
symmetryS S

Article

ImageDetox: Method for the Neutralization of
Malicious Code Hidden in Image Files

Dong-Seob Jung 1, Sang-Joon Lee 2,* and Ieck-Chae Euom 3

1 HUNESION Co. Ltd., Seoul 06072, Korea; dsjung@hunesion.com
2 School of Business Administration, Chonnam National University, Gwangju 61186, Korea
3 System Security Research Center, Chonnam National University, Gwangju 61186, Korea; iceuom@jnu.ac.kr
* Correspondence: s-lee@jnu.ac.kr

Received: 2 August 2020; Accepted: 14 September 2020; Published: 30 September 2020
����������
�������

Abstract: Malicious codes may cause virus infections or threats of ransomware through symmetric
encryption. Moreover, various bypassing techniques such as steganography, which refers to the
hiding of malicious code in image files, have been devised. Unknown or new malware hidden in an
image file in the form of malicious code is difficult to detect using most representative reputation-
or signature-based antivirus methods. In this paper, we propose the use of ImageDetox method
to neutralize malicious code hidden in an image file even in the absence of any prior information
regarding the signatures or characteristics of the code. This method is composed of four modules:
image file extraction, image file format analysis, image file conversion, and the convergence of image
file management modules. To demonstrate the effectiveness of the proposed method, 30 image files
with hidden malicious codes were used in an experiment. The malicious codes were selected from
48,220 recent malicious codes purchased from VirusTotal (a commercial application programming
interface (API)). The experimental results showed that the detection rate of viruses was remarkably
reduced. In addition, image files from which the hidden malicious code had previously been removed
using a nonlinear transfer function maintained nearly the same quality as that of the original image;
in particular, the difference could not be distinguished by the naked eye. The proposed method can
also be utilized to prevent security threats resulting from the concealment of confidential information
in image files with the aim of leaking such threats.

Keywords: malicious code image; neutralization; steganography; antivirus; image format conversion;
nonlinear transfer function

1. Introduction

According to the global vaccine research group AV-Test, 350,000 new malicious codes emerge each
day. The organization found the number of malicious codes to have rapidly increased from 4.7 million
in 2015 to 9.42 million in 2019 [1]. Notably, network separation technology has been developed to
address increasingly intelligent cyber-attacks and the sudden increase in security incidents.

Network separation technology entails an environment in which business networks and Internet
networks are separated to prevent attacks through the Internet and to prevent major leaks of internal
information. In addition to general business networks, control networks, defense networks, Closed
Circuit Television (CCTV) control centers, manufacturing facilities, and other networks can employ a
dedicated network connected to the Internet that is separate from their own networks [2].

In an environment with network separation, because the Internet connection is blocked at the
source, secure USBs and other measures should be used to exchange data with external entities.
However, user inconvenience or the introduction of malicious code through a secure USB has resulted
in internal information being continually leaked. Attempts to solve these problems have led to the

Symmetry 2020, 12, 1621; doi:10.3390/sym12101621 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/10/1621?type=check_update&version=1
http://dx.doi.org/10.3390/sym12101621
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 1621 2 of 18

emergence of an inter-network data transfer solution that enables the secure transmission of user PC
data and a server stream between the separated areas (secure and non-secure areas) according to the
specified security policy [3–5].

Inter-network data transfer requires a malicious code inspection to be conducted according to
the security policy. In this regard, conventional antivirus solutions use the reputations or signatures
based on well-known information. Content disarm and reconstruction technology can be employed
to remove active content such as macros and scripts, e.g., JavaScript, from document-type files [6].
In addition, the leakage of confidential documents or personal information can be prevented using
data loss prevention (DLP) and personal information detection technology. More recently, unknown
malicious files have also been categorized through machine learning.

Malicious code causes viral infections or threats of ransomware owing to the use of symmetric keys.
Although various solutions such as antivirus and advanced persistent threat (APT) have been released
to detect known malicious codes, the detection rate of unknown malicious codes is still insufficient.
Recent reports on the detection of unknown malicious codes have proposed non-signature-type
malicious code detection techniques that employ machine learning based on features extracted from
executable files (in portable executable format). These techniques are aimed at addressing the limitation
of commercial antivirus solutions that depend on signatures. However, the error rate has continued
to be non-negligible owing to the characteristics of machine learning; in particular, an image file
containing malicious code has an extremely low detection rate, and complementary methods are
required to solve this problem [7].

Various bypass techniques that hide malicious code in non-executable files, such as BMP, JPG,
and PNG files, have been studied. Among files that are transferred into and out of a network separation
environment, global virus analysis services, such as VirusTotal, have found several cases of image
files containing malicious scripts [8]. Known malicious code hidden in image files can be detected
by antivirus software based on reputation and signature. However, image files that contain hidden
malicious codes cannot be detected by antivirus technology because neither the reputation information
nor the signature is available.

In particular, a steganography method (e.g., Stegosploit and Shellcode hiding) can be exploited to
intentionally leak information by hiding and spreading malicious code or confidential information
through an image file [9,10]. Moreover, it is extremely difficult to detect steganography attacks that
use various hidden algorithms using existing analysis techniques. This has led to the development
of methods to prevent information from being hidden by a random reprocessing of the group index
of the entire image. An alternative approach involves a comparison of steganography encoding and
decoding results. Nevertheless, a new approach is needed to solve these problems because of the
limitations of existing methods with regard to determining whether the information is hidden.

In this paper, we propose a method for analyzing the structure corresponding to the original image
file format and converting the image data area of an image file using a nonlinear transfer function,
even in the absence of prior information such as the reputation or signature of the malicious code.
This process follows the design of ImageDetox, which neutralizes malicious code hidden in an image
file. ImageDetox was subsequently implemented and its effectiveness was experimentally verified
and evaluated.

