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Abstract: Engineering optimization problems often involve computationally expensive black-box
simulations of underlying physical phenomena. This paper compares the performance of four
constrained optimization algorithms relying on a Gaussian process model and an infill sampling
criterion under the framework of Bayesian optimization. The four infill sampling criteria include
expected feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty
reduction (SUR), and augmented Lagrangian (AL). Numerical tests were rigorously performed on
a benchmark set consisting of nine constrained optimization problems with features commonly found
in engineering, as well as a constrained structural engineering design optimization problem. Based
upon several measures including statistical analysis, our results suggest that, overall, the EFI and CEI
algorithms are significantly more efficient and robust than the other two methods, in the sense of
providing the most improvement within a very limited number of objective and constraint function
evaluations, and also in the number of trials for which a feasible solution could be located.

Keywords: expensive function; expected improvement; constrained Bayesian optimization;
Gaussian process; infill sampling criterion

1. Introduction

Nature-inspired optimization algorithms, such as swarm intelligence metaheuristics and
evolutionary algorithms, have become increasingly popular in recent years for solving optimization
problems in different domains, including, for instance, the firefly algorithm [1,2], crow search
algorithm [3], hybrid gray wolf optimizer–crow search algorithm [4], elephant herding optimization
and tree growth algorithm [5], to name a few. The interested reader is encouraged to consult also [6–11]
for recent works and applications of nature-inspired algorithms.

When the objective function is computationally expensive (taking a long time to evaluate)
and black-box (neither the function expression nor its derivative function are explicitly known),
Bayesian optimization (BO) is often employed. Relying on the expected improvement criterion, BO
was first proposed by Mockus [12,13] and was popularized by Jones et al. when the framework
called the Efficient Global Optimization (EGO) algorithm was introduced [14]. Due to the ease
of use and flexibility, the algorithm has been applied to solve different optimization problems in
numerous research areas [15–19]. Several modifications to the original EGO developed particularly for
unconstrained problems have also been proposed in many works ever since [20–25].

Though not as widely used, Bayesian optimization has also been applied to solving constrained
optimization problems over the past decade. We now briefly summarize past research on constrained
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Bayesian optimization (CBO). The method considered in [26] combines the generalized expected
improvement criterion with the probability of feasibility, while the expected feasible improvement
criterion of [27] combines the expected improvement with constraint functions. Good results were
obtained both for simulated and real-world data of learning tasks based on locality sensitive
hashing (LSH) hyperparameter tuning and support vector machine (SVM) model compression.
The super-efficient global optimization proposed in [28] also includes a feasibility criterion that
prevents one from selecting from an infeasible region. Priem et al. [29] proposed a method that uses
the the confidence bound [30] to improve the feasibility criterion for better exploring feasible regions
in high-uncertainty regions.

Gramacy and Lee proposed a method called integrated expected conditional improvement [31].
The method learns both the objective function and constraint functions at the same time by
incorporating a constraint violation into the expected improvement criterion. It sequentially chooses
a point whose expected reduction of expected improvement is below the current best observed
value and satisfies the constraints. Gelbart et al. [32] studied a criterion for constrained Bayesian
optimization problems when noise may be present in the constraint functions and proposed a two-step
approach for optimization when the objective and the constraints may be evaluated independently.
The next point is selected by maximizing the expected feasible improvement. Then, either the
objective or the constraint function will be chosen to evaluate based on the information gain metric.
Hernández-Lobato et al. [33] proposed a method called predictive entropy search with constraints,
which is an extension of the predictive entropy search [34]. It uses the information gain as a criterion to
solve constrained optimization problems and does not require any feasible observation to initialize the
algorithm. The rollout algorithm, an adaptation of the method often used in dynamic programming,
sequentially selects the next points by maximizing the long-term feasible reduction of the objective
function [35]. Numerical results illuminated advantages of the algorithm especially when the objective
function is multimodal and the feasible region has a complex topology.

Ariafar et al. [36] proposed an approach that is based on the alternating direction method of
multipliers. The method is separated into two solvable problems: the one that minimizes the objective
function with a penalty term involving the solution being close to feasible regions and the other that
minimizes penalized feasibility over an auxiliary variable that is closest to the solution found in the first
step. Recently, Jiao et al. proposed a new sampling criterion for solving optimization problems with
constraint functions [37]. The new sampling criterion, called the constrained expected improvement,
addressed the issue that the previous expected improvement criterion fails to work because the initial
observations do not contain any feasible solutions. The results showed that the algorithm could exploit
feasible regions locally as well as explore infeasible yet promising regions efficiently.

From another perspective, an optimization strategy based on stepwise uncertainty reduction
principles was proposed for solving a multi-objective optimization [38]. The strategy relies on
a sequential reduction of the volume of the excursion sets below the current best solution. Using the
same principle, a sampling criterion for a single objective optimization with constraint functions was
introduced in [39]. A combination of Gaussian process modeling and the augmented Lagrangian for
Bayesian optimization with constraints was proposed by Gramacy et al. [40]. Analytical formulas of
the main criterion of the single expensive constraint and the cheap-to-evaluate objective function were
subsequently derived in [41], leading to a more efficient implementation of the infill sampling criterion
for optimization framework.

