhood relation, and on this basis, we developed a weighted 

dependency computation method. 

(2) We developed an OSFS framework, named OSFS-KW, which can select a small subset made up 

of the most significant and discriminative features. 

(3) The OSFS-KW was established based on [24] and can deal with the class imbalance problem. 

(4) The results indicate that the OSFS-KW cannot only obtain better performance than traditional 

feature selection methods but, also, better than the state-of-the-art OSFS methods. 

The remainder of the paper is organized as follows. In Section 2, we briefly review the main 

concepts of neighborhood RS theory. Section 3 discusses our new neighborhood relations and 

proposes the OSFS-KW. Then, Section 4 performs some experiments and discusses the experimental 

results. Finally, Section 5 concludes the paper. 

2. Background 

Neighborhood RS has been proposed to deal with numerical data or heterogeneous data. In 

general, a decision table (DT) for classification problem can be represented as , , ,IS U R V f=   [25], 

where U  is a nonempty finite set of samples. R can be divided condition attributes C and decision 

attributes D, C D = . { | }rV V r R=   is a set of attributes domains, such that 
rV  denotes the 

domains of an attribute r. For each r R  and x U , a mapping f U R V →：  denotes an 

information function. 
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There are two main kinds of neighborhood relations: (1) the k-nearest neighborhood relation 

shown in Figure 1a and (2) the  neighborhood relation shown in Figure 1b. 

 

Figure 1. Two kinds of neighborhood relations. 

Definition 1 [26]. Given DT, a metric  is a distance function, and ( , )x y  represents the distance between 

x  and y . Then, for , ,x y z U , it must satisfy the following: 

(1) ( , ) 0x y , when =x y and ( , )=0x y , 

(2) ( , )= (y, )x y x , and 

(3) ( , ) ( , ) ( , )x z x y y z . 

Definition 2 (  neighborhood [22]). Given DT, a feature subset B C , the neighborhood ( )r

B x  of any 

object x U  is defined as follows: 

( ) { | ( , ) , , }r

B Bx y x y r y U y x  (1) 

where r  is the distance radius, and ( )r

B x  satisfies: 

(1) ( ) ( )r r

B By x x y ,  

(2) 1 ( ( )) ( )r

Bcard x card U , where ( )card  denotes the number of elements in the set, and 

(3) ( )r

B
x U

x U . 

Definition 3 (k-nearest neighborhood [22]). Given DT and B C , the k-nearest neighborhood ( )k

B x  of 

any object x U  on the feature subset B  is defined as follows: 

( ) { | { ( , )}, , }k

B k Bx y y MIN x y y U y x  (2) 

where { ( , )}k BMIN x y  represents the k neighbors closest to x  on a subset B, and ( )k

B x  satisfies: 

(1) ( )k

B x ,  

(2) ( ( ))k

Bcard x k , and 

(3) ( )k

B
x U

x U . 

Then, the concepts of the lower and upper approximations of these two neighborhood relations are defined 

as follows: 

Definition 4. Given DT, for any X U , two subsets of objects, called the lower and upper approximations of 

X  with regard to the  neighborhood relation, are defined as follows [27]: 

{ | ( ) , }i i iB X x x X x U =    (3) 
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{ | ( ) }i i iB X x x X x U =  ,  (4) 

If x B X , then x  certainly belongs to X , but if x B X , then it may or may not belong to X . 

Definition 5. Given DT, for any X U , the lower and upper approximations concerning the k-nearest 

neighborhood relation are defined as [24]: 

{ | ( ) , }i i iB X x x X x U=  
 (5) 

{ | ( ) }i i iB X x x X x U=  ,  (6) 

Figure 1a shows that the k-nearest neighbor (k = 4) samples of 1x , 2x , and 3x  have different class labels. 

In detail, the k-nearest neighborhood samples of 1x  are from class 2C  with the mark “·” and class 3C  with 

the mark “ ”; k-nearest neighborhood samples of 2x  are from classes 2C , 3C , and 1C  with the mark “ ”; 

the k-nearest neighbor samples of 3x  are from classes 1C  and 2C . Figure 1b depicts that all  neighbor 

samples of 1x , 2x , and 3x  also come from different class labels. We define the samples of 1x , 2x , and 3x  as 

all the boundary objects. The size of the boundary area can increase the uncertain in DT, because it reflects the 

roughness of X  in the approximate space.  

By Definition 5, The object space X can be partitioned into positive, boundary, and negative regions [28], 

which are defined as follows, respectively: 

( )BPOS X BX=  (7) 

( )BBOU X BX BX= −  (8) 

( )BNEG X U BX= −  (9) 

In the data analysis, computing dependencies between attributes is an important issue. We give the 

definition of the dependency degree as follows: 

Definition 6. Given DT, for any B C , the dependency degree of B  to decision attribute set D  is defined 

as [22] 

( ( ))
( )

( )

B

B

CARD POS D
D

CARD U
 =

 
(10) 

The aim of the feature selection is to select a subset B  from C  and gain the maximal dependency degree 

of B  to D . Since the features are available one-by-one over time, it is a necessity to measure each feature’s 

importance in the candidate features. 

Definition 7. Given DT, for B C  and D , the significance of a feature c ( )c B  to B  is defined as 

follows [22]: 

\{ }( , ) ( ) ( )B B B cD c D D  = −
 (11) 

In a real application, specifically in the medical field, the instances are often unevenly distributed 

in the feature space; that is, the distribution around some example points is sparse, while the 

distribution around others is tight. Neither the k-nearest neighborhood relation nor the  

neighborhood relation can portray sample category information well, since the setting of the 

parameters like r and k can hardly meet both the sparse and tight distributions. For example, the 

feature space has two classes, as shown in Figure 2—namely, red and green. Red and green represent 

two different classes respectively, which have different symbols including pentacle and hexagon as 

well. Around a sample point 
1x , the sample distribution is sparse. The three nearest points to 

1x  all 

have different class from 
1x . If applying the k-nearest neighborhood relation (k = 3), 

1x  will be 
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misclassified. However, if we employ the  neighborhood relation method, then the category of 
1x  

is consistent with that of most samples in the neighbors of 
1x . On the other hand, the sample 

distribution around point 
2x  is tight, and two class samples are included in its neighborhood, and 

sample 
2x  will be misclassified when applying the  neighborhood relation denoted by the red 

circle. In fact, if applying the k-nearest neighborhood relation (k = 3), 
2x  will be classified correctly. 

Therefore, in Section 3, we proposed a novel neighborhood rough set combining the advantages of 

the k-nearest neighborhood rough set and the  neighborhood rough set. 

 

Figure 2. Distribution of the two class examples. 

3. Method 

In this section, we initially introduce a definition of OSFS. Then, we propose a new 

neighborhood relation and an approach of a weighted dependency degree. Based on three evaluation 

criteria—namely, maximal dependency, maximal relevance, and maximal significance—our new 

method OSFS-KW is presented finally. 

3.1. Problem Statement 

( , , )t t t tDS U A V=  denotes the decision system (DS) at time t, where 
t t tA C D=  is a feature space 

including the condition feature 
tC  and decision feature 

tD . 
1 2{ , ,..., }

tt nU x x x=  is a nonempty finite set 

of objects. A new feature arrives individually, while the number of objects in tU  is fixed. OSFS aims 

to derive a mapping of ' :  ( )t i if x D x U→   at each timestamp t, which obtains an optimal subset of 

features available so far. 

Contrary to the traditional feature selection methods, we cannot access the full feature space in 

the scenarios of the OSFS. However, the two main neighborhood relations cannot make up the 

shortage caused by the uneven distribution data. Moreover, the class imbalanced issue of medical 

data is common. For example, abnormal cases attract more attention than the normal ones in the field 

of medical diagnosis. It is also crucial for the proposed framework to handle the class imbalanced 

problem. 

3.2. Our New Neighborhood Relation 

3.2.1. k −  Neighborhood Relation 

The standard European distance method is applied to eliminate the effect of variance on the 

distance among the samples. Given any samples 
ix  and 

jx , and an attribute subset c C , the 

distance between 
ix  and 

jx  is defined as follows: 
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2
( , ) ( , )

( , ) ( )
i j

B i j c B
c

f x c f x c
x x



−
 =   (12) 

where ( , )if x c  denotes the values of 
ix  relative to the attribute c, and 

c  represents standard 

deviation of attribute c. 

To overcome the challenge of the uneven distribution of medical data, we proposed a novel 

neighborhood rough set as follows. 

Definition 8. Given a decision system { , , , }DS U C D f= , where 
1 2 3{ , , ,..., }nU x x x x=  is the finite sample set, 

B C  is a condition attribute subset, and D  is the decision attribute set, the k −  neighborhood relation is 

defined as follows: 

( ) { | ( )}( ) k

B i j j Bi i

r

Bx xx x U x =  
 

(13) 

where ( )r

B ix  is defined as Definition 2, and ( )k

B x  is defined as Definition 3. 0.15*k n= , where n  is the 

number of instances. 

Meanwhile, based on [22], 1.5* meanr G=  and 
meanG  are defined as follows: 

max min=
1

mean

G G
G

n

−

−  
(14) 

More specifically, 
maxG  represents the maximum distance from ix  to its neighbors, and minG denotes the 

minimum distance from ix  to its neighbors. 

Definition 9. Given { , , , }DS U C D f=  and its neighborhood relations R  on U , for X U , the lower and 

supper approximation regions of X  in terms of the k −  neighborhood relation are defined as follows: 

({ | ) , }i i iBB X x x X x U =  
 (15) 

{ | ) , }(i i iBB X x x X x U =    (16) 

Similar to Definition 4, 
B X  is also called the positive region, denoted by ( )BPOS D

. 

3.2.2. Weighted Dependency Computation 

The traditional dependency degree only considers the samples correctly classified instead of that 

of neighborhood covering. To solve this problem, we propose an approach of weighted dependency 

degree, which considers the granular information for features. 

Definition 10. Given { , , , }DS U C D f= , the weighted dependency of B C  is defined as follows: 

( ) ( ) ( )B BD w B D  =
 

(17) 

where 

2( ) log (2 ( ))w B B= −
 (18) 

( )
)

( )
( )=

(

B

B

CARD PO

A

S

R

D
D

C D U




 

(19) 

| |

2i=1

( ( ))
( )=

( )

U B iCARD x
B

CARD U


 

 
(20) 

Theorem 1. Given { , , , }DS U C D f= , P O U  . The weight ( )w  is monotonic, defined as follows: 

( ) ( )w P w O  (21) 
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Proof. According to the monotonicity of neighborhood relation defined in Definition 8, 

( ) ( )O i P ix x   and   ( ( )) ( ( ))O i P iCARD x CARD x ∴ . According to Equation (20), ( ) ( )O P  . 

Considering Definition 10, 0 ( ) 1O  , 0 ( ) 1P  , and 

2 2 0 ( ) log (2 ( ))  ( ) log (2 ( )) 1w P P w O O  = −  = − ∴ . □ 

Theorem 2. Given { , , , }DS U C D f= , B C . Then, ( )= ( )B CD D    is equivalent to ( )= ( )B CD D   , and 

2 2log (2 ( )) log (2 ( ))P O − = − . 

The proof of Theorem 2 is easy according to the monotonicity of the neighborhood relation and Theorem 1. 

Definition 11. Given B C  and a decision attribute set D , the significance of feature c ( )c B  to B  can 

be rewritten as follows: 

\{ }( , ) ( ) ( )B B B cD c D D   = −
 (22) 

3.3. Three Evaluation Criteria 

During the OSFS process, many irrelevant and redundant features should be removed for high-

dimensional datasets. There are three evaluation criteria used during the process, such as max-

dependency, max-relevance, and max-significance. 