The remainder of this paper is structured as follows. Section 2 describes in detail the techniques
that are employed to hide malicious codes within image files, discriminant techniques that can identify
such codes, and research that has led to solutions for proactively preventing the concealment of
information. Section 3 elucidates the structures of the image file formats and presents an analysis
of the types of malicious code hidden within the image files. Section 4 suggests a method for using
a nonlinear function and transformations based on the region of the image file format to neutralize
malicious codes hidden in the image file. Section 5 presents the ImageDetox system and its operation,
which is based on the method applied to neutralize malicious code described in Section 4. Section 6
details the experiments conducted to neutralize malicious codes using the proposed system, as well

Symmetry 2020, 12, 1621 3 of 18

as an analysis and a discussion of the results. Finally, Section 7 provides some concluding remarks
summarizing the present study and briefly discusses the implications of our findings.

2. Related Work

In this section, we examine techniques, which have been gradually evolving, used to hide
malicious codes in image files. In addition, previously proposed techniques for identifying hidden
malicious codes and techniques that proactively prevent such codes are also considered.

2.1. Methods for Hiding Malicious Code in an Image File

Figure 1 shows malicious code data that are hidden in an image file. Image files (BMP, JPG, PNG,
etc.) usually have a header at the beginning of the file, followed by the actual data. The image format
is normally configured using this image file structure. Hiding techniques, such as those that add a
malicious binary code or malicious code script at the end of the image data, insert a malicious code
script into the additional information area of the image file format, or hide a malicious code in the
image data area, are known to exist [11–13].

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 18

2. Related Work

In this section, we examine techniques, which have been gradually evolving, used to hide
malicious codes in image files. In addition, previously proposed techniques for identifying hidden
malicious codes and techniques that proactively prevent such codes are also considered.

2.1. Methods for Hiding Malicious Code in an Image File

Figure 1 shows malicious code data that are hidden in an image file. Image files (BMP, JPG, PNG,
etc.) usually have a header at the beginning of the file, followed by the actual data. The image format
is normally configured using this image file structure. Hiding techniques, such as those that add a
malicious binary code or malicious code script at the end of the image data, insert a malicious code
script into the additional information area of the image file format, or hide a malicious code in the
image data area, are known to exist [11–13].

Figure 1. Malicious code hidden in an image data.

Keum et al. and Lee et al. investigated the use of a hiding image shellcode technique [14]. In
these studies, shellcodes were hidden in 24 bits of BMP images to verify that they would not be
detected by existing malicious code detection techniques. An image decoder repository and three
modules (scanning, decision, and hiding) were configured to apply this technique. The sequence of
operations was to add a decoder from the decoder repository using a 24-bit image, scanning the
image, and repeating to determine if there is an insertable decoder by communicating with the
decision module, and creating a dummy or jump code. Because an image generated in this way is
difficult to distinguish from the original image and a signature does not exist, it is not detectable
using signature-based methods. Moreover, an emulation detection method has a long emulation
time, making real-time detection difficult [15].

The Stegosploit (a term combining steganography and exploit) technology was recently
developed. As shown in Figure 2, when executing an image file in which steganography was used, a
script hidden within the image is run, and this enables various exploit attacks to be attempted [16].
Various types of damage can be incurred, depending on the type of exploit hidden in the script and
the user's environment. From a network traffic perspective, Stegosploit is simply an image file, but
the script is hidden in pixels, and it is difficult to distinguish whether it is harmful in appearance.
Stegosploit has a feature in that the inserted script is executed just by viewing the image.

Steganography technology has recently evolved into intelligent attacks that apply to various
protocols such as CCTVs, smart TVs, and IoT devices [17]. These attacks are becoming a threat and
can hide malicious or confidential information in files such as image, audio, and video files.

Figure 1. Malicious code hidden in an image data.

Keum et al. and Lee et al. investigated the use of a hiding image shellcode technique [14].
In these studies, shellcodes were hidden in 24 bits of BMP images to verify that they would not be
detected by existing malicious code detection techniques. An image decoder repository and three
modules (scanning, decision, and hiding) were configured to apply this technique. The sequence
of operations was to add a decoder from the decoder repository using a 24-bit image, scanning
the image, and repeating to determine if there is an insertable decoder by communicating with the
decision module, and creating a dummy or jump code. Because an image generated in this way is
difficult to distinguish from the original image and a signature does not exist, it is not detectable
using signature-based methods. Moreover, an emulation detection method has a long emulation time,
making real-time detection difficult [15].

The Stegosploit (a term combining steganography and exploit) technology was recently developed.
As shown in Figure 2, when executing an image file in which steganography was used, a script hidden
within the image is run, and this enables various exploit attacks to be attempted [16]. Various types
of damage can be incurred, depending on the type of exploit hidden in the script and the user’s
environment. From a network traffic perspective, Stegosploit is simply an image file, but the script is
hidden in pixels, and it is difficult to distinguish whether it is harmful in appearance. Stegosploit has a
feature in that the inserted script is executed just by viewing the image.

Symmetry 2020, 12, 1621 4 of 18Symmetry 2019, 11, x FOR PEER REVIEW 4 of 18

Figure 2. Steganographic malicious codes in image files.

2.2. Methods to Detect and Prevent Malicious Code from Being Hidden in an Image File

Common techniques for distinguishing malicious code hidden in an image file rely on an
encoding method to directly analyze the stego images in which information was skillfully hidden in
the media data. A method was recently proposed to simultaneously distinguish both decoding and
hiding. This was achieved by restoring the hidden image information in a random type chosen from
the encoding library to determine whether it is correctly restored. This method can automatically
detect encoded information hidden through image steganography by using trained distinguishing
techniques, such as those based on the correlation between the entropy characteristics of stego images
and the dispersion of pixel values, the distribution of DCT (discrete cosine convert) coefficients, and
the dispersion characteristics of the images [15,18].

Techniques that prevent malicious code from being hidden in an image file include a method to
randomly mix and reprocess the image indexes [19]. As shown in Figure 3, this method divides the
entire image into 16 groups and stores the reprocessed image indexes. This method does not give
specific rules to the distribution of contrast, and hides information in online images. It can deal with
the threat of information hiding that can be extracted later.

Figure 3. Prevention of hiding malicious code in an image.