Apparently, over the past decade, several Gaussian process (GP)-based infill sampling criteria have
been developed and independently tested; however, none of these criteria were rigorously compared
under the same umbrella and, in particular, under the BO setting when a very limited number
of objective and constraint function evaluations are allowed. In this work, we therefore compare
different infill sampling criteria developed for constraint optimization problems: expected feasible
improvement [26,27], constrained expected improvement [37], stepwise uncertainty reduction [39],
and augmented Lagrangian [40]. The benchmark set consists of nine problems with features commonly
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found in engineering, as well as a constrained structural engineering design optimization problem.
The comparison measurements include the quality of the best solution found, the efficiency to find
a feasible region, and the overall number of feasible points being sampled. Different from the
work in [37] that compared different criteria under a GP surrogate-assisted evolutionary algorithm
framework, this is the first attempt to compare the four infill sampling criteria under a unified
constrained Bayesian optimization framework.

The remainder of this article is organized as follows. The related work and background are
discussed in Section 2. Numerical results comparing different infill sampling criteria under the CBO
framework on benchmark problems are presented in Section 3. Finally, conclusions and future work
are discussed in Section 4.

2. Background

2.1. Gaussian Process Modeling

To model an unknown function f , we consider a standard Gaussian process model where the
output is assumed to be one realization of a GP [42]:

f (x) ∼ GP
(
µ0(x), k(x, x′)

)
, (1)

where the prior mean function µ0(x) reflects the expected function value at input x, and the covariance
function k(x, x′) models the dependency between the function values at two different input points x
and x′. Known also as a GP kernel, the function k captures prior beliefs such as the smoothness of the
function. Once the prior mean and kernel functions are chosen, we can draw function values at the
sample points x1, x2, . . . , xn and obtain a posterior function value at any new input x in the domain D,
conditional upon all previous observations.

Let us denote the input and output vectors of the observations by Xn = [x1, x2, . . . , xn]
T and

fn = [ f (x1), f (x2), . . . , f (xn)]
T , respectively. Under the GP prior assumption, the joint distribution fn

turns out to be a multivariate Gaussian distribution. We can make a prediction at any new input x
by drawing f (x) from the posterior distribution of the GP. Under the noise-free observations with
a constant mean, the predictive distribution of f (x) at a point x ∈ D becomes [43]:

f (x)| fn ∼ N (µn(x), s2
n(x)), (2)

where the predictive mean and variance are given by

µn(x) = µ̂ + cTC(Xn, Xn)
−1( fn − 1µ̂),

s2
n(x) = σ̂2 − cTC(Xn, Xn)

−1c +
(1− 1

TC(Xn, Xn)−1c)2

1TC(Xn, Xn)−11
.

(3)

Here, µ̂ = 1(C(Xn ,Xn))−1 fn
1T(C(Xn ,Xn))−11

, σ̂2 = 1
1T(C(Xn ,Xn))−11

, and C(Xn, Xn) is an n× n covariance matrix with

element (i, j) being k(xi, xj). cT = [k(x, x1), k(x, x2), . . . , k(x, xn)] is a covariance vector between a new
point and the observations. See, for example, [42] for details.

2.2. Constrained Bayesian Optimization

A general optimization problem with constraint functions is formulated as follows:

minimize
x∈D

y = f (x)

subject to g(x) =
(

g1(x), g2(x), . . . , gm(x)
)
≤ u,

(4)
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where D ⊂ Rd is the solution space and u = (u1, u2, . . . , um) is the upper constraint bound. Whenever a
solution x satisfies all constraints’ gi(x), it is a feasible solution; otherwise, it is an infeasible solution.

Constrained Bayesian Optimization (CBO) is an efficient method used for solving a global
optimization problem whose objective and/or constraint functions are black box and expensive
to evaluate [44]. The approach relies on fitting a cheaper statistical model to the underlying
expensive-to-evaluate objective and constraint functions.

Throughout the rest of this paper, we will use the following notation: Xn = {x1, x2, . . . , xn},
fn = { f (Xn)}, and gi

n = {gi(Xn)} are the sets containing all observation points, the corresponding
objective function values, and the ith constraint function values at n observation points Xn,
respectively. In addition, we define gmn to be the set containing all m constraint evaluations at n
observation points Xn, i.e., gmn = {g1

n, g2
n, . . . , gm

n }.
A brief procedure for CBO is given in Algorithm 1. First, the observations of the initial sample

are drawn and function evaluations are performed at these points. Imposing a prior distribution over
functions, a posterior distribution can be obtained through the likelihood functions. The next point
for function evaluation xn+1 is chosen by maximizing an infill sampling criterion (also known as
an acquisition function), which measures an objective function improvement made at any point in the
domain, taking into account the probability of feasibility. Once selected, the new point is evaluated
both on the objective and constraint functions and then added into the sample, and the next iteration
begins. The stopping criterion relies on the exhaustion of the available budget.