3.3.1. Max-Dependency 

1 2{ , ,..., }mC c c c=  denotes the set of m condition attributes. The task of OSFS is to find a feature 

subset B C , which has the maximal dependency  on the decision attributes set D . At the 

moment, the number of features denoted as d in the feature space should be as small as possible. 

max ( , ),   ( )BB D D=
 (23) 

where ( )B D  denotes the weighted dependency between the attribute subset B and target class label D

. The dependency  can be rewritten as ( )
tB D , where 1 },{t t tB B c−= . Hence, the increment search 

algorithm optimizes the following problem for selecting the tht  feature from the attribute set 1{ - }tC B − : 

1
1

{ , }
{ - }
max { ( )}

t i
i t

B c
c C B

D
−

−

 (24) 

which is also equivalent to optimizing the following problem: 

1 1
1 1

{ , } { }
{ - } { - }
max { ( ) - ( )} max { ( , )}

t i t t
i t i t

B c B B i
c C B c C B

D D D c 
− −

− − 
=  (25) 

The max-dependency maximizes either the joint dependency between the select feature subset 

and the decision attribute or the significance of the candidate feature to the already-selected features. 

However, the high-dimensional space has two limitations that lead to failure in generating the 

resultant equivalent classes: (1) the number of samples is often insufficient, and (2) during the 

multivariate density estimation process, computing the inverse of the high-dimensional covariance 

matric is generally an ill-posed problem [29]. Specifically, these problems are evident for continuous 

feature variables in real-life applications, such as in the medical field. In addition, the computational 

speed of max-dependency is slow. Meanwhile, max-dependency is inappropriate for OSFS, because 

each timestamp can only know one feature instead of the entire feature space in advance. 

3.3.2. Max-Relevance 

Max-relevance is introduced as an alternative in selecting features, as implementing max-

dependency is hard. The max-relevance search feature approximates ( , )B D  in Equation (23) with 

the mean value of all dependency values between individual feature iB  and the decision attribute D . 



Symmetry 2020, 12, 1635 8 of 31 

 

|
 ( )

1
, ( )

|
,    

i

i

c

c B

M B D D
B

ax 


= 
 

(26) 

where B  is the already-selected feature subsets. 

A rich redundancy likely exists among the features selected according to max-relevance. For 

example, if two features ic  and 
jc  among the large features space highly depend on each other, 

then after removing any one of them, the class differentiation ability of the other one would not 

substantially change. Therefore, the following max-significance criterion is added to solve the 

redundancy problem by selecting mutually exclusive features. 

3.3.3. Max-Significance 

Based on Equation (22), the importance of each candidate feature can be calculated. The max-

significance can select mutually exclusive features as follows: 

1
{ ( }{

|
} ,  )

|
 

i

B i

c B

M Dx c
B

a 


=   (27) 

The feature flows individually over time for the OSFS. Testing all combinations of the candidate 

features and maximizing the dependency of the selected feature set are not appropriate. However, 

we can initially employ the “max-relevance” criteria to remove the irrelevant features. Then, we 

employ the “max-significance” criteria to remove the unimportant features in the selected feature set. 

Finally, the “max-dependency” criteria will be used to select the feature set with the maximal 

dependency. Based on the three criteria mentioned previously, in the next subsection, a novel online 

feature selection framework will be proposed. 

3.4. OSFS-KW Framework 

The proposed weighted dependency computation method based on the k −  neighborhood RS 

in this study is shown in Algorithm 1. First, we calculate the card value of each sample 
ix  and obtain 

the sum for the final weighted dependency at steps 5–14. The ( ) [0,1]card   denotes the consistency 

between the decision attribute of 
ix  and its neighbor’s decision attributes. The k −  neighborhood 

relation is used to calculate the dependency of attribute subset B . The value of ( )B D  reveals not 

only the distribution of labels nearby 
ix  but, also, the structure granular structure information 

around ix . 

In the real world, we generally encounter the issue of high-dimension class imbalance, 

specifically in medical diagnosis. Then, we employ the method proposed in [24], named the class 

imbalance function, as shown in Algorithm 2. For imbalanced medical data, we apply Algorithm 2 to 

compute )( )( B ic rd xa   at step 9 in Algorithm 1. 

Algorithm 1 Weighted dependency computation 

Require: 

   B: The target attribute subset; 

   BX : Sample values on B; 

Ensure:  

1: ( )B D : Dependency between B and decision attribute D; 

2: ( )card B : the number of positive samples on B, initial 0 ( )card B→ ; 

3: | |U : the number of instances in universe U; 

4:  SB: the number of instance of neighbors on B, initial 0 BS→  

5: for each ix  in BX  

6:    Calculate the distance from ix  to other instances; 

7:    Sort the neighbors of ix  from the nearest to the farthest; 
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8:    Find the neighbor sample of ix   as ( )B ix ; 

9:    Calculate the card value of ix  as )( )( B ic rd xa  ; 

10:    ( ) ( ) ( )( )B icard B card B card x= + ; 

11:   Calculate the number of neighbors ( )B ix  with the same class label of ix  as ix
S ; 

12:   iB B xS S S= + ; 

13: end 

14: 2

2( ) log (2- / | | ))* ( )/ | |B BD S U card B U = ; 

15: return ( )B D  

In Algorithm 2, argl eD  denotes the large class, while smallD  is the small class. The argl eD  sample is 

different from the smallD  sample at steps 3–11. For 
ix  in the large class, if the number of neighbors 

with the same class label is more than 95% of the number of its total neighbors, then we will set the 

value of )( )( B ic rd xa   to 1; otherwise, the value is set to 0. For 
ix  in the small class, we calculate the 

ratio of the number of neighbors with smallD  to the total number of neighbors as the )( )( B ic rd xa  . The 

method in Algorithm 2 can strengthen the consistency constraints of 
argl eD

 and weaken the 

consistency constraints of smallD , so smallD  is prevented from being overpowered by the samples in 

argl eD . 

Algorithm 2 Class imbalance function 

Require: 

ix
D : The class label of ix ; 

B: The target attribute subset; 

Ensure: 

   )( )( B ic rd xa  : the card value of ix  on B; 

1:  BN : the number of neighbors ( )B ix  with the same class label of ix ; 

2:  RN : the number of neighbors of ix  on B; 

3:  if arg==
ix l eD D  then 

4:      if ( ) 0.95*B i RN x N=  then  

5:          )( )( B ic rd xa  =1; 

6:      else 

7:          0( )( )=B ic xard  ; 

8:      end 

9:   else then 

10:      (( )= /) RB i Bcard Nx N ; 

11:  end 

12:  return )( )( B ic rd xa  ; 

Based on the k −  neighborhood relation and the weighted dependency computation method 

mentioned above, we introduce our novel OSFS method, named “OSFS-KW”, as shown in Algorithm 

3. The main aim of the OSFS-KW is to maximize ( , )B D  with the minimal number of feature subsets. 

Algorithm 3 OSFS-KW 

Require: 

   C: the condition attribute set; 

   D: the decision attribute; 

Ensure: 

   B: the selected attribute set 

1: B initialized to  ; 

2: ( )B D : the dependency between B and D, initialized to 0; 
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3: ( )B D
Mean  : the mean dependency of attributes in B, initialized to 0; 

4:  Repeat 

5:  Get a new attribute ic  of C at timestamp i; 

6:  Calculated the dependency of ic  as ( )
ic D  according to Algorithm 1; 

7:  if )(
( )

i B Dc MeanD 




   then 

8:        Discard attribute ic ; and go to Step 25; 

9:  end 

10: if ( ) ( )
iB c BD D    then 

11:     iB B c= ; 

12:     ( ) ( )
iB B cD D  = ; 

13:     
)( )

( )
=

(

ii

B

c B

D

c

Mean
card B

D









; 

14: else if ( )== ( )
iB c BD D    then 

15:     iB B c= ; 

16:      random the feature order in B; 

17:      for each attribute jc  in B 

18:         calculate the significance of jc  as ( , )B jD c ; 

19:         if ( , )==0B jD c  

20:             { }iB B c= − ; 

21:             )(
(

1

(
)=

) iB D Bc B
Mean

card B
D






 ; 

22:          end 

23:       end 

24: end 

25: Until no attributes are available; 

26: return B; 

Specifically, in Algorithm 1, we calculate the dependency of 
iB  when a new attribute 

ic  

arrives at timestamp i. Then, the dependency of 
ic  is compared with the mean dependency of the 

selected attribute subset B at step 7. If 
( , )ic B DMean  , then 

ic  is added into B and goes to step 10. 

Otherwise, 
ic  is discarded and goes to step 25 when ( , )ic B DMean   due to the “max-relevance” 

constraint. 

When 
ic  satisfies the “max-relevance” constraint, 

( , )ic B DMean  , going to step 10 and 

comparing the dependency of the current attribute subset B with 
iB c . If 

( ) ( )
iB c BD D  

, then 

adding attribute 
ic  into B will increase the dependency of B, so 

ic  is added into B with the “max-

dependency” constraint; that is, 
iB B c= . On the other hand, if 

( )= ( )
iB c BD D  

, then some redundant 

attributes exist in 
iB c . In this condition, we add 

ic  into B firstly. Then, we remove some 

redundant attributes by steps 16–24. With the “max-significance” constraint, we randomly select an 

attribute from B and compute its significance according to Equation (22). Some attributes with a 

significance equal to 0 will be removed from B. Ultimately, we can obtain the best feature subset for 

decision-making through the aforementioned three evaluation constraints. 

3.5. Time Complexity of OFS-KW 

In the process of OSFS-KW, the weighted dependency degree computation, shown in Algorithm 

1, is a substantially important step. The number of examples in DS is n, and the number of attributes 

C is m. Table 1 shows the time complexity for different steps of OSFS-KW. In Algorithm 1, we 

compute the distance between 
ix  and its neighbors for each sample 

ix U . The time complexity of 

this process is O( )n ( ( )n card U= . Sorting all neighbors of 
ix  by instance is essential to find the 
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neighbors of 
ix . The time complex of the quick sorting process is O( )nlogn . Thus, the time 

complexity of Algorithm 1 is 2O( )n logn . 

Table 1. Time complexity of the online streaming feature selection (OSFS)-KW framework. 

Description Algorithm Line Complexity 

Compute the distance 1 6 O( )n  
Sort all the neighbors 1 7 O( )nlogn  

Repeat loop 1 5–13 2O( )n logn  
Compare the dependency 3 10 2O( )n logn  
Compare the dependency 3 14–24 2O( ( ) )card B n logn  

At timestamp i, as a new attribute 
ic  is present to the OSFS-KW, the time complexity of steps 

6–9 is 2O( )n logn . If the dependency of 
ic  is smaller than 

)(B D
Mean 

, then 
ic  will be discarded. 

Otherwise, comparing the dependency of 
iB c  with B, the time complexity is also 2O( )n logn . If 

( ) ( )
iB c BD D   , then 

ic  can be added into B, and step 25 is repeated. However, if ( )= ( )
iB c BD D   , 

then the time complexity of steps 14–24 is 2O( ( ) )card B n logn . Thus, the complexity of the OSFS-KW is 
2 2O( )m n logn . Choosing all features in real-world datasets is impossible. Therefore, the time complexity 

will be smaller than 
2 2O( )m n logn . 

4. Experiments 

4.1. Data and Preprocessing 

We use a high-dimensional medical dataset as our test bench to compare the performance of the 

proposed OSFS-KW with the existing streaming feature selection algorithm. Table 2 summarizes the 

19 high-dimensional datasets used in our experiments. 