Figure 2. Steganographic malicious codes in image files.

Steganography technology has recently evolved into intelligent attacks that apply to various
protocols such as CCTVs, smart TVs, and IoT devices [17]. These attacks are becoming a threat and can
hide malicious or confidential information in files such as image, audio, and video files.

2.2. Methods to Detect and Prevent Malicious Code from Being Hidden in an Image File

Common techniques for distinguishing malicious code hidden in an image file rely on an encoding
method to directly analyze the stego images in which information was skillfully hidden in the media
data. A method was recently proposed to simultaneously distinguish both decoding and hiding.
This was achieved by restoring the hidden image information in a random type chosen from the
encoding library to determine whether it is correctly restored. This method can automatically detect
encoded information hidden through image steganography by using trained distinguishing techniques,
such as those based on the correlation between the entropy characteristics of stego images and the
dispersion of pixel values, the distribution of DCT (discrete cosine convert) coefficients, and the
dispersion characteristics of the images [15,18].

Techniques that prevent malicious code from being hidden in an image file include a method to
randomly mix and reprocess the image indexes [19]. As shown in Figure 3, this method divides the
entire image into 16 groups and stores the reprocessed image indexes. This method does not give
specific rules to the distribution of contrast, and hides information in online images. It can deal with
the threat of information hiding that can be extracted later.

After malicious code has been inserted into the image, the spreadability effect of pixel values are
usually observed. In this case, 5–10% of the extra code of the original image is hidden [20]. If the
message has sufficient capacity, the presence of hidden codes can be detected by using a chi-square
test, which is a statistical technique. Moreover, when the amount of hidden data is extremely small
compared to the original image, it is possible to detect the location of the hidden data by employing a
chi-square test using the pixel values of existing adjacent two pixel.

Blind detection techniques have been employed to visually, structurally, and statistically analyze
files to detect the presence of steganography or malicious codes [21]. These techniques have also been
studied to detect the presence of malicious codes through signature search methods; methods for
analyzing key information, such as the file registry data; and heuristic methods [6,13,22]. However,

Symmetry 2020, 12, 1621 5 of 18

it is difficult to use traditional antivirus software with a commercial tool or service that can detect
steganography [23], and conventional detection methods are problematic in that they either cannot
detect malicious codes or they detect the wrong malicious codes [24].

Symmetry 2019, 11, x FOR PEER REVIEW 4 of 18

Figure 2. Steganographic malicious codes in image files.

2.2. Methods to Detect and Prevent Malicious Code from Being Hidden in an Image File

Common techniques for distinguishing malicious code hidden in an image file rely on an
encoding method to directly analyze the stego images in which information was skillfully hidden in
the media data. A method was recently proposed to simultaneously distinguish both decoding and
hiding. This was achieved by restoring the hidden image information in a random type chosen from
the encoding library to determine whether it is correctly restored. This method can automatically
detect encoded information hidden through image steganography by using trained distinguishing
techniques, such as those based on the correlation between the entropy characteristics of stego images
and the dispersion of pixel values, the distribution of DCT (discrete cosine convert) coefficients, and
the dispersion characteristics of the images [15,18].

Techniques that prevent malicious code from being hidden in an image file include a method to
randomly mix and reprocess the image indexes [19]. As shown in Figure 3, this method divides the
entire image into 16 groups and stores the reprocessed image indexes. This method does not give
specific rules to the distribution of contrast, and hides information in online images. It can deal with
the threat of information hiding that can be extracted later.

Figure 3. Prevention of hiding malicious code in an image. Figure 3. Prevention of hiding malicious code in an image.

Several suggestions were made with regard to the detection of image files containing malicious
codes inserted through steganography at the RSA conference [25]. The consensus was that removing
hidden areas or removing or replacing redundant data is more effective than attempting to detect
malicious codes; in particular, it was noted that simply re-writing images to eliminate cross-site
attacks was not effective [26]. By simply converting the image file format, the steganography malware
characteristic values are not removed and transferred. A website provided by one of the presenters
enables the presence of steganography to be distinguished with pre- and post-variation of the RGB
values [27].

3. Malicious Code Hidden in an Image File

The analysis of types of hidden malicious code is aimed at identifying the area in which malicious
code is inserted in the image file structure. A normal image file is configured with three areas: header
information, additional information, and actual image data. The structures of image files containing
malicious code are shown in Figure 4. Methods whereby malicious codes are hidden in an image with
a normal file format structure are designed to insert or modulate these three areas and can be classified
into several types.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 18

After malicious code has been inserted into the image, the spreadability effect of pixel values are
usually observed. In this case, 5–10% of the extra code of the original image is hidden [20]. If the
message has sufficient capacity, the presence of hidden codes can be detected by using a chi-square
test, which is a statistical technique. Moreover, when the amount of hidden data is extremely small
compared to the original image, it is possible to detect the location of the hidden data by employing
a chi-square test using the pixel values of existing adjacent two pixel.

Blind detection techniques have been employed to visually, structurally, and statistically
analyze files to detect the presence of steganography or malicious codes [21]. These techniques have
also been studied to detect the presence of malicious codes through signature search methods;
methods for analyzing key information, such as the file registry data; and heuristic methods [6,13,22].
However, it is difficult to use traditional antivirus software with a commercial tool or service that can
detect steganography [23], and conventional detection methods are problematic in that they either
cannot detect malicious codes or they detect the wrong malicious codes [24].

Several suggestions were made with regard to the detection of image files containing malicious
codes inserted through steganography at the RSA conference [25]. The consensus was that removing
hidden areas or removing or replacing redundant data is more effective than attempting to detect
malicious codes; in particular, it was noted that simply re-writing images to eliminate cross-site
attacks was not effective [26]. By simply converting the image file format, the steganography malware
characteristic values are not removed and transferred. A website provided by one of the presenters
enables the presence of steganography to be distinguished with pre- and post-variation of the RGB
values [27].