Algorithm 1 Constrained Bayesian Optimization (CBO).

Require: objective function f , constraint functions g1, . . . , gm, infill sampling criterion α,
initial design points Xn = {x1, x2, . . . , xn}, fn = { f (Xn)}, gmn = {g1(Xn), . . . , gm(Xn)}
repeat

1: Fit or update GPs for the objective and constraint functions
2: Maximize the infill sampling criterion: xn+1 = argmaxx∈D α(x)
3: Evaluate f (xn+1), g1(xn+1), . . . , gm(xn+1)
4: Add the new data to the observation sets Xn, fn, and gmn

5: Update the counter n← n + 1
until termination condition is met
return best solution found

2.3. Infill Sampling Criteria

In this section, we give details of the infill sampling criteria considered for constrained
optimization problems. Both the objective function f (x) and all constraint functions gi(x), i = 1, . . . , m
are modeled by mutually independent Gaussian process models.

The predictive distribution of f (x) given the observation set fn can be obtained by Equation (2)
as described in Section 2.1. Along the same line, the predictive distributions of the constraint function
gi(x) given gi

n for i = 1, 2, . . . , m can also be obtained by

gi(x)|gi
n ∼ N

(
µgi

n
(x), s2

gi
n
(x)
)

, (5)

where the predictive mean µgi
n
(x) and variance s2

gi
n
(x) are defined analogously to those of Equation (3).

2.3.1. Expected Feasible Improvement (EFI)

The feasible improvement criterion is defined by [32]

IEFI(x) =

{
f min
n − f (x) if f (x) ≤ f min

n and g(x) ≤ u

0 otherwise ,
(6)
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where f min
n = mini=1,...,n{ f (xi)|g(xi) ≤ u} is the current best value of feasible observations.

Observe that the improvement is zero when x does not satisfy some constraints.
Defining the feasible indicator by

Ig(x) =

{
1 if g(x) ≤ u

0 otherwise ,
(7)

one can then write
IEFI(x) = Ig(x)max( f min

n − f (x), 0) = Ig(x)I f (x), (8)

where I f (x) = max( f min
n − f (x), 0) is the improvement made in the objective function

without constraints.
Assuming all GPs are mutually independent, the expected feasible improvement becomes

E[IEFI(x)| fn, g1
n, . . . , gm

n ] =
m

∏
i=1

P
(

gi(x) ≤ ui|gi
n

)
E[I f (x)| fn], (9)

where E[I f (x)| fn] is the expected improvement of the objective function and ∏m
i=1 P(gi(x) ≤ ui|gi

n) is
the probability of feasibility.

The next function evaluation point xn+1 is selected by maximizing the EFI criterion in Equation (9).
When there is no feasible point in the observation, the term E[I f (x)| fn] will be dropped and only the
probability of feasibility is used to make a decision on the next function evaluation point.

2.3.2. Constrained Expected Improvement (CEI)

Constrained expected improvement was proposed in [37] specially to solve constrained
optimization problems with large infeasible regions. Two scenarios were considered separately,
i.e., infeasible and feasible situations, by considering whether or not there is a feasible point in
the observation set. When there is a feasible solution in the observation set, CEI is precisely the EFI
discussed in the previous section.

When the observation set does not contain any feasible point, the next function evaluation point is
chosen by considering a constraint violation. For any point x, the ith constraint violation is defined as

G+i(x) = max(0, gi(x)− ui) (10)

for i = 1, . . . , m. For any observation that satisfies constraint i, the ith constraint violation is set to zero.
The constraint violation at any location x, G+(x), is defined as the maximum of the violation of

all constraints:
G+(x) = max

i=1,2,...,m
G+i(x). (11)

Thus, G+(x) = 0 whenever x is a feasible point.
Next, the constrained improvement is the improvement of constraint violation at x above the

current best solution defined as

ICEI(x) =

{
g+min

n − G+(x) if G+(x) ≤ g+min
n

0 otherwise ,
(12)

where g+min
n is the minimum value of G+(x) among all the n observation points.
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The formulation for the CEI in the infeasible situation is therefore [37]

E[ICEI(x)|gmn] =
∫ g+min

n

0
(g+min

n − z)pG+(x)|gmn(z)dz

=
∫ g+min

n

0
PG+(x)|gmn(z)dz− g+min

n PG+(x)|gmn(0),

(13)

where PG+(x)|gmn(z) = ∏m
i=1

[
Φ
(

ui+z−µ
gi

n
(x)

s
gi

n
(x)

)]
is the conditional distribution function of G+(x)

and Φ(·) is the cumulative distribution function of the standard Gaussian distribution.
The next function evaluation point is selected by maximizing the CEI criterion in Equation (13),

after which the new point is combined into the observation set and the next iteration begins until
a feasible solution is found. The criterion is then switched to the feasible situation given by Equation (9).