In Table 2, the BREAST CANCER and OVARIAN CANCER datasets are biomedical datasets 

[30]. LYMPHOMA and SIDO0 datasets are from the WCCI 2008 Performance Prediction Challenges 

[31]. MADELON and ARCENE are from the NIPS 2003 feature selection challenge [16]. WDBC, 

HILL, HILL (NOISE), and COLON TUMOR are four UCI datasets, the web can be accessed at 

https://archive.ics.uci.edu/ml/index.php. And DLBCL, CAR, LUNG-STD, GLIOMA, LEU, LUNG, 

MLL, PROSTATE, and SRBCT are nine microarray datasets [32,33]. 

Table 2. Nineteen experimental datasets. 

Dataset Instances Features Classes 

WDBC 569 30 2 

HILL 606 100 2 

HILL (NOISE) 606 100 2 

COLON TUMOR 60 2000 2 

DLBCL 77 6285 2 

CAR 174 9182 11 

LYMPHOMA 62 4026 3 

LUNG-STD 181 5000 2 

GLIOMA 50 4433 4 

LEU 72 7129 3 

LUNG 203 3312 2 

MLL 72 5848 3 

PROSTATE 102 6033 2 

SRBCT 83 2308 4 

ARCENE 200 10,000 2 
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MADELON 500 2600 2 

BREAST CANCER 286 17,816 2 

OVARIAN CANCER 253 15,154 2 

SIDO0 500 999 2 

In our experiments, we employ K-nearest neighbor (KNN), support vector machines (SVM), and 

random forest (RF) as the basic classifiers to evaluate a selected feature subset. The radial basis 

function is used in SVM, and the Gini coefficient is used to comprehensively measure all variables’ 

importance in RF. Furthermore, a grid search cross-validation is applied to train and optimize these 

three classifiers to give the best prediction results. Then, search ranges of some adjustable parameters 

for each basic classifier are shown in Table 3. 

Table 3. The search ranges of all adjustable parameters. RF: random forest. 

Classifiers Parameters Search Ranges 

KNN The number of neighbors (3,12) 

SVM 
The kernel coefficient   for the radial basis function (0.1,3) 

penalty parameter (0.1,3) 

RF The number of trees in the forest (2,15) 

As listed below, there are three key metrics employed to evaluate the OSFS-KW with other 

streaming feature selection methods. 

(1) Compactness: the number of selected features, 

(2) Time: the running time of each algorithm, 

(3) Prediction accuracy: the percentage of the correctly classified test samples. 

The results are collected in the MATLAB 2017b platform with Windows 10, Intel(R) Core (TM)i5-

8265U,1.8GHz CPU, and 8GB memory. In addition, we applied the Friedman test at a 95% 

significance level under the null hypothesis to validate whether the OSFS-KW and its rivals have a 

significant difference in the prediction accuracy, compactness, and running time [34]. Then, accepting 

the null hypothesis means that the performance of the OSFS-KW has no significant difference with 

its rivals. However, if the null hypothesis is rejected, then conducting follow-up inspections is 

necessary. If so, we employed the Nemenyi test [35], with which the performances of the two methods 

were significantly different if their corresponding average rankings (AR) were greater than the value 

of the critical difference (CD). 

4.2. Experiments and Dicussions 

4.2.1. OSFS-KW versus k-Nearest Neighborhood 

In this section, we compare OSFS-KW with the k-nearest neighborhood relation. We employ the 

same algorithm framework for both neighborhood relations to reduce the impact of other factors. In 

addition, for the k-nearest neighborhood relation, the value of k varies from 3 to 13 in the experiments. 

The experiment results are shown in Appendix A. Tables A1 and A2 show the compactness and 

running time. The p-values of the Friedman test are 5.07 × 10−9 and 5.47 × 10−10, respectively. In 

addition, Tables A3–A5 show the experimental results about the prediction accuracy on these 

datasets. The p-values on KNN, SVM, and RF are 0.6949, 0.9884, and 0.5388, respectively. Table A6 

shows the test results of the OFS-KW versus k-nearest neighborhood. Therefore, a significant 

difference exists among these 19 datasets on compactness and running time. On the contrary, no 

significant difference is observed on accuracy with KNN, SVM, and RF. According to the Nemenyi 

test, the value of the CD is 3.8215, and we have the following observations from Tables A1–A5. 

In terms of compactness, a significant difference is just observed between OSFS-KW and k-

nearest neighborhood when k = 10, 11, 12, and 13, but OSFS-KW selects the smallest average number 

of features. According to the running time, there is a significant difference between OSFS-KW and k-
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nearest neighborhood when k = 3, 4, 5, 6, 7, and 8. In general, the k-nearest neighborhood is faster 

than OSFS-KW, mainly because the number of neighbors for OSFS-KW is uncertain but fixed for the 

k-nearest neighborhood. According to the value of AR and CD, there is no significant difference 

between the OSFS-KW and k-nearest neighborhood, with three basic classifiers’ prediction accuracy 

for the value of k from 3 to 13. On some datasets, such as COLON, TUMOR, DLBCL, CAR, 

LYMPHOMA, and LUNG-STD, if a proper k is chosen, the k-nearest neighborhood would have a 

higher prediction accuracy than the OSFS-KW with KNN, SVM, and RF. This finding means that k-

nearest neighborhood can perform well with the proper parameter k. 

4.2.2. OSFS-KW versus   Neighborhood 

In this section, the OSFS-KW is compared with the   neighborhood relation. We employ the 

algorithm framework for both neighborhood relations for equality. In addition, we employ 
max=r D   

and conduct experiments with values of r from 0.1 to 0.5 with step 0.05. The experiment results can 

be seen in Appendix B. Table A7 shows the compactness of different methods on 19 datasets, and the 

p-value of the Friedman test is 2.92 × 10−15. Table A8 shows the running time on these datasets, and 

the p-value is 3.65 × 10−10. Tables A9–A11 show the results of the prediction accuracy of the OSFS-KW 

versus   neighborhood. The p-values on KNN, SVM, and RF are 0.0275, 0.7815, and 0.6683, 

respectively, shown in Table A12. There is a significant difference among the different algorithms on 

compactness, running time, and prediction accuracy using KNN, but no significant difference exits 

in the prediction accuracy of SVM and RF. In addition, the value of CD is 3.1049. 

On the number of selected features shown in Table A7, a significant difference is observed 

between the OSFS-KW and   neighborhood when r = 0.4, 0.45, and 0.5. Our proposed method 

OSFS-KW selects the smallest mean number of features. The number of selected features using   

neighborhood increases with the r value increasing. In terms of the running time shown in Table A8, 

a significant difference exists between the OSFS-KW and   neighborhood when r = 0.3~0.5, and no 

significant difference is found when r = 0.1~0.3. The OSFS-KW has the smallest mean running time. 

On the average ranks shown in Tables A9–A11, for the value of CD, no significant difference is 

observed with KNN when r = 0.2 and 0.25 and RF when r = 0.1, 0.15, 0.2, 0.25, 0.35, 0.4, and 0.5. 

Particularly, no significant difference exists with RF under any value of r. On the prediction accuracy, 

the OSFS-KW has the highest mean of the prediction accuracy   neighborhood than among these 

datasets. However, the   neighborhood can also obtain the highest prediction accuracy with 

different r values on some datasets, such as DLBCL and LUNG-STD. However, it is impossible for 

the   neighborhood relation to uniform the parameters on all different kinds of datasets. 

4.2.3. Influence of Feature Stream Order 

In this section, we carry out the experiments on the OSFS-KW with three types of feature steam 

orders, including original, inverse, and random. Figure 3 depicts the results of the compactness of 

the OSFS-KW on the datasets. Figures 4–6 show the prediction accuracy about KNN, SVM, and RF, 

respectively. 

In addition, we execute the Friedman test at a 95% significance level under the null hypothesis 

to verify whether there is a significant difference in the compactness, running time, and predictive 

accuracy. Table A12 in Appendix C shows the calculated p-values. Moreover, it is clear that there is 

no significant difference, except for the running time, with random order and prediction accuracy, 

using KNN with the random order. The number of features in the feature space has a remarkable 

impact on the running time between the original and random orders, specifically when the number 

of features is very large. For example, the number of features of ARCENE is 10,000, and the difference 

of the running time on the dataset between the original and random is 157.2334 s. 

Figures 3–6 show minor fluctuations in some datasets. However, these three orders have no 

significant difference with each other on most of the datasets. This result denotes that the feature 

stream orders have a limited impact on the OSFS-KW. 
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Figure 3. Compactness of the three feature stream orders. 

 

Figure 4. Prediction accuracy of the three feature streaming orders (KNN). 

 

Figure 5. Prediction accuracy of the three different feature streaming orders (SVM). 
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Figure 6. Prediction accuracy of the three different feature streaming orders (RF). 

4.2.4. OSFS-KW versus Traditional Feature Selection Methods 

In this section, 11 representative traditional feature selection methods are employed to compare 

with OSFS-KW, including Fisher [36], spectral feature selection [37], Pearson correlation coefficient 

(PCC) [38], ReliefF [39], Laplacian Score [7], a unsupervised feature selection method with ordinal 

locality (UFSOL) [40], mutual information (MI) [41], the infinite latent feature selection method (ILFS) 

[42], lasso regression (Lasso) [43], a fast correlation-based filter method (FCBF) [44], and a correlation 

based feature selection approach (CFS) [45]. 

We implement all these algorithms in MATLAB. The k value of ReliefF is set to 7 for the best 

performance. We rank all features and select the same number of features as the OSFS-KW, 

considering that all these 11 traditional feature selection methods cannot be applied to the scenario 

of an OSFS. In addition, we employ three methods as basic classifiers—namely, KNN, SVM, and RF. 

The results of the prediction accuracy of the three classifiers with five-fold validation are used to 

evaluate the OSFS-KW and all competing ones. 

The experiment results are shown in Appendix D. Tables A14–A16 show the prediction accuracy 

of the three basic classifiers. The p-values on the accuracy with KNN, SVM, and RF are 1.20 × 10−15, 

3.81 × 10−12, and 5.99 × 10−13, respectively. Table A17 shows the test results. Thus, a significant 

difference is observed between OSFS-KW and the compared algorithms on the prediction accuracy 

with the three classifiers. According to the value of CD, which is 3.8215, we can observe the following 

results from Tables A14–A16. 

(1) OSFS-KW versus Fisher. According to the values of AR and CD, no significant difference is 

found between these two methods on the prediction accuracy at a 95% significance level. 

However, OSFS-KW has a better performance than Fisher on most datasets with the three 

classifiers. 

(2) OSFS-KW versus SPEC. A significant difference exists between these two algorithms on the 

prediction accuracy with KNN, SVM, and RF. Furthermore, OSFS-KW outperforms SPEC on 

most of the datasets. On the whole, SPEC cannot handle some datasets well. 

(3) OSFS-KW versus PCC. A significant difference is found between OSFS-KW and PCC on the 

prediction accuracy with KNN and RF but not with SVM. On many datasets, OSFS-KW 

outperforms PCC. 

(4) OSFS-KW versus ReliefF. No significant difference is observed between OSFS-KW and ReliefF 

on the accuracy with KNN, SVM, and RF. The performance of ReliefF decreases with fewer data, 

as ReliefF cannot be distinguished among redundant features. 

(5) OSFS-KW versus MI. No significant difference is observed between these two algorithms with 

KNN, SVM, and RF. 
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(6) OSFS-KW versus Laplacian. A Laplacian score is an unsupervised feature selection algorithm 

using no class information for each instance. This computes the power of locality, preserving a 

feature to evaluate the importance of the corresponding feature. A significant difference is found 

between these two algorithms with KNN, SVM, and RF. OSFS-KW outperforms the Laplacian 

score on all datasets. 