3. Malicious Code Hidden in an Image File

The analysis of types of hidden malicious code is aimed at identifying the area in which
malicious code is inserted in the image file structure. A normal image file is configured with three
areas: header information, additional information, and actual image data. The structures of image
files containing malicious code are shown in Figure 4. Methods whereby malicious codes are hidden
in an image with a normal file format structure are designed to insert or modulate these three areas
and can be classified into several types.

Figure 4. Types of malicious code hidden in an image file.

In the first type (a), the image format is normally configured, although the malicious code is
added at the end of the image data in the form of a binary, including the PE, Dynamic Linking Library
(DLL), and Executable and Linkable Format (ELF) formats; furthermore, this type is commonly
employed to insert malicious script and confidential information (e.g., corporate information,
personal information). This approach exploits the fact that image viewer applications process only
the end of the image (EOI) and ignore the malicious binary code. If the malicious binary code is a
Drive by Download(DBD) type, it can be disguised as an image data at the time of download and

Figure 4. Types of malicious code hidden in an image file.

Symmetry 2020, 12, 1621 6 of 18

In the first type (a), the image format is normally configured, although the malicious code is
added at the end of the image data in the form of a binary, including the PE, Dynamic Linking
Library (DLL), and Executable and Linkable Format (ELF) formats; furthermore, this type is commonly
employed to insert malicious script and confidential information (e.g., corporate information, personal
information). This approach exploits the fact that image viewer applications process only the end
of the image (EOI) and ignore the malicious binary code. If the malicious binary code is a Drive by
Download(DBD) type, it can be disguised as an image data at the time of download and flow into
the main memory. Ransomware generates a symmetric key using DBD and causes damage when
encrypting the victim’s data.

The second type (b) presents only the file identification signature for each image type, and the
remaining area contains a malicious script written in JavaScript, HTML, and PHP, among other forms.
Because this exploits the fact that several applications judge multipurpose Internet mail extension
(MIME) types by using only the header information of the file, these malicious codes are neither
detected nor blocked in the case of image files that permit the introduction of MIME types.

The third type (c) inserts a malicious script into the additional information area of the image file
format; moreover, it can also hide the malicious code in the area containing the image data (the actual
image pixel information). The use of various encryption methods and obfuscation algorithms to
hide the malicious code or the use of steganography algorithms in the malicious script poses a
highly difficult challenge. In such cases, the inserted code could bypass signature-based antivirus or
reputation-based detection techniques, and it would also be difficult to detect and analyze such code
using machine-learning-based techniques. Similarly, it is extremely difficult to detect and analyze
malicious codes when confidential information is hidden in the pixel information within the image
data areas exploited by various steganography algorithms or tools.

4. Methods for Neutralizing Hidden Malicious Code

As previously reported, existing detection methods to detect malicious codes hidden in image
files cannot avoid false positives or false negatives. Thus, it is more effective to either remove or replace
hidden data without relying on detection. In this paper, a method is proposed that eliminates malicious
code without the loss of image quality by using a nonlinear transfer function during the conversion of
the three structural areas in which the malicious code is configured and hidden in an image file.

4.1. Image Conversion

Figure 5 presents a method to convert the areas of an image by using a file extraction step and a
format analysis step. The image header information conversion step (TF1) changes the identification
signature of the converted image format, and the additional image conversion step (TF2) applies a
specific string filtering conversion method. The image pixel data conversion step (TF3) applies a
nonlinear transfer function with a specific range value to convert the attribute value of the original image.

First, the area containing the image header information changes to the identification signature
of the converted image format upon the application of TF1 [28]. This has the effect that the content
related to the malicious code inserted into the EOI is automatically removed by converting only the
data preceding the EOI in the file format conversion process. Then, TF2 is employed within the area
that contains additional information regarding the image in order to convert the string associated with
the malicious code script into a specific value. For example, the keywords (html, head, script, type,
and so on) related to JavaScript, PHP, and HTML can be changed to copy their value to 0x00, which
does not affect their original size. This has the effect of preventing the malicious code script from
working properly. Because the area containing additional information in the image file does not affect
the image itself, there is no damage to the image even if additional information changes to a certain
value. If there was a keyword used to induce malicious behavior in the additional information area,
the malicious keywords would be changed into “0x00”, which would prevent malicious behavior from

Symmetry 2020, 12, 1621 7 of 18

being executed. However, if the original value of the additional information is partially lost, and this
additional information can be inferred or restored if its history of change is stored in the system.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 18

flow into the main memory. Ransomware generates a symmetric key using DBD and causes damage
when encrypting the victim’s data.

The second type (b) presents only the file identification signature for each image type, and the
remaining area contains a malicious script written in JavaScript, HTML, and PHP, among other
forms. Because this exploits the fact that several applications judge multipurpose Internet mail
extension (MIME) types by using only the header information of the file, these malicious codes are
neither detected nor blocked in the case of image files that permit the introduction of MIME types.

The third type (c) inserts a malicious script into the additional information area of the image file
format; moreover, it can also hide the malicious code in the area containing the image data (the actual
image pixel information). The use of various encryption methods and obfuscation algorithms to hide
the malicious code or the use of steganography algorithms in the malicious script poses a highly
difficult challenge. In such cases, the inserted code could bypass signature-based antivirus or
reputation-based detection techniques, and it would also be difficult to detect and analyze such code
using machine-learning-based techniques. Similarly, it is extremely difficult to detect and analyze
malicious codes when confidential information is hidden in the pixel information within the image
data areas exploited by various steganography algorithms or tools.

4. Methods for Neutralizing Hidden Malicious Code

As previously reported, existing detection methods to detect malicious codes hidden in image
files cannot avoid false positives or false negatives. Thus, it is more effective to either remove or
replace hidden data without relying on detection. In this paper, a method is proposed that eliminates
malicious code without the loss of image quality by using a nonlinear transfer function during the
conversion of the three structural areas in which the malicious code is configured and hidden in an
image file.

4.1. Image Conversion

Figure 5 presents a method to convert the areas of an image by using a file extraction step and a
format analysis step. The image header information conversion step (TF1) changes the identification
signature of the converted image format, and the additional image conversion step (TF2) applies a
specific string filtering conversion method. The image pixel data conversion step (TF3) applies a
nonlinear transfer function with a specific range value to convert the attribute value of the original
image.