2.3.3. Stepwise Uncertainty Reduction (SUR)

As before, we denote the current best feasible value by f min
n , and if there is no feasible solution

available in the observation set, we define f min
n = +∞. For any point x, the probability of improvement

p(x, f min
n ) := P( f (x) ≤ f min

n ) is

p(x, f min
n ) = Φ

(
f min
n − µ f (x)

s f (x)

)
. (14)

The uncertainty measure is the volume of the excursion set below the current best value of
observation. Let C ⊆ D be the admissible (feasible) domain. The uncertainty measure is defined
by [39]

evn =
∫

C
P( f (x) ≤ f min

n )dx. (15)

The admissible domain C is modeled by the GPs of objective function f and constraint functions
gi, i = 1, . . . , m. By the independence of these processes, the probability that f (x) is below f min

n and
feasible is P( f (x) ≤ f min

n )∏m
i=1 P(gi(x) ≤ ui). Therefore, the expected volume of admissible excursion

below the current minimum f min
n is equal to

evn =
∫

D

[
P( f (x) ≤ f min

n )
m

∏
i=1

P(gi(x) ≤ ui)

]
dx

=
∫

D

[
Φ

(
f min
n − µ f (x)

s f (x)

)
m

∏
i=1

Φ

(
ui − µgi (x)

sgi (x)

)]
dx.

(16)

The expected volume of EVn+1 which defines the SUR criterion is then given by

EEV(xn+1) = E[EVn+1 | fn+1, gn+1]. (17)

Following notations in [39], the expression of EEV(xn+1) for a single constraint case is given by

EEV(xn+1) =
∫

D

[
Φν f ( f

min
n , η f ) + Φ−ρ f (− f

min
n , f̃ min

n )
]

Φρg(u, ũ)

+ Φ( f
min
n )

[
Φ(u)−Φρg(u, ũ)

]
dx.

(18)



Symmetry 2020, 12, 1631 7 of 20

Similarly, one can follow the same principle and obtain a formula for two or more constraint
functions. The formula for two constraints is given by

EEV(xn+1) =
∫

D

[
Φν f ( f

min
n , η f ) + Φ−ρ f (− f

min
n , f̃ min

n )
] 2

∏
i=1

Φρgi (ugi , ũgi )

+ Φ( f
min
n )

[
Φ(ug1)p+g2(x) + Φ(ug2)p+g1(x)−

2

∏
i=1

p+gi (x)

]
dx,

(19)

where p+gi (x) = Φ(ugi ) − Φρgi (ugi , ũgi ) and Φr is the Gaussian bivariate CDF with zero mean and

covariance matrix

[
1 r
r 1

]
.

For notational simplicity, all subscripts and superscripts will be suppressed. The definitions of
those terms appearing in Equations (18) and (19) above will now be given:

ρ =
c(x, xn+1)

s(xn+1)s(x)

ν =
c(x, xn+1)− s2(xn+1)

s(xn+1)
√

s2(x) + s2(xn+1)− 2c(x, xn+1)

η =
µ(xn+1)− µ(x)√

s2(x) + s2(xn+1)− 2c(x, xn+1)

a =
a− µ(xn+1)

s(xn+1)

ã =
a− µ(x)

s(x)
.

(20)

2.3.4. Augmented Lagrangian (AL)

Augmented Lagrangian considers an optimization problem of the form [40]

LA(x; λ, ρ) = f (x) + λT g(x) +
1

2ρ

m

∑
i=1

max
(

0, gi(x)
)2

, (21)

where ρ > 0 is a penalty parameter and λ ∈ Rm
+ is Lagrange multiplier. Following the notations in [40],

let Y(x) be a composite GP model for LA(x; λ, ρ):

Y(x) = Yf (x) + λTYg(x) +
1

2ρ

m

∑
i=1

max(0, Ygi (x))2. (22)

The conditional expected improvement of Y(x) under GP is given by

E
[

IAL(x) | fn, g1
n, . . . , gm

n

]
= E

(
max(0, ymin

n −Y(x))
)

, (23)

where ymin
n = mini=1,...,n{Y(xi)}.

Equation (23) does not have a closed-form expression in general and calls for Monte Carlo
simulations. Analytical formulas for the one-constraint problem were derived in [41].
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3. Empirical Experiments

3.1. Experimental Setup

We assume that the computation of both the objective and constraint functions are computationally
expensive, and therefore a very limited number of objective and constraint function evaluations will
be allowed. Computationally expensive means that the function evaluation completely dominates the
cost of the optimization procedures. The term is linked not necessarily to the problem having high
dimensionality or a large number of constraints. In fact, many practical optimization applications
arising from expensive computer simulations have only a few number of decision variables.

3.1.1. Test Problem Description

We test the performance of CBO methods (Algorithm 1) with EFI, CEI, SUR, and AL criteria on
the same benchmark suite as used in [37]. It is worth noting that applying GP to higher dimensional
settings (>10 dimensions) is generally difficult due to the curse of dimensionality for nonparametric
regression. In addition, the higher the number of dimensions and constraints, the more computation
time will be required for GP modeling as well as for optimizing the infill sampling criterion.