(7) OSFS-KW versus UFSOL. UFSOL is an unsupervised feature selection method that can preserve 

the topology information, named the ordinal locality. A significant difference is observed 

between these two algorithms on the prediction accuracy with KNN, SVM, and RF. 

(8) OSFS-KW versus ILFS. ILFS is a feature selection algorithm based on a probabilistic latent graph. 

A significant difference exists between these two algorithms on the prediction accuracy. OSFS-

KW outperforms ILFS on most datasets. ILFS has a prediction accuracy of approximately 0.6439, 

0.6677, and 0.7152 on dataset OVARIAN CANCER with KNN, SVM, and RF, respectively. By 

contrast, OSFS-KW has a prediction accuracy of 0.996, 0.9923, and 0.9881. OSFS-KW has a higher 

ILFS of over 30% on the prediction accuracy among the datasets. 

(9) OSFS-KW versus Lasso. Lasso is a regularization method for linear regression and has a weight 

coefficient of each feature. No significant difference is observed between these two algorithms. 

On datasets GLIOMA and MADELON, the prediction accuracy of OSFS-KW is more than that 

of Lasso of nearly 22% on with KNN, SVM, and RF. 

(10) OSFS-KW versus FCBF. FCBF, addressing explicitly the correlation between features, ranks the 

features according to their MI, with the class to be predicted. No significant difference is found 

between OSFS-KW and FCBF on the prediction accuracy with KNN, SVM, and RF. 

(11) OSFS-KW versus CFS. CFS is a correlation-based feature selection method. No significant 

difference exists between OSFS-KW and CFS. OSFS-KW outperforms CFS on most of the 19 

datasets. On some datasets, such as MADELON and ARCENE, the prediction accuracy of CFS 

is lower than that of OSFS-KW for nearly 30%. 

Overall, OSFS-KW not only performs best among the 19 datasets but, also, has the highest 

average prediction accuracy among KNN, SVM, and RF. 

4.2.5. OSFS-KW versus OSFS Methods 

In this section, our algorithm is compared to five state-of-the-art OSFS methods—namely, OSFS-

A3M [22], OSFS [16], Alpha-investing [46], Fast-OSFS [47], and SAOLA [13]. 

We implement all aforementioned algorithms in MATLAB [48], and the significant level   is 

set to 0.05 for the above five algorithms. The threshold a and the wealth w of Alpha-investing are set 

to 0.5. As shown in Appendix E, Tables A18 and A19 show the compactness and running time of 

OSFS-KW against the other five algorithms. The p-values of the Friedman test on these three 

classifiers are 0.0248 and 3.62 × 10−23. Tables A20–A22 summarize the prediction accuracy on these 19 

datasets using the KNN, SVM, and RF classifiers with p-values of 0.0337, 0.0032, and 0.0533, 

respectively. Table A23 shows the test results. A significant difference is found between the six 

algorithms on the number of selected features, running time, and the prediction accuracy using KNN 

and SVM, but no significant difference is observed using RF. According to the value of CD, which is 

1.7296, we can observe the following results from Tables A18–A21. 

(1) In terms of compactness, no significant difference is observed between OSFS-KW and the other 

competing algorithms. Fast-OSFS has the smallest mean number of selected features. In 

addition, for SNAOLA, the number of selected features on some datasets is remarkably large 

but on some other datasets is zero. This finding demonstrates that SNAOLA cannot handle some 

types of datasets well. 

(2) On the running time, Alpha-investing is the fastest algorithm among all these six algorithms and 

has the smallest mean running time among these datasets. According to the values of AR and 

CD, a significant difference exists among OSFS-KW, Alpha-investing, Fast-OSFS, and SAOLA. 

The difference between OSFS-KW and OFS-A3M on the running time is small. 
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(3) According to the prediction accuracy, OSFS-KW has the highest mean prediction accuracy on 

these datasets using all three classifiers. OSFS-KW outperforms the five competing algorithms. 

No significant difference is observed between OSFS-KW and the other competing methods, 

except for SAOLA. 

In summary, although our method, OSFS-KW, is slower than some competing methods, 

including Fast-OSFS and SAOLA, OSFS-KW is superior among the six methods in prediction 

accuracy of the 19 datasets. 

5. Conclusions 

Most of the exiting OSFS methods cannot deal well with the problem of uneven distribution 

data. In this study, we defined a new k −  neighborhood relation, combining the advantages of k-

neighborhood relation and   neighborhood relation. Then, we proposed a weighted dependency 

degree considering the structure of neighborhood covering. Finally, we proposed a new OSFS 

framework named OSFS-KW, which need not specify any parameters in advance. In addition, this 

method can also handle the problem of imbalance classes in medical datasets. With three evaluation 

criteria, this approach can select the optimal feature subset mapping decision attributes. Finally, we 

used KNN, SVM, and RF as the basic classifiers in conducting the experiments to validate the 

effectiveness of our method. The results of the Friedman test indicate that a significant difference 

exists between the OSFS-KW and other neighborhood relations on compactness and running time, 

but there was no significant difference on the predictive accuracy. Moreover, when comparing with 

the 11 traditional feature selection methods and five existing OSFS algorithms, the performance of 

OFS-KW is better than that of the traditional feature selection methods and outperforms that of the 

state-of-the-art OSFS. However, we only focused on the challenges of medical data and used only 

medical datasets to verify the validity of our approach. Virtually, our method can be applied into 

other similar fields, generally. In the future, we will test and evaluate this method using some 

multidisciplinary datasets. 
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Appendix A. The Results of OSFS-KW versus k-Nearest Neighborhood 

It is noteworthy that some values in bold are minimum gained by different techniques when 

analyzing one same data set. 

Table A1. OSFS-KW versus k-nearest neighborhood (compactness). 

Data Set 
OSFS-

KW 
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 

k = 

10 

k = 

11 

k = 

12 

k = 

13 

WDBC 18 23 22 21 24 19 18 19 21 22 22 20 

HILL 5 6 2 5 2 1 1 3 5 3 2 6 

HILL (NOISE) 11 3 3 3 9 9 15 6 15 12 4 1 

COLON TUMOR 24 22 26 27 33 39 26 38 39 27 33 42 

DLBCL 13 23 30 32 40 45 43 60 47 71 56 58 

CAR 35 96 96 96 96 96 96 96 96 96 96 96 

LYMPHOMA 7 34 34 46 52 47 48 52 70 59 58 61 

LUNG-STD 12 26 32 42 33 35 58 43 58 77 73 67 

GLIOMA 13 14 16 14 9 10 12 8 7 9 4 5 

LEU 6 29 44 60 55 61 54 66 71 107 72 80 
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LUNG 16 62 65 84 91 110 89 115 130 140 137 151 

MLL 10 25 23 26 20 38 30 28 36 33 33 46 

PROSTATE 25 32 31 42 42 46 44 50 45 45 71 46 

SRBCT 15 10 8 8 10 10 10 9 9 8 7 6 

ARCENE 51 52 48 92 86 97 88 108 94 119 140 132 

MADELON 2 2 1 12 12 12 12 11 10 14 15 15 

BREAST 

CANCER 
34 1 1 1 1 1 1 39 2 78 36 61 

OVARIAN 

CANCER 
6 57 55 81 115 85 99 128 147 156 148 156 

SIDO0 18 1 1 4 4 1 3 4 3 12 32 19 

AVERAGE 16.89 27.26 28.32 36.63 38.63 40.11 39.32 46.47 47.63 57.26 54.68 56.21 

RANKS 3.89 4.47 3.76 5.63 6.11 6.53 5.87 7.37 7.87 9.11 8.39 9.00 
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Table A2. OSFS-KW versus k-nearest neighborhood (running time). 

Data Set 
OSFS-

KW 
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 

WDBC 1.7934 1.1039 1.0673 1.0273 1.0180 1.7006 1.7663 1.9128 1.9020 1.8395 1.7437 1.6871 

HILL 5.3830 5.6782 5.3893 5.9408 6.7386 6.2822 5.6835 5.9713 5.4591 5.9174 5.4391 5.6756 

HILL 

(NOISE) 
3.9342 3.4305 3.3936 3.3310 3.3427 3.3414 3.3715 3.4386 3.6614 3.6624 3.6308 3.6760 

COLON 

TUMOR 
2.0676 0.95566 1.0415 1.0433 1.0339 1.0621 1.0534 1.1351 1.1091 1.1115 1.2167 1.1767 

DLBCL 10.5498 4.3684 4.3931 4.4388 4.7461 4.8728 4.5478 4.7116 4.6009 5.2460 5.1264 4.7404 

CAR 200.6726 51.869 53.304 35.3994 23.8263 40.2583 35.0849 29.174 33.1931 37.7835 33.357 33.2482 

LYMPHOMA 12.4278 5.335 5.262 5.1206 5.2007 4.8678 5.2963 5.3348 6.2701 5.6055 5.8868 6.1197 

LUNG-STD 55.9968 36.434 48.2749 39.9477 45.0579 43.1706 47.4229 45.085 43.5729 51.4130 49.915 48.3410 

GLIOMA 4.8191 1.3312 1.3229 1.2728 1.2866 1.2600 1.3111 1.2588 1.2640 1.3388 1.2852 1.3367 

LEU 4.6364 2.2495 2.3131 2.4016 2.3933 2.4948 2.4615 2.5496 3.1112 3.4017 3.2112 3.4583 

LUNG 31.9804 24.4997 30.035 31.5634 32.7240 34.004 32.1781 34.825 34.7344 35.0237 34.948 31.5197 

MLL 11.2642 4.3727 5.7569 5.2412 5.2053 4.5691 4.4251 5.2610 5.11078 5.1546 5.1195 5.1029 

PROSTATE 24.2364 9.6686 9.0227 10.4484 8.14070 7.9714 7.9191 8.7141 7.8963 7.8965 8.0517 7.8299 

SRBCT 3.4475 0.9448 0.8983 1.0084 1.0722 0.9449 0.9182 0.9020 1.1923 1.2072 1.2102 1.2988 

ARCENE 87.9552 36.4807 40.048 43.0383 40.5699 44.3189 43.0740 46.626 45.8766 47.3027 48.935 49.1771 

MADELON 538.4690 563.6911 563.0505 586.0047 9994.3255 562.1598 651.1277 953.0622 1002.0125 1021.341 920.2213 1009.9971 

BREAST 

CANCER 
114.8965 110.914 110.857 110.859 110.336 111.137 110.530 112.239 111.258 115.893 112.236 112.990 

OVARIAN 

CANCER 
80.8324 70.041 70.308 72.135 75.095 72.296 73.678 76.297 78.253 78.408 78.025 78.547 

SIDO0 64.2822 60.6454 62.642 65.3041 65.3604 63.8099 65.8703 65.270 63.0324 66.0955 63.219 50.2334 

AVERAGE 66.30 52.32 53.60 53.98 548.81 53.19 57.77 73.88 76.50 78.72 72.78 76.64 

RANKS 10.00 3.95 4.42 4.89 5.53 5.26 5.37 7.16 6.58 9.47 7.79 7.58 
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Table A3. Predictive accuracy of OSFS-KW versus k-nearest neighborhood (KNN). 