Figure 5. Conversion function for each area of the image format.

First, the area containing the image header information changes to the identification signature
of the converted image format upon the application of TF1 [28]. This has the effect that the content
related to the malicious code inserted into the EOI is automatically removed by converting only the

Figure 5. Conversion function for each area of the image format.

4.2. Image Transformation with Nonlinear Transfer Function

TF3 in Figure 5 is applied to the area containing the image pixel data to neutralize the hidden
malicious code by converting the RGB value ([RGB]in) of one pixel of the original image into a
converted pixel RGB value ([RGB]out) corresponding to the same location by using the nonlinear
transfer function. This function is defined in Equation (1).

[RGB]out = (W·[RGB]inˆ(1/γ)), (1)

where gamma(γ) denotes a value within a specific range (0.950 < γ < 0.995 or 1.005 < γ < 1.050)
characterizing a nonlinear transfer function, and W represents the application of an alpha channel.

Human vision reacts nonlinearly according to Weber’s law. Image editing tools such as Photoshop
use a gamma (γ) correction to convert into the optimal image quality, and the nonlinear transfer
function is used for gamma (γ) correction. If the gamma value is too low or too high in terms of range,
the value of the image data area is severely modified, and the quality of the image is degraded. In our
experiment, we found that if the gamma value is close to 1, there is little change in the pixel value,
and thus the malicious code contained in the image continues to exist. Thus, the range of gamma
values was set to a range (0.950 < γ0.995 or 1.005 < γ1.050).

The value of W is calculated only in image format (GIF, PNG, etc.) when an alpha channel is
applied. By limiting the value of γ to a specific range of values in the nonlinear transfer function
(Equation (1)), the calculated conversion value is limited such that the least significant bit (LSB) of each
pixel only changes from less than 1 to 4 bits. That is, the calculation with a limited range of values
enables the quality to be maintained such that it is nearly similar to that of the original image; that is,
the difference in quality is difficult to distinguish by the naked eye. Even if malicious codes were to
be inserted or leaked information was to be hidden in the file, the attribute value would be changed,
and the code would be neutralized. The range of γ values in this study was selected as a suitable
pixel range wherein the differences among the images cannot be distinguished by the naked eye when
observing a variety of target images.

Figure 6 shows an example of the change in the RGB colors of an image after application of the
nonlinear transfer function. In this example, the value of one pixel, [RGB]in, of the original image is
(205, 107, 66), and the value of the pixel [RGB]out, as converted using the nonlinear transfer function in
Equation (1) is calculated as (212, 110, 68). A comparison between the color corresponding to the pixel

Symmetry 2020, 12, 1621 8 of 18

value of the original image and the color corresponding to that of the converted image shows that the
converted pixel is actually indistinguishable from the original pixel.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 18

Figure 6. RGB color change of image applied for nonlinear transfer function

5. Implementation

In this section, we describe the conceptual structure of the ImageDetox system, as shown in
Figure 7. This system has the function of neutralizing hidden malicious code or information and
utilizes the methods proposed in this paper.

Figure 7. Conceptual structure of ImageDetox system.

The system is configured with four modules: an image file extraction module, an image file
format analysis module, an image file conversion module, and a converged image file management
module. Figure 8 shows a flowchart of these processes.

Figure 8. Flowchart of the process used by ImageDetox to neutralize hidden malicious code.

Figure 6. RGB color change of image applied for nonlinear transfer function

5. Implementation

In this section, we describe the conceptual structure of the ImageDetox system, as shown in
Figure 7. This system has the function of neutralizing hidden malicious code or information and
utilizes the methods proposed in this paper.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 18

Figure 6. RGB color change of image applied for nonlinear transfer function

5. Implementation

In this section, we describe the conceptual structure of the ImageDetox system, as shown in
Figure 7. This system has the function of neutralizing hidden malicious code or information and
utilizes the methods proposed in this paper.

Figure 7. Conceptual structure of ImageDetox system.

The system is configured with four modules: an image file extraction module, an image file
format analysis module, an image file conversion module, and a converged image file management
module. Figure 8 shows a flowchart of these processes.

Figure 8. Flowchart of the process used by ImageDetox to neutralize hidden malicious code.

Figure 7. Conceptual structure of ImageDetox system.

The system is configured with four modules: an image file extraction module, an image file format
analysis module, an image file conversion module, and a converged image file management module.
Figure 8 shows a flowchart of these processes.

The original image file extraction step extracts only image files from among the various files
introduced into the inter-network data transfer section. It then analyzes whether the data structure of
the image file corresponds to the reference format for each image of the original image file extracted
during the analysis step of the image file format structure. If the image file format is judged to have a
normal configuration, the hash value of the original image file is calculated. The system then verifies
whether the file information with the same hash value is stored in the converted image file management
module. The image file conversion step converts each area of information of the original image file, as
shown in Figure 5, and the converted image file is saved in the storage of the converted image file.
The image file saving and periodic update step is used to store the file based on the creation time of
the stored image file for a certain period of time. Image files that have been stored longer than the
specified period are deleted, and this process is periodically repeated.

Symmetry 2020, 12, 1621 9 of 18

The image file extraction module is used to extract image files (JPEG, GIF, PNG, BMP, etc.) or
image object linking and embeddings (OLEs) from various document files (doc, ppt, xls, hwp, odp, etc.)
that are introduced through an inter-network data transfer. In this case, the identification signature of
the image file format is determined and extracted from the extension or file header information of each
file. This enables image files to be distinguished from all files that were transferred.

Symmetry 2019, 11, x FOR PEER REVIEW 8 of 18

Figure 6. RGB color change of image applied for nonlinear transfer function

5. Implementation

In this section, we describe the conceptual structure of the ImageDetox system, as shown in
Figure 7. This system has the function of neutralizing hidden malicious code or information and
utilizes the methods proposed in this paper.

Figure 7. Conceptual structure of ImageDetox system.