Details of the test problems including the number of decision variables d, the characteristic of
the objective function, known optimal value f (x∗), the number of constraint functions, the type of
constraint functions, as well as the proportion of the feasible space to the whole search space (feasibility
ratio) are given in Table 1. Monte Carlo sampling with size 100d was used to estimate the last proportion
of relative size of the feasible space to the size of the search space. The closer to 0 the value, the smaller
the feasible region is. For problem definitions including the objective and constraint functions of these
instances, see Appendix A.

Table 1. Benchmark problems.

Problem d Characteristic f (x∗) No. of Constr. Type of Constr. Feasibility Ratio

G02 2 Nonlinear - 2 inequality 0.83
G03 2 Polynomial - 1 equality 0.01
G04 5 Quadratic −30,665.539 6 inequality 0.26
G06 2 Cubic −6961.814 2 inequality 0.00
G08 2 Nonlinear −0.095825 2 inequality 0.01
G09 7 Polynomial 680.63 4 inequality 0.01
G11 2 Quadratic 0.7499 1 equality 0.01
G12 3 Quadratic −1.0 1 inequality 0.00
G24 2 Linear −5.508 2 inequality 0.44
P.V. 4 Polynomial 5821.192 4 inequality 0.40

3.1.2. Experimental Settings

In order to separate the impact of the infill sampling criterion from the influence of model accuracy,
the same GP model parameters were used for each criterion. At each step, a GP model with a Matérn
5/2 covariance function is fit to both the objective and constraint functions. The hyperparameters are
re-estimated by Maximum Likelihood Estimation in every iteration using all points visited during all
previous iterations. For problems with equality constraints (i.e., problems G03 and G11), a tolerance of
0.005 was used.

3.1.3. Comparison Metrics

We use the following measurements to examine the influence of different infill sampling criteria.

1. Quality of the final solution, represented by the mean and standard deviation of the best feasible
solution found;
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2. Efficiency and speed of finding a feasible region, represented by the count of the number of
trials (out of 20) for which a feasible solution is found and how fast the first feasible solution
is found;

3. Total number of feasible points being sampled, which is the proportion of feasible solutions to
the total number of observations.

3.2. Results of Constrained Bayesian Optimization

The performance of constrained Bayesian optimization will depend on the locations of the points
in the initial sample. In some cases, the initial design might contain a point already close to the
global minimum. Therefore, to ensure the accurate representation of the algorithm’s capability, each
experiment was repeated for 20 independent runs with different initial design points (but the same for
all compared algorithms on a fixed run, to avoid the bias).

To test the efficiency of locating a feasible region, two scenarios of initial experimental design
were investigated:

Scenario 1: 10 uniform points, all generated outside feasible regions;
Scenario 2: 5× d points of a Latin Hypercube Sampling Design (LHSD) [45].
The first scenario, when all initial sample points were forced to be outside the feasible regions,

was done to test the efficiency of the algorithm to enter feasible regions when no feasible solution
is currently available. The second scenario, on the other hand, reflects a more realistic situation,
i.e., the proportion of the feasible solutions generated in the initial design should, at least in practice,
be proportional to the size of the feasible space to the search space.

Table 2 gives statistics of the number of feasible solutions found in the initial LHSD design when
the size of the design is n0 = 5d over 20 trials. Problems with positive values of maximum and
minimum in the table are those for which all of the 20 trials include at least one feasible solution in the
initial design.

Table 2. Number of initial feasible solutions in the Latin Hypercube Sampling Design for Scenario 2
over 20 repetitions.

Problem n0 Max Min Mean Sd

G02 10 10 6 7.93 0.91
G03 10 1 0 0.23 0.43
G04 25 10 5 6.87 1.33
G06 10 0 0 0.00 0.00
G08 10 1 0 0.27 0.45
G09 35 1 0 0.03 0.18
G11 10 1 0 0.13 0.35
G12 15 0 0 0.00 0.00
G24 10 7 2 4.53 1.11
P.V. 20 10 6 7.77 1.07

3.2.1. Scenario 1: Infeasible Initial Design Points

The average, standard deviation, and best feasible objective function values for the case when all
initial design points were located outside the feasible regions obtained after 100 iterations are given
in Table 3. The numbers in the brackets of the row “mean” of the table represent the count of trials
(out of 20) for which no feasible solution is found along the run. We can see that feasible solutions can
be found by all algorithms in all runs except for problems G02 (AL missing 2 trials) and G06 (SUR
missing 5 trials). When calculating the mean and standard deviation of the best values, we included
only the values of those trials for which there is at least one feasible solution.
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Table 3. Results for Scenario 1 after 100 iterations, 20 independent runs for the criteria: expected
feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty reduction
(SUR), and augmented Lagrangian (AL). For each problem, the number in the brackets in the row
“mean” gives the number of trials (out of 20) for which no feasible solutions are found. Mean and
standard deviation values represent the best feasible solutions calculated over those trials that can find
at least one feasible solution. The row “best” gives the best solution values out of 20 trials.