Data Set 
OSFS-

KW 
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 

WDBC 0.9779 0.9719 0.9685 0.9544 0.9754 0.9636 0.9737 0.9702 0.9718 0.9719 0.9720 0.9720 

HILL 0.5710 0.5644 0.5578 0.5627 0.5727 0.5494 0.5494 0.5628 0.56444 0.5628 0.5396 0.5478 

HILL 

(NOISE) 
0.5594 0.5675 0.5624 0.5659 0.5495 0.5444 0.5610 0.5527 0.5609 0.5610 0.5724 0.5380 

COLON 

TUMOR 
0.8833 0.9346 0.9026 0.9679 0.9205 0.9013 0.8718 0.8859 0.8705 0.9167 0.8872 0.8859 

DLBCL 0.9223 0.9464 0.9875 0.975 1.0 0.9875 0.9875 1.0 0.975 1.0 0.9875 0.975 

CAR 0.8899 0.8969 0.8744 0.8951 0.9022 0.8854 0.9028 0.8925 0.9091 0.8963 0.9024 0.8838 

LYMPHOMA 0.970 0.9675 0.9857 0.9818 1 0.9818 1 1 1 1 1 1 

LUNG-STD 0.9503 0.9944 1 1 1 1 1 1 1 1 1 1 

GLIOMA 0.8655 0.9005 0.8873 0.8623 0.8441 0.9055 0.9055 0.8805 0.8623 0.8441 0.8623 0.8641 

LEU 1 0.9867 0.9724 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 1 0.9857 0.9857 

LUNG 0.9555 0.9606 0.9549 0.9751 0.9506 0.9646 0.97 0.9506 0.9647 0.9699 0.9506 0.9597 

MLL 1 0.9846 1 1 1 1 1 1 1 1 1 1 

PROSTATE 0.9314 0.9214 0.951 0.9514 0.951 0.9514 0.961 0.931 0.9605 0.9605 0.9605 0.9605 

SRBCT 0.9404 0.9882 0.9778 1 1 0.9889 0.9889 0.9889 0.9889 0.9778 0.9778 0.9408 

ARCENE 0.9056 0.8602 0.9004 0.9094 0.8897 0.9301 0.8957 0.9006 0.8996 0.9151 0.9104 0.9101 

MADELON 0.8885 0.5481 0.5412 0.8958 0.8958 0.8958 0.8958 0.8908 0.9115 0.8738 0.8777 0.88 

BREAST 

CANCER 
0.7307 0.6685 0.7062 0.6817 0.7064 0.6817 0.7064 0.7167 0.7238 0.7195 0.7302 0.7656 

OVARIAN 

CANCER 
0.996 1 0.996 0.996 1 1 0.996 0.996 0.996 1 1 0.996 

SIDO0 0.948 0.972 0.5922 0.968 0.968 0.964 0.97 0.968 0.97 0.9601 0.99 0.994 

AVERAGE 0.89  0.88  0.86  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  

RANKS 7.55  7.24  8.24  6.34  5.76 6.63  5.42  6.92  5.87  5.45  5.71  6.87  

Table A4. Predictive accuracy of OSFS-KW versus k-nearest neighborhood (SVM). 

Data Set 
OSFS-

KW 
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 

WDBC 0.9754 0.9701 0.9754 0.9789 0.9737 0.9543 0.9632 0.9772 0.9753 0.9754 0.9754 0.9736 

HILL 0.5181 0.5065 0.5165 0.5131 0.5132 0.5098 0.5098 0.5131 0.5065 0.5099 0.5066 0.5082 

HILL (NOISE) 0.5231 0.5132 0.5000 0.5099 0.5248 0.5182 0.5314 0.5248 0.5264 0.5231 0.5082 0.5049 

COLON 

TUMOR 
0.9179 0.8705 0.8692 0.8859 0.9051 0.8705 0.8705 0.8705 0.8692 0.8692 0.8692 0.8846 

DLBCL 0.9732 0.9357 0.9775 0.975 0.9875 0.9875 0.975 0.975 0.975 1.0 0.975 0.9625 

CAR 0.9534 0.9229 0.9121 0.9165 0.9224 0.9166 0.9172 0.9118 0.9184 0.9336 0.9398 0.9103 

LYMPHOMA 0.9858 0.9532 0.9675 0.9818 1 0.9818 1 1 1 0.9818 1 1 

LUNG-STD 0.9778 1 0.989 0.9944 1 1 1 0.9944 1 0.9944 1 1 

GLIOMA 0.9255 0.8986 0.9055 0.8605 0.8041 0.8623 0.8986 0.8623 0.8241 0.7877 0.8805 0.8823 

LEU 0.9857 0.9857 0.9857 0.9857 0.9857 0.9714 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 

LUNG 0.9751 0.9701 0.9547 0.9797 0.9649 0.97 0.9753 0.9454 0.9651 0.9606 0.9454 0.9504 

MLL 0.9867 0.9846 1.0 1.0 1.0 1.0 1.0 1.0 0.9846 1.0 1.0 1.0 

PROSTATE 0.9414 0.941 0.951 0.941 0.941 0.951 0.941 0.921 0.951 0.951 0.941 0.951 

SRBCT 0.9519 0.9882 0.9889 1 0.9889 1 0.9889 0.9889 0.9889 0.9889 0.9778 0.9402 

ARCENE 0.9102 0.8954 0.8901 0.9196 0.9102 0.9451 0.9152 0.9203 0.94 0.9501 0.94 0.8992 

MADELON 0.8872 0.5546 0.5565 0.8769 0.8769 0.8769 0.8769 0.8712 0.8815 0.8688 0.875 0.8785 

BREAST 

CANCER 
0.7091 0.6749 0.6749 0.6749 0.6749 0.6749 0.6749 0.7514 0.6677 0.7307 0.7547 0.7447 

OVARIAN 

CANCER 
0.992 1.0 0.996 1.0 1.0 1.0 0.996 0.996 1.0 0.996 1.0 1.0 

SIDO0 0.972 0.924 0.5715 0.966 0.966 0.882 0.97 0.972 0.97 0.97 0.99 0.99 

AVERAGE 0.8980  0.8679  0.8517  0.8926  0.8915  0.8880  0.8942  0.8937  0.8910  0.8935  0.8980  0.8930  

RANKS 5.7368  8.2368  7.8158  6.0789  5.7895  6.3947  6.0526  6.5000  6.3684  6.2368  6.1579  6.6316  

Table A5. Predictive accuracy of OSFS-KW versus k-nearest neighborhood (RF). 

Data Set 
OSFS-

KW 
k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 

WDBC 0.9779 0.9527 0.9544 0.9614 0.9631 0.9719 0.9737 0.9545 0.9545 0.9386 0.9614 0.9544 

HILL 0.5461 0.5693 0.5412 0.5577 0.5495 0.5049 0.5099 0.5363 0.5727 0.5511 0.5643 0.5528 

HILL (NOISE) 0.5642 0.5512 0.5577 0.5595 0.5478 0.5280 0.5840 0.5510 0.5278 0.5643 0.5642 0.5017 

COLON 

TUMOR 
0.8205 0.7705 0.8705 0.8538 0.7769 0.8218 0.8192 0.8692 0.8231 0.8705 0.8372 0.8859 
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DLBCL 0.8430 0.8723 0.9232 0.9232 0.9357 0.9232 0.9098 0.8973 0.9375 0.9482 0.9366 0.9375 

CAR 0.8327 0.8 0.8110 0.8544 0.7920 0.8062 0.8193 0.8347 0.8226 0.8102 0.8083 0.7905 

LYMPHOMA 0.9510 0.9498 0.8088 0.8554 0.9714 0.8556 0.9199 0.9093 0.9818 0.8915 0.939 0.9041 

LUNG-STD 0.9668 0.9668 0.9614 0.9779 0.9778 0.9557 0.9616 0.9724 0.9889 0.9778 0.989 0.9557 

GLIOMA 0.8377 0.8291 0.9073 0.7877 0.8059 0.8423 0.7659 0.7877 0.7809 0.7714 0.8805 0.8241 

LEU 0.9857 0.9438 0.9029 0.9286 0.9295 0.9029 0.8752 0.9429 0.9029 0.9162 0.9162 0.9571 

LUNG 0.9119 0.8912 0.9201 0.9022 0.9363 0.9347 0.9307 0.9402 0.9407 0.9505 0.9358 0.9157 

MLL 0.8862 0.96 0.9016 0.9416 0.8729 0.9733 0.9416 0.9437 0.9703 0.9026 0.9446 0.9457 

PROSTATE 0.8819 0.901 0.901 0.9219 0.8829 0.9119 0.9314 0.9205 0.9019 0.9314 0.8829 0.941 

SRBCT 0.8539 0.9522 0.9757 0.9875 0.9521 0.9515 0.9757 0.9757 0.9764 0.9875 0.9764 0.9513 

ARCENE 0.805 0.8258 0.8438 0.8397 0.7859 0.8302 0.7801 0.8158 0.8349 0.8298 0.8404 0.7953 

MADELON 0.7436 0.5142 0.5188 0.8635 0.8619 0.8712 0.8685 0.8677 0.8731 0.8538 0.8546 0.8569 

BREAST 

CANCER 
0.6927 0.6475 0.6862 0.6459 0.6543 0.661 0.6682 0.6472 0.6919 0.64 0.6717 0.7031 

OVARIAN 

CANCER 
0.9881 1.0 0.9722 0.9841 0.9881 0.9962 0.9962 0.9762 0.996 0.9921 1 0.996 

SIDO0 0.974 0.99 0.5645 0.952 0.96 0.9499 0.944 0.96 0.956 0.9659 0.982 0.982 

AVERAGE 0.8454  0.8362  0.8170  0.8578  0.8497  0.8522  0.8513  0.8580  0.8649  0.8575  0.8676  0.8606  

RANKS 6.8684  7.0789  7.6579  6.2105  7.4211  7.0526  7.1316  6.6579  4.8421  6.0789  4.6579  6.3421  

Table A6. Test results of OFS-KW versus k-nearest neighborhood. 

Evaluation Criteria Friedman Test 

Compactness 5.07 × 10−9 

Running time 5.47 × 10−10 

Accuracy (KNN) 0.6949 

Accuracy (SVM) 0.9884 

Accuracy (RF) 0.5388 

Appendix B. The Results of OSFS-KW versus   Neighborhood 

Table A7. OFS-KW versus   neighborhood (compactness). 

Data Set 
OFS-

KW 
0.1r =  0.15r =  0.2r =  0.25r =  0.3r =  0.35r =  0.4r =  0.45r =  0.5r =  

WDBC 18 16 15 16 16 15 14 14 10 10 

HILL 5 18 9 6 8 13 5 7 10 13 

HILL (NOISE) 11 18 18 11 8 17 7 11 8 18 

COLON 

TUMOR 
24 17 9 24 38 47 70 82 81 72 

DLBCL 13 12 10 13 14 19 17 14 16 35 

CAR 35 32 32 37 37 38 32 36 41 47 

LYMPHOMA 7 5 6 6 9 6 8 8 13 11 

LUNG-STD 12 6 4 7 9 8 8 9 14 19 

GLIOMA 13 14 13 10 16 17 15 20 43 37 

LEU 6 6 5 12 10 9 10 13 12 16 

LUNG 16 20 13 23 25 18 26 23 33 39 

MLL 10 11 11 11 9 8 11 12 16 17 

PROSTATE 25 14 27 24 20 19 106 54 142 170 

SRBCT 15 8 14 11 15 17 18 20 22 24 

ARCENE 51 30 30 33 45 56 63 59 138 139 

MADELON 2 8 13 39 35 40 51 61 56 55 

BREAST 

CANCER 
34 61 42 50 49 46 79 55 84 81 

OVARIAN 

CANCER 
6 6 8 7 5 9 11 119 241 364 

SIDO0 18 25 22 20 68 96 89 98 107 166 

AVERAGE 16.89  17.21  15.84  18.95  22.95  26.21  33.68  37.63  57.21  70.16  

RANKS 3.71  3.74  3.26  4.21  4.89  5.39  5.74  6.87  8.13  9.05  
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Table A8. OFS-KW versus   neighborhood (running time). 