The system is configured with four modules: an image file extraction module, an image file
format analysis module, an image file conversion module, and a converged image file management
module. Figure 8 shows a flowchart of these processes.

Figure 8. Flowchart of the process used by ImageDetox to neutralize hidden malicious code.
Figure 8. Flowchart of the process used by ImageDetox to neutralize hidden malicious code.

To analyze the structure of the image file format extracted from the aforenoted image file extraction
module, the image file format analysis module first identifies the type of image (JPEG, GIF, PNG, BMP,
and so on) from the file header information. The module then transfers this information to the image
file conversion unit by determining whether the format structure of an image file has three components
(the file identifier of the image format, the additional image information, and the image pixel data
area) as per the corresponding standard image file structure.

The image file format conversion module applies each hiding technique by converting the image
file area shown in Figure 5, as proposed in Section 4.1. First, with regard to the image header
information, the file identifier information of the original image header is replaced with that of the
conversion image header. The original additional image information, except for a specific string, is then
copied into the additional information area of the conversion image. With regard to the image pixel
data, the attribute value of the original image is converted by applying the nonlinear transfer function
within a specific range to neutralize the characteristics of malicious codes or hidden information.
The nonlinear transfer function is defined and used as per Equation (1) of Section 4.2.

The conversion image file management module saves the hash value information of the original
image file in the converted image file once it is stored in the management unit for a period of time. This is
necessary to resolve the reduction in the processing performance resulting from the repetitive process
of conversion for the same original image file. The hash value information of image files that have
surpassed a certain storage period is deleted from storage, and the information is updated periodically.

6. Evaluation

6.1. Experimental Setup

In this study, we used 48,220 of the latest malicious codes purchased from VirusTotal (commercial
API). VirusTotal has been incorporated as a subsidiary of Google and has cooperated with global
antivirus companies to share malicious code information. Specifically, it is a commercial cloud-based

Symmetry 2020, 12, 1621 10 of 18

service to which billions of samples, including malicious codes, URLs, and packet captures (PCAPs) are
uploaded by general users worldwide. These samples are inspected using the engines of approximately
69 antivirus products, and the results are provided in real time.

Among the aforenoted samples, 30 image files containing hidden malicious codes were extracted
to measure the detection rate by VirusTotal. In addition, 30 self-produced steganography images that
were created using well-known malicious codes were utilized in the same experiment. The number of
samples is limited because the vulnerabilities in applications are infrequently encountered. However,
as found in previous studies, the risk of hidden malicious codes in the continuously increasing number
of image files is extremely high in terms of the impact of the exploiting attack or the potential risk
rather than with respect to the sample being small.

6.2. Results and Analysis

6.2.1. Result of Neutralizing Hidden Malicious Code in Image Files

The image format cannot be converted during the process used to neutralize the image file malware
and hidden information. A malicious code can be neutralized by replacing it with an alternative image
(self-produced).

In addition, TF2 in Section 4.2 was applied to the malicious script in the additional image
information area. The neutralization experiment then verified that the file was judged as a normal file
by VirusTotal, thereby confirming that the malicious code hidden in the original file had been removed.
The results of this experiment are shown in Figure 9 (before) and Figure 10 (after).

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 18

increasing number of image files is extremely high in terms of the impact of the exploiting attack or
the potential risk rather than with respect to the sample being small.

6.2. Results and Analysis

6.2.1. Result of Neutralizing Hidden Malicious Code in Image Files

The image format cannot be converted during the process used to neutralize the image file
malware and hidden information. A malicious code can be neutralized by replacing it with an
alternative image (self-produced).

In addition, TF2 in Section 4.2 was applied to the malicious script in the additional image
information area. The neutralization experiment then verified that the file was judged as a normal
file by VirusTotal, thereby confirming that the malicious code hidden in the original file had been
removed. The results of this experiment are shown in Figure 9 (before) and Figure 10 (after).

(a) Binary code of an image with malware script.

(b) Detection of malware hidden in additional information area.

Figure 9. Example file with malware in additional image information for TF2 (detected in red). Figure 9. Example file with malware in additional image information for TF2 (detected in red).

Symmetry 2020, 12, 1621 11 of 18
Symmetry 2019, 11, x FOR PEER REVIEW 11 of 18

(a) Malicious script removed by keyword deletion.

(b) No malicious code by keyword deletion.

Figure 10. Results of neutralizing a file with malware in additional image information by TF2.

When a malicious binary code and a malicious code script are added at the end of the image
data, the image file format conversion process converts only the EOI to automatically remove any
content related to the malicious code inserted at the EOI. The results of this experiment are shown in
Figure 11 (before) and Figure 12 (after). The figure shows the results of a neutralization experiment
of a structure file, build.png, with a PE malicious code place at the EOI; the figure indicates that the
PE malicious code was removed and that the file was judged by VirusTotal to be clean without the
presence of malware.

Figure 10. Results of neutralizing a file with malware in additional image information by TF2.

When a malicious binary code and a malicious code script are added at the end of the image
data, the image file format conversion process converts only the EOI to automatically remove any
content related to the malicious code inserted at the EOI. The results of this experiment are shown in
Figure 11 (before) and Figure 12 (after). The figure shows the results of a neutralization experiment
of a structure file, build.png, with a PE malicious code place at the EOI; the figure indicates that the
PE malicious code was removed and that the file was judged by VirusTotal to be clean without the
presence of malware.

Symmetry 2020, 12, 1621 12 of 18

Symmetry 2019, 11, x FOR PEER REVIEW 12 of 18

(a) Binary code of an image with malware in pixel data area.

(b) Detection of malware hidden in pixel data area.

Figure 11. Example file with malware in the image pixel data area for TF3 (detected in red). Figure 11. Example file with malware in the image pixel data area for TF3 (detected in red).

Symmetry 2020, 12, 1621 13 of 18
Symmetry 2019, 11, x FOR PEER REVIEW 13 of 18

(a) Malicious script removed by keyword deletion.

(b) No malicious code by nonlinear transfer function.