EFI CEI SUR AL

G02 mean −0.354523 −0.349112 −0.328333 −0.011866 (2)
sd 0.030 0.034 0.044 0.012

best −0.364945 −0.364912 −0.364876 −0.045774

G03 mean −1.00493 −1.004921 −1.002134 −1.004999
sd 4.4× 10−5 7.3× 10−5 0.002 1.3× 10−6

best −1.004988 −1.004986 −1.004589 −1.005

G04 mean −30,660.391634 −30,658.9148 −30,412.700791 −30,663.696439
sd 5.369 8.54 104.2 2.384

best −30,665.385912 −30,665.408571 −30,557.454 −30,665.512788

G06 mean −6907.923157 −6900.394384 −3905.944359 (5) −6961.568873
sd 39.91 104.3 1486.2 0.313

best −6953.363959 −6954.57663 −6290.35333 −6961.80541

G08 mean −0.09579 −0.09286 −0.090028 −0.070216
sd 1.1× 10−4 0.012 0.010 0.030

best −0.095825 −0.095825 −0.095825 −0.095149

G09 mean 1061.523216 1054.971218 989.331029 1080.731166
sd 93.37 110 61.89 162.7

best 938.882413 818.435864 848.779923 834.284207

G11 mean 0.745064 0.74507 0.747024 0.745004
sd 2.4× 10−5 2.3× 10−5 0.001 4.6× 10−6

best 0.74503 0.745034 0.745136 0.745

G12 mean −1 −1 −0.999919 −1
sd 1.3× 10−7 2.1× 10−7 8.2× 10−5 3.3× 10−7

best −1 −1 −0.999993 −1

G24 mean −5.506425 −5.505559 −5.44143 −2.360917
sd 0.001 0.002 0.017 0.640

best −5.507484 −5.507677 −5.474746 −3.103283

A Wilcoxon signed-rank test has been carried out to see whether the best feasible solutions found
by each algorithm as reported are significantly different. For any two algorithms, the expression
A1 ≈ A2 means that the final solutions found by A1 and A2 are not significantly different, while
the expression A1 ≺ A2 means that A1 is significantly better than A2 at the 5% level of significance.
The statistical results are summarized in Table 4. We can see from the table that the performance we
obtained for EFI and CEI were quite similar. Both algorithms performed best on 4 problems. As for
AL, the algorithm performed best also on 4 problems, while SUR was best only on 1 problem.
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Table 4. Wilcoxon signed-ranks test results at the 5% significance level for Scenario 1.

Problem Results

G02 EFI ≈ CEI ≺ SUR
G03 AL ≺ EFI ≈ CEI ≺ SUR
G04 AL ≺ EFI ≈ CEI ≺ SUR
G06 AL ≺ CEI ≺ EFI
G08 EFI ≈ CEI ≺ SUR ≺ AL
G09 SUR ≺ EFI ≈ CEI ≈ AL
G11 AL ≺ EFI ≈ CEI ≺ SUR
G12 EFI ≈ CEI ≺ AL ≺ SUR
G24 EFI ≈ CEI ≺ SUR ≺ AL

Figure 1 illustrates the distribution of the iteration numbers for which the first feasible solution
was found. The value reflects how quickly the process will lead the search to reach feasible regions as
the algorithm evolves from outside the feasible regions. From the boxplot, we can see that, overall,
EFI could locate a first feasible solution fastest. Except for problems G02 and G06 (when AL and
SUR had a problem locating a feasible solution in some trials), CEI found a first feasible solution
slowest overall.

The distribution of the number of feasible solutions out of 100 observations is given in Figure 2.

Figure 1. Distribution of the iteration number for which the first feasible solution is found (Scenario 1)
for the criteria: expected feasible improvement (EFI), constrained expected improvement (CEI),
stepwise uncertainty reduction (SUR), and augmented Lagrangian (AL). The lower the plot, the faster
the criterion is in finding the first feasible solution.
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Figure 2. Distribution of the number of feasible solutions over the course of 100 iterations (Scenario 1).
The higher the plot, the more frequently the feasible solutions are visited.

3.2.2. Scenario 2: Latin Hypercube Initial Design Points

For a more practical and realistic situation, LHSD is used to generate the initial points in the
second scenario. In addition to the test problems used in Scenario 1, we also include a practical
application of the pressure vessel design optimization problem with four constraints [46]. We shall
refer to this problem by the abbreviation P.V. The problem description can be found in Appendix A.2.
Results of the best solution found after 200 iterations are given in Table 5. From the table, we can
see that feasible solutions were found by all algorithms in all runs except for problems G02 and G08,
where AL failed to locate a feasible solution on 4 and 2 trials, respectively.