Data Set OFS-KW 0.1r =  0.15r =  0.2r =  0.25r =  0.3r =  0.35r =  0.4r =  0.45r =  0.5r =  

WDBC 1.7934 1.7735 1.9180 2.1549 2.0573 2.1659 1.9439 1.9439 2.2182 2.1838 

HILL 5.3830 7.5729 7.1106 5.6935 7.1577 7.2613 6.1592 10.3283 9.7808 7.6833 

HILL (NOISE) 3.9342 4.7900 4.8339 4.8170 4.6466 4.8516 4.7399 4.8934 4.9030 5.0067 

COLON TUMOR 2.0676 3.7879 6.1031 3.4523 3.4633 1.8328 2.0735 1.8638 1.9334 1.8536 

DLBCL 10.5498 9.4904 9.2736 10.9896 8.9530 12.0197 11.6707 14.1592 13.4430 11.0618 

CAR 200.6726 82.0880 74.8928 100.9478 134.9345 170.0618 232.9729 230.3482 231.4008 263.2982 

LYMPHOMA 12.4278 15.3990 15.5832 15.8409 18.8001 22.42501 21.2379 23.1505 17.3421 17.3496 

LUNG-STD 55.9968 94.1136 110.2884 112.2191 140.1124 128.4688 153.3367 171.3579 184.0983 168.2461 

GLIOMA 4.8191 5.7425 8.7011 8.2908 7.3862 8.8651 9.7550 10.0932 10.3550 7.9124 

LEU 4.6364 5.1840 6.5944 7.0113 7.1038 8.1651 8.4208 10.2700 11.8882 13.2705 

LUNG 31.9804 74.043  68.184  48.724  61.818  83.154  113.622  85.821  105.910  122.239  

MLL 11.2642 18.4100 19.1743 16.91520 22.4664 24.5996 29.9188 25.8334 31.0735 22.0068 

PROSTATE 24.2364 32.8402 25.7984 29.9719 39.5195 40.4784 21.4567 53.0141 16.6909 23.4978 

SRBCT 3.4475 3.6517 6.46288 8.9606 8.8096 10.6264 11.5697 13.7862 14.1859 15.2989 

ARCENE 87.9552 119.1581 101.0211 107.7780 167.190 191.7981 316.8370 226.6963 143.9225 393.4693 

MADELON 538.4690 1218.5929 1056.9129 1040.2067 487.8704 551.4037 581.3661 666.5058 692.4043 520.1171 

BREAST CANCER 114.8965 133.9355 126.5506 130.3485 130.3591 126.8821 139.4627 128.0552 131.3735 131.5025 

OVARIAN CANCER 80.8324 100.1605 82.18792 82.43967 83.01642 78.17236 97.85803 118.5893 107.6156 101.5973 

SIDO0 64.2822 118.2797 122.3051 130.5592 86.0615 106.5379 92.5953 74.2628 73.6424 87.7044 

AVERAGE 66.30  107.84  97.57  98.28  74.83  83.15  97.74  98.47  94.96  100.81  

RANKS 2.00  4.68  4.32  4.79  4.74  5.89  6.61  7.50  7.42  7.05  



Symmetry 2020, 12, 1635 23 of 31 

 

Table A9. Predictive accuracy of OFS-KW versus   neighborhood (KNN). 

Data Set 
OFS-

KW 
0.1r =  0.15r =  0.2r =  0.25r =  0.3r =  0.35r =  0.4r =  0.45r =  0.5r =  

WDBC 0.9779 0.9702 0.9719 0.9684 0.9525 0.9386 0.9667 0.9701 0.9701 0.9701 

HILL 0.5710 0.5545 0.5528 0.5511 0.5544 0.5627 0.5610 0.5543 0.5593 0.5692 

HILL (NOISE) 0.5594 0.5575 0.5475 0.5462 0.5281 0.5461 0.5380 0.5545 0.5561 0.5430 

COLON 

TUMOR 
0.8833 0.8051 0.8385 0.8231 0.9038 0.8397 0.8872 0.841 0.8564 0.8718 

DLBCL 0.9223 0.9232 0.9116 0.8875 0.8447 0.9241 0.9233 0.95 0.95 0.95 

CAR 0.8899 0.8763 0.8821 0.8825 0.8204 0.8726 0.8422 0.8509 0.852 0.8535 

LYMPHOMA 0.970 1.0 1.0 0.9526 0.9526 0.9526 1.0 1.0 0.9818 1.0 

LUNG-STD 0.9503 0.9946 1.0 0.9889 1.0 0.9944 1.0 0.9889 1.0 0.9944 

GLIOMA 0.8655 0.9186 0.8805 0.9055 0.7295 0.7941 0.8586 0.8673 0.8441 0.8241 

LEU 1.0 0.9581 0.9714 0.9857 0.9581 0.9867 0.9724 0.9724 0.9857 0.9581 

LUNG 0.9555 0.95 0.9502 0.9107 0.9407 0.9607 0.9351 0.9749 0.9452 0.9702 

MLL 1.0 0.9713 0.9446 0.9292 0.9733 0.9467 0.9284 1.0 0.9724 0.9857 

PROSTATE 0.9314 0.9219 0.7948 0.8238 0.8929 0.9519 0.8724 0.9319 0.941 0.9314 

SRBCT 0.9404 0.8895 0.8784 0.9162 0.9187 0.9646 0.9403 0.9638 0.966 0.9653 

ARCENE 0.9056 0.8354 0.8708 0.8348 0.8747 0.8804 0.8449 0.8453 0.8448 0.8841 

MADELON 0.8885 0.5192 0.5265 0.7754 0.5977 0.6177 0.7219 0.71 0.7285 0.5992 

BREAST 

CANCER 
0.7307 0.7026 0.6818 0.7026 0.6849 0.6856 0.6852 0.727 0.6879 0.7026 

OVARIAN 

CANCER 
0.996 1.0 1.0 0.996 0.996 1.0 1.0 1.0 0.996 0.992 

SIDO0 0.948 0.96 0.96 0.988 0.9421 0.962 0.9361 0.926 0.916 0.9201 

AVERAGE 0.89  0.86  0.85  0.86  0.85  0.86  0.86  0.88  0.87  0.87  

RANKS 3.55  5.55  6.00  6.66  7.26  5.13  6.11  4.61  5.03  5.11  

Table A10. Predictive accuracy of OFS-KW versus   neighborhood (SVM). 

Data Set 
OFS-

KW 
0.1r =  0.15r =  0.2r =  0.25r =  0.3r =  0.35r =  0.4r =  0.45r =  0.5r =  

WDBC 0.9754 0.9772 0.9790 0.9789 0.9771 0.9754 0.9755 0.9737 0.9737 0.9737 

HILL 0.5181 0.5214 0.4983 0.5066 0.5132 0.5148 0.5049 0.5099 0.5198 0.5000 

HILL (NOISE) 0.5231 0.5298 0.5281 0.5231 0.5314 0.5248 0.5265 0.5231 0.5116 0.5198 

COLON 

TUMOR 
0.9179 0.8385 0.8231 0.8551 0.9013 0.8705 0.8538 0.8692 0.8538 0.8692 

DLBCL 0.9732 0.9233 0.95 0.9125 0.8857 0.925 0.9875 0.95 0.9875 0.9625 

CAR 0.9534 0.9212 0.9238 0.9098 0.8947 0.8961 0.9136 0.8966 0.9417 0.9346 

LYMPHOMA 0.9858 0.9857  1.0 0.9359 0.956 0.9532 0.969 1.0 0.9857 1.0 

LUNG-STD 0.9778 0.9946 1.0 1.0 1.0 0.9944 1.0 1.0 1.0 1.0 

GLIOMA 0.9255 0.8823 0.8623 0.9205 0.9273 0.8623 0.8736 0.8641 0.8241 0.8605 

LEU 0.9857 0.9581 0.9867 0.9571 0.9714 0.9867 0.9724 0.9724 0.9714 0.9295 

LUNG 0.9751 0.9549 0.99 0.9555 0.9406 0.9502 0.95 0.9755 0.9603 0.9504 

MLL 0.9867 0.9579 0.9579 0.9579 0.9579 1.0 1.0 1.0 1.0 1.0 

PROSTATE 0.9414 0.9505 0.8538 0.8824 0.9214 0.9514 0.9214 0.9314 0.941 0.941 

SRBCT 0.9519 0.9161 0.9757 0.975 0.9535 0.9889 0.927 1.0 0.9417 0.9425 

ARCENE 0.9102 0.9151 0.8748 0.8699 0.9101 0.9002 0.9001 0.8849 0.8803 0.8248 

MADELON 0.8872 0.4931 0.5258 0.7846 0.6265 0.6542 0.7342 0.7377 0.7335 0.6246 

BREAST 

CANCER 
0.7091 0.6751 0.7308 0.6959 0.6778 0.6921 0.6746 0.7271 0.7057 0.6883 

OVARIAN 

CANCER 
0.992 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.996 

SIDO0 0.972 0.9679 0.968 0.99 0.976 0.984 0.982 0.986 0.96 0.9699 

AVERAGE 0.8980  0.8612  0.8646  0.8742  0.8696  0.8750  0.8772  0.8843  0.8785  0.8678  

RANKS 4.2368  5.9737  5.3421  5.8947  5.7895  5.2105  5.7105  4.5263  5.6842  6.6316  

Table A11. Predictive accuracy of OFS-KW versus   neighborhood (RF). 

Data Set 
OFS-

KW 
0.1r =  0.15r =  0.2r =  0.25r =  0.3r =  0.35r =  0.4r =  0.45r =  0.5r =  

WDBC 0.9779 0.9544 0.9597 0.9526 0.9386 0.9668 0.9439 0.9544 0.9597 0.9509 

HILL 0.5461 0.5512 0.5149 0.5329 0.5297 0.5841 0.5461 0.5808 0.5379 0.5725 

HILL (NOISE) 0.5642 0.5380 0.5609 0.5480 0.4998 0.5264 0.5279 0.5544 0.5413 0.5527 

COLON 

TUMOR 
0.8205 0.8359 0.8513 0.741 0.7385 0.8218 0.8038 0.8192 0.8346 0.8526 

DLBCL 0.8430 0.8616 0.9116 0.8848 0.8580 0.8875 0.9125 0.8973 0.9232 0.9125 
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CAR 0.8327 0.79017 0.7647 0.7954 0.7176 0.7675 0.8114 0.7208 0.8135 0.7131 

LYMPHOMA 0.9510 0.9675 0.8926 0.8578 0.9097 0.8716 0.9286 0.9175 0.8452 0.8671 

LUNG-STD 0.9668 0.9559 0.9725 0.9722 0.9889 0.9836 0.9778 0.9833 0.9944 0.9833 

GLIOMA 0.8377 0.6977 0.5714 0.7441 0.7845 0.72 0.7359 0.6395 0.6814 0.6077 

LEU 0.9857 0.9029 0.9171 0.8333 0.8876 0.959 0.9162 0.9038 0.959 0.901 

LUNG 0.9119 0.9408 0.8873 0.8914 0.9264 0.8958 0.9021 0.8878 0.916 0.9011 

MLL 0.8862 0.8605 0.9159 0.9713 0.9446 0.9179 0.917 0.9457 0.9067 0.9138 

PROSTATE 0.8819 0.8824 0.7738 0.7843 0.8524 0.8533 0.8152 0.8914 0.8824 0.8819 

SRBCT 0.8539 0.8658 0.8947 0.9151 0.9042 0.9033 0.9055 0.9298 0.9028 0.8943 

ARCENE 0.805 0.7957 0.7604 0.8154 0.8498 0.7958 0.7546 0.7262 0.7951 0.736 

MADELON 0.7436 0.5108 0.5104 0.8015 0.6246 0.6723 0.7719 0.7819 0.79 0.6535 

BREAST 

CANCER 
0.6927 0.6504 0.6681 0.6606 0.6638 0.6784 0.5983 0.6462 0.6642 0.7062 

OVARIAN 

CANCER 
0.9881 0.9762 0.9763 0.9961 0.9922 1.0 0.9921 0.9885 0.992 0.9725 

SIDO0 0.974 0.974 0.962 0.982 0.966 0.984 0.968 0.954 0.942 0.948 

AVERAGE 0.8454  0.8164  0.8035  0.8253  0.8198  0.8310  0.8278  0.8275  0.8359  0.8169  

RANKS 4.5000  5.9737  6.5526  5.4737  6.0526  4.3947  5.5789  5.3684  4.8158  6.2895  

Table A12. Comparison results of OFS-KW versus   neighborhood. 