Figure 12. Results of neutralizing a file with malware at the image pixel data area for TF3.

Next, an image file containing hidden malicious code that was inserted using the OpenStego
tool (open steganography program) was examined [29]. The file was converted into RGB values
([RGB]out) by applying the gamma value to the previously described nonlinear transfer function,
and the OpenStego tool was used to check whether the file could be decoded again. However,
decoding was impossible, as shown in Figure 13, verifying that the malicious code was neutralized.

Figure 12. Results of neutralizing a file with malware at the image pixel data area for TF3.

Next, an image file containing hidden malicious code that was inserted using the OpenStego
tool (open steganography program) was examined [29]. The file was converted into RGB values
([RGB]out) by applying the gamma value to the previously described nonlinear transfer function,
and the OpenStego tool was used to check whether the file could be decoded again. However, decoding
was impossible, as shown in Figure 13, verifying that the malicious code was neutralized.

Symmetry 2020, 12, 1621 14 of 18
Symmetry 2019, 11, x FOR PEER REVIEW 14 of 18

(a)

(b)

(c)

Figure 13. (a) Hide malicious code in image data by OpenStego. (b) Results of neutralizing
steganographic malicious code in an image data. (c) Decoding impossible by neutralizing
steganographic malicious code.

The open steganography software, OpenStego is a well-known tool and has been cited in many
research papers [30,31]. OpenStego hides message files, malicious files, confidential information, and
other data in the image pixel area of the original image by converting the pixel data values through
steganography algorithms. This tool can extract hidden files or information through the
steganography algorithm used in encoding. In this study, by determining the gamma value of the
nonlinear transfer function, the image quality was verified using OpenStego. Decoding should not
be possible, as shown in Figure 13c. If decoding is possible, as shown in Figure 14, a malicious code

Figure 13. (a) Hide malicious code in image data by OpenStego. (b) Results of neutralizing
steganographic malicious code in an image data. (c) Decoding impossible by neutralizing steganographic
malicious code.

Symmetry 2020, 12, 1621 15 of 18

The open steganography software, OpenStego is a well-known tool and has been cited in many
research papers [30,31]. OpenStego hides message files, malicious files, confidential information,
and other data in the image pixel area of the original image by converting the pixel data values through
steganography algorithms. This tool can extract hidden files or information through the steganography
algorithm used in encoding. In this study, by determining the gamma value of the nonlinear transfer
function, the image quality was verified using OpenStego. Decoding should not be possible, as shown
in Figure 13c. If decoding is possible, as shown in Figure 14, a malicious code can be executed again.
This case occurred when the value of γ in the nonlinear transfer function applied to TF3 was not within
the range 0.950 < γ < 0.995 or 1.005 < γ < 1.050.

Symmetry 2019, 11, x FOR PEER REVIEW 15 of 18

can be executed again. This case occurred when the value of γ in the nonlinear transfer function
applied to TF3 was not within the range 0.950 < γ < 0.995 or 1.005 < γ < 1.050.

Figure 14. Decoding possible if γ is out of the range (0.950 < γ < 0.995 or 1.005 < γ < 1.050).

The file in which the malicious code was hidden using the OpenStego tool was again examined,
but this time using the antivirus engine of VirusTotal [32]. Notably, the antivirus engine did not
succeed in detecting the malicious code in the image and could not identify the file as containing a
hidden malicious code.

6.2.2. Validation Analysis of Neutralization Result

Table 1 compares the results of malicious code detection utilizing VirusTotal before and after
application of the proposed neutralization method to 30 image files that contained a hidden malicious
code. VT Detection (A) represents the results of analyzing whether each original malicious image file
is malicious as determined by VirusTotal, and VT Detection (B) represents the results of analyzing
whether it is malicious after applying the method proposed in this paper. The value of VT Detection
(A) is 'the number of antivirus programs that was able to detect malware in an image file divided by
the number of antivirus programs used to detect viruses in an image file. The VT Detection (A) results
show that, on average, only 45.4% of the 30 image files in which malicious code was hidden were
detected by the antivirus engine, indicating its limited ability to detect malicious code hidden in an
image. The denominator (59, 60, 59, 59, …) is the number of antivirus programs inspected by the VT
service. The number of antivirus programs used for each service request varies from time to time.
Thus, the number of antivirus programs engines are slightly difference. Here, the numerator (30, 15,
27, 27, …) indicates the number of vaccines that were determined to be malignant during the test.

The VT Detection (B) result is the detection result after the proposed neutralization technique
was applied to the files containing the hidden malicious code. During this experiment, VirusTotal
was used to re-verify that the malicious code had been removed after the original image files (GIF)
were converted into other data files (JPG). For example, the Trojan/bgcolor.gif file contained a hidden
malicious code in the form of an “iframe” tag. When the corresponding file was tested using
VirusTotal, 27 of 59 detection engines determined it to be a malicious file. After our proposed system
was used to delete the string value in the additional area of the image file by changing the value of
textString HEX (the hex value corresponding to http, iframe, and htm) of the bgcolor.gif file, re-
examination of the file by VirusTotal revealed that none of the detection engines found the file to be
malicious.

Figure 14. Decoding possible if γ is out of the range (0.950 < γ < 0.995 or 1.005 < γ < 1.050).

The file in which the malicious code was hidden using the OpenStego tool was again examined,
but this time using the antivirus engine of VirusTotal [32]. Notably, the antivirus engine did not succeed
in detecting the malicious code in the image and could not identify the file as containing a hidden
malicious code.

6.2.2. Validation Analysis of Neutralization Result

Table 1 compares the results of malicious code detection utilizing VirusTotal before and after
application of the proposed neutralization method to 30 image files that contained a hidden malicious
code. VT Detection (A) represents the results of analyzing whether each original malicious image file
is malicious as determined by VirusTotal, and VT Detection (B) represents the results of analyzing
whether it is malicious after applying the method proposed in this paper. The value of VT Detection
(A) is ’the number of antivirus programs that was able to detect malware in an image file divided by
the number of antivirus programs used to detect viruses in an image file. The VT Detection (A) results
show that, on average, only 45.4% of the 30 image files in which malicious code was hidden were
detected by the antivirus engine, indicating its limited ability to detect malicious code hidden in an
image. The denominator (59, 60, 59, 59, . . .) is the number of antivirus programs inspected by the
VT service. The number of antivirus programs used for each service request varies from time to time.
Thus, the number of antivirus programs engines are slightly difference. Here, the numerator (30, 15, 27,
27, . . .) indicates the number of vaccines that were determined to be malignant during the test.