In terms of the solution quality, results from a statistical test are reported in Table 6. We can see
that EFI and CEI performed quite similarly except for one case, G09, on which CEI is significantly
better than EFI. CEI is best on 6 problems, EFI is best on 5 problems, and AL is best on 5 problems.

The iteration number for which the first feasible solution is found is shown in Figure 3. It is clear
from these boxplots that overall, the fastest algorithm to find the first feasible point is again achieved by
EFI. The number of feasible solutions (out of the total number of 200 observations) is given in Figure 4.
While AL performed best on 5 problems as mentioned, it did not find a feasible solution on some trials
for 2 problems. In addition, AL performed significantly poorly on the pressure vessel problem.

Both EFI and CEI seem to work very well, but CEI tends to search over infeasible regions in
the early stages of the algorithm before moving the search towards the feasible region afterwards,
while EFI seems to behave in the opposite direction. Finally, although SUR did not fail to find a feasible
solution in Scenario 2, none of its solutions is as good as that of other algorithms.
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Table 5. Results for Scenario 2 after 200 iterations, 20 independent runs. For each problem, the number
in brackets in the row “mean” gives the number of trials (out of 20) for which no feasible solutions are
found. Mean and standard deviation values represent the best feasible solutions calculated over those
trials that can find at least one feasible solution. The row “best” gives the best solution values out of
20 trials.

EFI CEI SUR AL

G02 mean −0.364025 −0.364312 −0.359966 −0.015449 (4)
sd 0.001 6.4× 10−4 0.003 0.009

best −0.364952 −0.364964 −0.363933 −0.026312

G03 mean −1.004955 −1.004936 −1.002705 −1.004999
sd 4.5× 10−5 6.2× 10−5 0.001 1.2× 10−6

best −1.004995 −1.004993 −1.004749 −1.005

G04 mean −30,657.612772 −30,656.937017 −30,304.856407 −30,663.376405
sd 11.773 11.29 110.9 2.117

best −30,663.739482 −30,664.743145 −30,509.511844 −30,665.506828

G06 mean −6918.658417 −6910.902959 −4183.120175 −6961.75848
sd 24.591 57.828 1492 0.115

best −6948.863162 −6952.440967 −6805.861054 −6961.813406

G08 mean −0.095822 −0.095379 −0.093684 −0.061701 (2)
sd 6.9× 10−6 0.002 0.003 0.044

best −0.095825 −0.095825 −0.095823 −0.095392

G09 mean 921.327255 865.05661 908.279316 887.020006
sd 75.58 74 63.3 86.42

best 771.65775 749.67991 780.921707 762.976464

G11 mean 0.745055 0.74506 0.746072 0.745002
sd 3.6× 10−5 3.3× 10−5 5.7× 10−4 1.3× 10−6

best 0.745022 0.745024 0.745058 0.745

G12 mean −1 −1 −0.999931 −1
sd 2.6× 10−8 3.1× 10−8 7.5× 10−5 4.4× 10−7

best −1 −1 −0.999999 −1

G24 mean −5.506132 −5.506621 −5.455703 −1.942322
sd 0.001 8.3× 10−4 0.024 0.620

best −5.507517 −5.507572 −5.499659 −3.938104

P.V. mean 5941.776519 5916.992288 6147.141779 394,221.943568
sd 63.6 25.6 133 150,000

best value 5888.547144 5888.510311 5913.191216 300,359.489514

Table 6. Wilcoxon signed-rank test results at the 5% significance level for Scenario 2.

Problem Results

G02 EFI ≈ CEI ≺ SUR
G03 AL ≺ EFI ≈ CEI ≺ SUR
G04 AL ≺ EFI ≈ CEI ≺ SUR
G06 AL ≺ EFI ≈ CEI ≺ SUR
G08 EFI ≈ CEI ≺ SUR
G09 AL ≈ CEI ≺ EFI ≈ SUR
G11 AL ≺ EFI ≈ CEI ≺ SUR
G12 EFI ≈ CEI ≺ AL ≺ SUR
G24 EFI ≈ CEI ≺ SUR ≺ AL
P.V. EFI ≈ CEI ≺ SUR ≺ AL
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Figure 3. Distribution of the iteration number for which the first feasible solution is found (Scenario 2).
The lower the plot, the faster the criterion is in finding the first feasible solution.

Figure 4. Distribution of the number of feasible solutions over the course of 200 iterations (Scenario 2).
The higher the plot, the more frequently the feasible solutions are visited.

Finally, we summarize the best algorithm for each problem of the two scenarios in Table 7.

Table 7. Best criteria of each problem due to minimum value achieved.