Evaluation Criteria Friedman Test ( p -Values) 

Compactness 2.92 × 10−15 

Running time 3.65 × 10−10 

Accuracy (KNN) 0.0275 

Accuracy (SVM) 0.7815 

Accuracy (RF) 0.6683 

Appendix C. The Results of Three Different Feature Stream Orders 

Table A13. Comparison results of the three feature stream orders. 

 Original Inverse Random 

Compactness – 0.1027 0.1027 

Running time – 0.4562 0.0654 

Accuracy (KNN) – 0.4563 0.0631 

Accuracy (SVM) – 0.0554 0.0555 

Accuracy (RF) – 0.0554 0.1027 
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Appendix D. OSFS-KW versus Traditional Feature Selection Methods 

Table A14. Prediction accuracy of OSFS-KW versus traditional feature selection methods (KNN). 

Data Set OSFS-KW Fisher SPEC PCC ReliefF MI Laplacian UFSOL ILFS Lasso FCBF CFS 

WDBC 0.9779 0.9702 0.9472 0.9313 0.9701 0.9526 0.9737 0.9649 0.9614 0.9507 0.9577 0.9701 

HILL 0.5710 0.5249 0.5214 0.5610 0.5495 0.5379 0.5379 0.5512 0.5412 0.5759 0.5397 0.5297 

HILL (NOISE) 0.5594 0.5000 0.5345 0.5116 0.5495 0.5429 0.5411 0.5394 0.5446 0.5248 0.5166 0.5560 

COLON 

TUMOR 
0.8833 0.8538 0.7769 0.8218 0.8538 0.8244 0.7282 0.6654 0.6128 0.7885 0.9026 0.8859 

DLBCL 0.9223 0.9116 0.7538 0.9080 0.95 0.9375 0.8830 0.7546 0.7270 0.9732 0.95 1.0 

CAR 0.8899 0.74388 0.2180 0.8018 0.9277 0.8521 0.5621 0.5335 0.5400 0.8034 0.9139 0.8350 

LYMPHOMA 0.970 0.9857 0.6887 0.9521 0.9108 1.0 0.9303 0.8194 0.9652 0.9857 1.0 0.8578 

LUNG-STD 0.9503 0.9667 0.9556 0.9889 0.9835 0.9889 0.9944 0.906 0.9833 0.9944 0.9889 1.0 

GLIOMA 0.8655 0.7623 0.2791 0.3668 0.7591 0.6882 0.6014 0.5068 0.8259 0.66 0.8805 0.7827 

LEU 1.0 0.9714 0.7086 0.9714 0.9438 0.9286 0.9581 0.6695 0.6362 0.9857 0.9571 0.9162 

LUNG 0.9555 0.8522 0.7789 0.8815 0.8815 0.9254 0.8281 0.8031 0.9012 0.8913 0.9553 0.8861 

MLL 1.0 0.9579 0.3617 0.8903 0.9713 0.8596 0.9313 0.6619 0.9579 0.9016 0.9857 0.9303 

PROSTATE 0.9314 0.931 0.51 0.8924 0.941 0.9505 0.639 0.6481 0.501 0.961 0.9505 0.9324 

SRBCT 0.9404 1.0 0.7074 0.8593 0.9011 0.783 0.6879 0.6948 0.8791 0.9055 0.9875 0.966 

ARCENE 0.9056 0.7499 0.56 0.7197 0.7808 0.5549 0.7649 0.83 0.6503 0.7057 0.8452 0 

MADELON 0.8885 0.5719 0.5185 0.5727 0.5946 0.6404 0.5119 0.6335 0.5019 0.5604 0.5804 0.5638 

BREAST 

CANCER 
0.7307 0.7271 0.6781 0.6818 0.7023 0.6994 0.6573 0.6365 0.668 0.8176 0.7201 0.6648 

OVARIAN 

CANCER 
0.996 0.9722 0.8269 0.9528 0.9722 0.9722 0.7466 0.6724 0.6439 0.9488 0.9921 0.9686 

SIDO0 0.948 0.99 0.924 0.936 0.98 0.992 0.882 0.882 0.9581 0.93 0.996 0.996 

AVERAGE 0.8887  0.8391  0.6447  0.8001  0.8486  0.8227  0.7557  0.7038  0.7368  0.8350  0.8747  0.8022  

RANKS 3.1053  5.8947  10.4737  7.4737  4.8947  5.7632  8.1842  9.2368  8.1842  5.5789  3.5789  5.6316  

Table A15. Prediction accuracy of OSFS-KW versus traditional feature selection methods (SVM). 

Data Set OSFS-KW Fisher SPEC PCC ReliefF MI Laplacian UFSOL ILFS lasso FCBF CFS 

WDBC 0.9754 0.9789 0.9596 0.9489 0.9719 0.9648 0.9772 0.9491 0.9737 0.9578 0.9683 0.9719 

HILL 0.5181 0.5115 0.5132 0.5132 0.5033 0.5016 0.5132 0.5115 0.5132 0.5115 0.5099 0.5065 

HILL 

(NOISE) 
0.5231 0.5083 0.5215 0.5132 0.5313 0.5198 0.5182 0.5264 0.5099 0.5082 0.4983 0.4852 

COLON 

TUMOR 
0.9179 0.8692 0.7077 0.8051 0.8385 0.8244 0.7103 0.6321 0.6462 0.8526 0.8859 0.8846 

DLBCL 0.9732 0.8991 0.7538 0.925 0.9125 0.9625 0.8483 0.7663 0.7252 0.9607 0.95 1.0 

CAR 0.9534 0.7489 0.2259 0.8192 0.9252 0.9066 0.5949 0.6029 0.5657 0.8722 0.9285 0.9095 
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LYMPHOMA 0.9858 1.0 0.7434 0.9379 0.9418 1.0 0.9121 0.8194 0.9818 0.9857 1.0 0.8669 

LUNG-STD 0.9778 0.9778 0.9722 1.0 1.0 0.9944 0.9889 0.9444 1.0 1.0 0.9944 0.989 

GLIOMA 0.9255 0.7441 0.3386 0.4968 0.7827 0.7114 0.6614 0.4936 0.7877 0.7 0.8805 0.8291 

LEU 0.9857 0.9714 0.7476 0.9571 0.9438 0.9438 0.9448 0.6524 0.6524 0.9857 0.9438 0.9457 

LUNG 0.9751 0.8268 0.7832 0.8825 0.9107 0.9301 0.8326 0.7942 0.9012 0.911 0.9504 0.9065 

MLL 0.9867 0.9426 0.3884 0.9037 0.9426 0.8596 0.96 0.627 0.9426 0.8884 0.9724 0.917 

PROSTATE 0.9414 0.9305 0.5986 0.9214 0.931 0.9314 0.6967 0.6876 0.5095 0.9605 0.941 0.9514 

SRBCT 0.9519 0.9889 0.7023 0.9411 0.9764 0.9262 0.7904 0.8186 0.8444 0.9631 1.0 0.9771 

ARCENE 0.9102 0.74 0.5752 0.7399 0.8362 0.56 0.7648 0.7954 0.5957 0.9505 0.8946 0 

MADELON 0.8872 0.6177 0.5462 0.6177 0.6231 0.6088 0.4819 0.6269 0.5146 0.5538 0.6204 0.5712 

BREAST 

CANCER 
0.7091 0.727 0.6749 0.73 0.7367 0.699 0.6749 0.6749 0.6749 0.8564 0.7655 0.6749 

OVARIAN 

CANCER 
0.9923 0.9722 0.8501 0.9448 0.9722 0.9722 0.7153 0.6686 0.6677 0.9526 0.9921 0.9565 

SIDO0 0.972 0.996 0.932 0.944 0.992 0.994 0.882 0.882 0.974 0.9461 0.992 0.992 

AVERAGE 0.8980  0.8395  0.6597  0.8180  0.8564  0.8321  0.7615  0.7091  0.7358  0.8588  0.8783  0.8071  

RANKS 2.8947  5.4737  10.0263  7.0263  4.9474  6.2895  8.0526  9.3684  8.1316  5.4737  4.0789  6.2368  

Table A16. Prediction accuracy of OSFS-KW versus traditional feature selection methods (RF). 

Data Set OSFS-KW Fisher SPEC PCC ReliefF MI Laplacian UFSOL ILFS lasso FCBF CFS 

WDBC 0.9779 0.9579 0.9439 0.9174 0.9632 0.9264 0.9492 0.9439 0.9474 0.9421 0.9544 0.9438 

HILL 0.5461 0.5263 0.5215 0.5165 0.5016 0.4901 0.4883 0.5346 0.5248 0.5478 0.5197 0.5032 

HILL (NOISE) 0.5642 0.4867 0.5146 0.4834 0.5132 0.5081 0.5280 0.5526 0.4933 0.4933 0.4604 0.5131 

COLON TUMOR 0.8205 0.8679 0.7423 0.741 0.7897 0.8538 0.6628 0.6949 0.5154 0.7218 0.8859 0.9013 

DLBCL 0.8430 0.8857 0.7538 0.9116 0.8866 0.9375 0.7690 0.7029 0.6627 0.8322 0.9375 0.9107 

CAR 0.8327 0.9675 0.6947 0.9015 0.9381 0.9714 0.8848 0.7729 0.9357 0.934 0.9714 0.7753 

LYMPHOMA 0.9510 0.9779 0.9611 0.9833 0.9779 0.9502 0.9778 0.8949 0.9889 0.9889 0.9889 0.989 

LUNG-STD 0.9668 0.9889 0.9835 0.9667 0.9779 0.9944 0.9778 0.9225 0.9833 0.9449 0.9778 0.9889 

GLIOMA 0.8377 0.6014 0.3223 0.4082 0.7095 0.6732 0.5382 0.4836 0.6732 0.5882 0.9455 0.7427 

LEU 0.9857 0.9438 0.64 0.9162 0.9295 0.8867 0.9457 0.5838 0.6095 0.9571 0.9438 0.8876 

LUNG 0.9119 0.8314 0.7733 0.8582 0.8802 0.9058 0.7869 0.7624 0.8466 0.8921 0.9201 0.8483 

MLL 0.8862 0.9426 0.3063 0.8627 0.9118 0.874 0.8227 0.5923 0.9426 0.8903 0.9457 0.9016 

PROSTATE 0.8819 0.9114 0.5586 0.9019 0.9214 0.8829 0.6176 0.5776 0.6671 0.9029 0.941 0.9219 

SRBCT 0.8539 0.9284 0.7478 0.8554 0.8925 0.8568 0.568 0.7921 0.6992 0.8973 0.9889 0.9165 

ARCENE 0.805 0.6742 0.56 0.595 0.7851 0.5549 0.7549 0.7282 0.5602 0.8202 0.8746 0 

MADELON 0.7436 0.5246 0.5135 0.5258 0.5696 0.6127 0.5077 0.6027 0.4919 0.5377 0.5296 0.5369 

BREAST CANCER 0.6927 0.6635 0.6647 0.6883 0.7091 0.6893 0.6041 0.6326 0.6368 0.7585 0.7659 0.6817 

OVARIAN 

CANCER 
0.9881 0.9682 0.8107 0.9489 0.9682 0.9682 0.7313 0.629 0.7152 0.9608 0.9251 0.8732 

SIDO0 0.974 0.982 0.9341 0.9341 0.986 0.984 0.874 0.8721 0.962 0.9241 0.988 0.9939 

AVERAGE 0.8454  0.8226  0.6814  0.7851  0.8322  0.8169  0.7363  0.6987  0.7293  0.8176  0.8665  0.7805  

RANKS 4.5789  5.2632  9.0526  7.7105  4.6579  5.8684  8.7632  9.3421  8.0263  5.7632  3.4737  5.5000  
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Table A17. Test results of OFS-KW versus traditional feature selection methods. 