Problem Scenario 1 Scenario 2

G02 EFI, CEI EFI, CEI
G03 AL AL
G04 AL AL
G06 AL AL
G08 EFI, CEI EFI, CEI
G09 SUR CEI, AL
G11 AL AL
G12 EFI, CEI EFI, CEI
G24 EFI, CEI EFI, CEI
P.V. - EFI, CEI
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4. Conclusions

In this article, we performed a study on the benchmarking of various CBO algorithms to test the
capability of each infill sampling criterion. To that end, experiments with a set of benchmark problems
were performed to investigate the impact of the choice of criteria on problems with varying shapes and
sizes of feasible regions, ranges of the decision space, as well as initial number of feasible solutions.
In light of the results obtained, SUR does not give a satisfactory performance on fast convergence
when compared to other methods. AL performed best in several circumstances, but it could not locate
a feasible solution on some problem trials. While the performances of EFI and CEI were quite similar,
EFI seemed to locate a first feasible solution slightly faster. The obtained results indicate that EFI and
CEI could better balance the exploration and exploitation of the objective space and at the same time
explore feasible regions more efficiently.

Because of the inherent diversity of these methods, each compared method still has strengths and
limitations that leave room for future improvement. Besides the issue of scaling to high-dimensional
GPs, another important challenge associated with high-dimensional CBO and/or a large number of
constraints is optimization of the infill sampling criterion, which often involves numerical integration
methods. To apply CBO to high-dimensional problems, it is therefore necessary to develop methods
that scale to high dimensional problems. Consequently, advanced methods on scalable/sparse GPs,
local CBO, as well as the strategy used to optimize an infill sampling criterion can be potential research
directions [47–51].

In addition, the choice of the initial sampling strategy can also influence the overall quality of the
BO [52]. Variance reduction techniques such as those introduced in [53] may also play an important
role and affect the performance of algorithms. This can be a potential future direction for benchmarking
the CBO algorithm’s performance.
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Appendix A. Problem Definition

Appendix A.1. Benchmark Problems

1. Problem G02 (modified, 2d)

minimize
x

f (x) = −|cos4(x1) + cos4(x2)− 2 cos2(x1) cos2(x2)√
x2

1 + 2x2
2

|

subject to g1(x) = 0.75− x1x2 ≤ 0

g2(x) = x1 + x2 − 15 ≤ 0

0 ≤ xi ≤ 10 (i = 1, 2).
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2. Problem G03 (modified, 2d)

minimize
x

f (x) = −2x1x2

subject to g1(x) = x2
1 + x2

2 − 1 = 0

0 ≤ xi ≤ 1 (i = 1, 2).

3. Problem G04

minimize
x

f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

78 ≤ x1 ≤ 102 , 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤ 45 (i = 3, 4, 5).

The global minimum of G04 is x∗ = (78, 33, 29.9953, 45, 36.7758), and f (x∗) = −30665.5387.
4. Problem G06

minimize
x

f (x) = (x1 − 10)3 + (x2 − 20)3

subject to g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100.

The global minimum of G06 is x∗ = (14.095, 0.843), and f (x∗) = −6961.814.
5. Problem G08

minimize
x

f (x) = − sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

subject to g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

0 ≤ xi ≤ 10 (i = 1, 2).

The global minimum of G08 is x∗ = (1.228, 4.24537), and f (x∗) = −0.09583.
6. Problem G09

minimize
x

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+ 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

subject to g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

− 10 ≤ xi ≤ 10 (i = 1, . . . , 7).



Symmetry 2020, 12, 1631 17 of 20

The global minimum of G09 is x∗ = (2.3305, 1.95137,−0.4775, 4.3657,−0.6244, 1.0381, 1.5942),
and f (x∗) = 680.63.

7. Problem G11
minimize

x
f (x) = x2

1 + (x2 − 1)2

subject to g1(x) = x2 − x2
1 = 0

− 1 ≤ xi ≤ 1 (i = 1, 2) .

The global minimum of G11 is x∗ = (−0.707, 0.5), and f (x∗) = 0.7499.
8. Problem G12

minimize
x

f (x) =
−
(
100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)

100
subject to g1(x) = (x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 0.0625 ≤ 0

0 ≤ xi ≤ 10 (i = 1, 2, 3).

The global minimum of G12 is x∗ = (5, 5, 5), and f (x∗) = −1.
9. Problem G24

minimize
x

f (x) = −x1 − x2

subject to g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 ≤ 0

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0

0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4.

The global minimum of G24 is x∗ = (2.3295, 3.17849), and f (x∗) = −5.50801.

Appendix A.2. Pressure Vessel Design Problem

The pressure vessel design is a benchmark problem arising in structural engineering [46].
The objective of this problem is to minimize the total cost of materials, forming, and welding. The
thickness of the shell (Ts), the thickness of the head (Th), the inner radius (R), and the length of the
cylindrical section without considering the head (L) are the design variables. The variable vector
(in inches) can be written as x = (x1, x2, x3, x4), where x1, x2, x3 and x4 represent Ts, Th, R and L,
respectively. The formulation of the optimization problem is given by

minimize
x

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 6.1875 and 10 ≤ x3, x4 ≤ 200.

The global minimum of the pressure vessel problem is x∗ = (0.73416509, 0.36346997, 38.03065892,
234.73387898), and f (x∗) = 5821.192.
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