Evaluation Criteria Friedman Test (
p

-Values) 

Accuracy (KNN) 1.20 × 10−15 

Accuracy (SVM) 3.38 × 10−13 

Accuracy (RF) 1.22 × 10−10 

Appendix E. OSFS-KW versus OSFS Methods 

Table A18. Compactness. 

Data Sets OSFS-KW OFS-A3M OSFS 
Alpha-

Investing 
Fast-OSFS SAOLA 

WDBC 18 17 10 19 4 24 

HILL 5 12 1 5 5 78 

HILL (NOISE) 11 12 2 3 7 76 

COLON TUMOR 24 26 7 4 4 0 

DLBCL 13 16 6 11 8 148 

CAR 35 38 10 30 14 58 

LYMPHOMA 7 7 13 18 8 69 

LUNG-STD 12 8 17 77 11 0 

GLIOMA 13 18 15 6 7 1224 

LEU 6 14 11 23 1 478 

LUNG 16 25 35 39 2 2 

MLL 10 13 23 12 7 13 

PROSTATE 25 30 6 19 5 1 

SRBCT 15 16 4 32 8 0 

ARCENE 51 55 51 29 10 0 

MADELON 2 2 2 7 14 0 

BREAST CANCER 34 40 1 13 16 0 

OVARIAN 

CANCER 
6 9 10 68 6 2 

SIDO0 18 49 2 75 13 7 

AVERAGE 16.8947  21.4211  11.8947  25.7895  7.8947  114.7368  

RANKS 3.5526  4.4737  3.0263  4.0789  2.5000  3.3684  

Table A19. Running time (seconds). 

Data Set OSFS-KW 
OFS-

A3M 
OSFS 

Alpha-

Investing 
Fast-OSFS SAOLA 

WDBC 1.7934 2.8427 0.8745 0.2117 0.4246 0.1438 

HILL 5.3830 6.6946 3.7473 0.0180 0.0911 0.0778 

HILL (NOISE) 3.9342 4.5308 2.3738 0.0052 0.4670 0.0750 

COLON TUMOR 2.0676 1.8749 0.9296 0.2778 0.7427 0.0916 

DLBCL 10.5498 17.1439 4.7319 0.8760 2.6201 11.1175 

CAR 200.6726 68.5552 13.5982 1.1405 15.5793 5.1563 

LYMPHOMA 12.4278 6.7790 1.7897 0.5756 5.7105 5.9966 

LUNG-STD 55.9968 54.6860 17.6993 2.2994 16.9619 0.1351 

GLIOMA 4.8191 6.2993 1.7851 0.4096 2.6653 9.6878 

LEU 4.6364 4.4316 1.2731 0.2926 0.3908 1.5318 

LUNG 31.9804 71.2026 13.6662 0.8823 1.2404 0.3039 

MLL 11.2642 12.5412 3.1975 0.5738 3.7881 13 

PROSTATE 24.2364 7.5123 3.5531 0.6009 1.5547 0.0987 

SRBCT 3.4475 4.3123 1.1155 0.1655 1.0674 0.0394 

ARCENE 87.9552 153.5089 65.9577 5.1478 8.4269 0.5413 

MADELON 538.4690 1098.8598 822.9196 0.08597 2.2586 0.1640 

BREAST 

CANCER 
114.8965 117.0676 71.1601 2.8190 7.865126 0.3178 

OVARIAN 

CANCER 
80.8324 81.2105 33.7745 5.0253 4.431689 0.3477 



Symmetry 2020, 12, 1635 28 of 31 

 

SIDO0 64.2822 74.8208 20.6689 0.6273 1.9891 0.0982 

AVERAGE 66.2971  94.4671  57.0956  1.1597  4.1198  2.5751 

RANKS 5.1053  5.5789  3.5789  1.5789  2.8947  2.2632  

Table A20. Predictive accuracy using KNN. 

Data Sets OSFS-KW 
OFS-

A3M 
OSFS 

Alpha-

Investing 
Fast-OSFS SAOLA 

WDBC 0.9779 0.9685 0.9491 0.9632 0.9736 0.9666 

HILL 0.5710 0.5561 0.5446 0.5627 0.5561 0.5593 

HILL (NOISE) 0.5594 0.5594 0.5395 0.5577 0.5644 0.5510 

COLON TUMOR 0.8833 0.8692 0.8846 0.6154 0.8859 0 

DLBCL 0.9223 0.8840 0.9875 0.9375 0.975 0.8072 

CAR 0.8899 0.86717 0.71485 0.7388 0.7496 0.8010 

LYMPHOMA 0.970 0.9857 1.0 1.0 1.0 1.0 

LUNG-STD 0.9503 0.9833 0.9944 0.9724 0.9944 0 

GLIOMA 0.8655 0.8473 0.7295 0.6164 0.8673 0.8441 

LEU 1.0 0.959 0.9724 0.9019 0.6267 0.9857 

LUNG 0.9555 0.956 0.9562 0.9501 0.6856 0.725 

MLL 1.0 0.9867 0.9713 0.957 1 0.8892 

PROSTATE 0.9314 0.9324 0.9324 0.9324 0.9324 0.9324 

SRBCT 0.9404 0.966 0.966 0.966 0.966 0 

ARCENE 0.9056 0.8552 0.8708 0.84 0.8298 0 

MADELON 0.8885 0.5196 0.5196 0.6023 0.5831 0 

BREAST CANCER 0.7307 0.7307 0.6682 0.7275 0.7304 0 

OVARIAN 

CANCER 
0.996 0.9722 1.0 0.9922 0.9922 0.8936 

SIDO0 0.948 0.952 0.942 0.962 0.994 0.958 

AVERAGE 0.8887  0.8606  0.8496  0.8313  0.8372  0.5744  

RANKS 2.7632  3.3947  3.5789  3.7632  2.8421  4.6579  

Table A21. Predictive accuracy using SVM. 

Data Set OSFS-KW 
OFS-

A3M 
OSFS 

Alpha-

Investing 
Fast-OSFS SAOLA 

WDBC 0.9754 0.9772 0.9526 0.9806 0.9683 0.9736 

HILL 0.5181 0.5148 0.5148 0.5098 0.5082 0.5412 

HILL (NOISE) 0.5231 0.5231 0.5065 0.4934 0.5248 0.5579 

COLON TUMOR 0.9179 0.8718 0.8526 0.6462 0.8526 0 

DLBCL 0.9732 0.9625 0.9875 0.9375 0.9875 0.8580 

CAR 0.9534 0.92737 0.7557 0.8212 0.79820 0.6453 

LYMPHOMA 0.9858 0.9675 1.0 0.9857 1.0 0.6792 

LUNG-STD 0.9778 0.9944 0.9944 0.9944 1.0 0 

GLIOMA 0.9255 0.9636 0.8127 0.6514 0.8491 0.4391 

LEU 0.9857 0.9867 0.9571 0.9857 0.6524 0.7505 

LUNG 0.9751 0.9603 0.9601 0.9452 0.6853 0.7151 

MLL 0.9867 0.9857 0.9426 0.9857 1.0 0.9016 

PROSTATE 0.9414 0.9514 0.9514 0.9514 0.9514 0.9514 

SRBCT 0.9519 0.9771 0.9771 0.9771 0.9771 0 

ARCENE 0.9102 0.8896 0.9049 0.8949 0.8197 0 

MADELON 0.8872 0.4758 0.4758 0.615 0.6265 0 

BREAST CANCER 0.7091 0.7091 0.6749 0.717 0.7756 0 

OVARIAN 

CANCER 
0.992 0.9842 1.0 0.9962 0.996 0.8893 

SIDO0 0.972 0.976 0.912 0.99 0.994 0.958 

AVERAGE 0.8980  0.8736  0.8491  0.8462  0.8404  0.5190  

RANKS 2.8158  3.0526  3.6316  3.3947  3.0526  5.0526  
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Table A22. Predictive accuracy using RF. 

Data Set OSFS-KW 
OFS-

A3M 
OSFS 

Alpha-

Investing 
Fast-OSFS SAOLA 

WDBC 0.9779 0.9578 0.9403 0.9509 0.9491 0.9526 

HILL 0.5461 0.5577 0.5280 0.5675 0.5577 0.5610 

HILL (NOISE) 0.5642 0.5825 0.5594 0.5348 0.5347 0.5346 

COLON 

TUMOR 
0.8205 0.7577 0.8679 0.5808 0.8218 0 

DLBCL 0.8430 0.9241 0.9241 0.8848 0.9357 0.8064 

CAR 0.8327 0.76051 0.68523 0.6778 0.71930 0.7486 

LYMPHOMA 0.9510 0.9366 0.9857 0.9188 0.9002 0.9197 

LUNG-STD 0.9668 0.9389 0.9833 0.9835 0.9889 0 

GLIOMA 0.8377 0.655 0.5745 0.5086 0.7741 0.7191 

LEU 0.9857 0.959 0.9581 0.86 0.5848 0.7895 

LUNG 0.9119 0.901 0.9454 0.876 0.6608 0.6553 

MLL 0.8862 0.8226 0.9559 0.9019 0.9579 0.917 

PROSTATE 0.8819 0.9114 0.9405 0.9405 0.9119 0.96 

SRBCT 0.8539 0.9424 0.9071 0.9425 0.9306 0 

ARCENE 0.805 0.7849 0.83 0.7948 0.815 0 

MADELON 0.7436 0.5204 0.5169 0.6062 0.5788 0 

BREAST 

CANCER 
0.6927 0.6537 0.5802 0.689 0.7688 0 

OVARIAN 

CANCER 
0.9881 0.98 0.992 0.9842 1.0 0.8973 

SIDO0 0.974 0.968 0.9679 0.9879 0.988 0.962 

AVERAGE 0.8454  0.8165  0.8233  0.7995  0.8094  0.5486  

RANKS 2.8947  3.5263  3.3158  3.5526  2.9737  4.7368  

Table A23. Comparison results. 

Evaluation Criteria Friedman Test ( p -Values) 

Compactness 0.0248 

Running time 3.62 × 10−23 

Accuracy (KNN) 0.0337 

Accuracy (SVM) 0.0032 

Accuracy (RF) 0.0533 
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