The VT Detection (B) result is the detection result after the proposed neutralization technique
was applied to the files containing the hidden malicious code. During this experiment, VirusTotal
was used to re-verify that the malicious code had been removed after the original image files (GIF)
were converted into other data files (JPG). For example, the Trojan/bgcolor.gif file contained a hidden
malicious code in the form of an “iframe” tag. When the corresponding file was tested using VirusTotal,
27 of 59 detection engines determined it to be a malicious file. After our proposed system was used to
delete the string value in the additional area of the image file by changing the value of textString HEX

Symmetry 2020, 12, 1621 16 of 18

(the hex value corresponding to http, iframe, and htm) of the bgcolor.gif file, re-examination of the file
by VirusTotal revealed that none of the detection engines found the file to be malicious.

Table 1. Comparison of the results of malware detection.

Malicious Type Analysis Target File (#30) VT Detection (A) VT Detection (B)

Dropper (1) 63_photograph.octer-stream 30/59 3/58
Backdoor (2) 2013-06-07-Kreisvorstand-ND.jpg 15/60 1/54

Dr._Debsikdar.jpg 27/59 1/56
Trojan (24) bgcolor.gif 27/59 0/58

343_s.gif 34/56 0/58
694_s.gif 35/60 0/58
898_s.gif 36/59 0/58
logo.gif 34/60 0/58
0f0005AaGAW9UHTlkItEws.gif 27/59 0/58
8121341 26/60 2/58
main1_01-2.gif 33/57 0/54
261598317.gif 21/60 1/55
Homepage-header.jpg 33/59 0/55
%E9%85%92%97%20(902).jpg 24/59 0/55
d424c26c-e47f-4c72-9c0c-d3052cff73b7.jpg 17/60 0/55
small_3.thumb 26/43 0/55
s_home_1.gif 30/58 0/55
11.jpg 31/57 1/56
04250215.jpg 16/47 0/55
42be89edea2d8fe40050cf9cee83dd68.jpg 20/45 2/56
1454356503649.jpg 3/60 0/55
calligraphysz.jpg 16/46 0/55
bad_01.jpg 31/58 1/56
botrightcorner.gif 23/46 0/54
mesh_head_drum_kit.jpg 33/60 1/56
20092101134533286912.jpg 26/60 0/55
18 LA MUERTE DEL SUPERMAN.gif 35/60 0/55
santa_comba.jpg 31/60 1/55

Ransomware (2) 242881.png 13/56 2/57
bild.png 19/60 0/58

Importantly, even when certain codes are perceived to be malicious by a small number of antivirus
engines in VirusTotal, such codes would not be able to perform their normal operations, either because
they are incorrectly detected by a signature-based detection engine or because the parts that would
enable the malicious code to execute have been removed.

7. Conclusions

In this study, we investigated the structure of an image file, analyzed the malicious code hidden
in the image file, and proposed a technique to neutralize the malicious code. No attempt was made
to analyze or detect the malicious code hidden in the original image file; instead, we analyzed the
structure of the image file format and used a nonlinear transmission function to convert the pixels
to neutralize the operation of the malicious code. We presented a method to convert the areas of
an image by using a file extraction step and a format analysis step. The image header information
conversion step (TF1) changes the identification signature of the converted image format, and the
image additional conversion step (TF2) applies a specific string filtering conversion method. The image
pixel data conversion step (TF3) applies a nonlinear transfer function with a specific range of values to
convert the attribute value of the original image.

We configured four modules (an image file extraction module, image file format analysis module,
image file conversion module, and a converged image file management module) and presented the

Symmetry 2020, 12, 1621 17 of 18

process used by ImageDetox to neutralize a hidden malicious code. The ImageDetox system proposed
in this paper was evaluated experimentally to assess their effectiveness and the resultant image quality.
As a major advantage of the proposed method, it has the effect of neutralizing the behavior of a
malicious code in advance without any prior information on the signature or the characteristics of
the code, whether known or unknown. The quality of the image file that was produced through the
conversion of the original image file to neutralize the malicious code was similar to that of the original
image, such that the difference could not be distinguished by the naked eye. In addition, the proposed
method can also be utilized to prevent security threats resulting from the concealment of confidential
information in image files with the aim of leaking such threats.

Author Contributions: Conceptualization, D.-S.J. and S.-J.L.; methodology, D.-S.J. and S.-J.L.; software, D.-S.J.;
validation, D.-S.J., S.-J.L. and I.-C.E.; formal analysis, D.-S.J.; investigation, S.-J.L.; resources, D.-S.J.; data curation,
D.-S.J.; writing—original draft preparation, D.-S.J.; writing—review and editing, S.-J.L. and D.-S.J.; visualization,
D.-S.J.; supervision, I.-C.E.; project administration, S.-J.L.; funding acquisition, S.-J.L. and I.-C.E. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by an Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2019-0-01343).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. AVTEST Malware Statistics. 2019. Available online: http://www.av-test.org/en/statistics/malware/html
(accessed on 1 September 2020).

2. Financial Supervisory Service. Financial Information Network Separation Guide; Financial Supervisory Service:
Seoul, Korea, 2013.

3. Hunesion i-oneNet. 2012. Available online: http://www.hunesion.com/?page_id=3192 (accessed on
1 September 2020).

4. ITSCC Common Criteria Certification. Korean National Protection Profile. 2012. Available online:
http://www.itscc.kr (accessed on 1 September 2020).

5. Lee, H.J.; Cho, D.I.; Kou, K.S. A Study of Unidirectional Data Transmission System Security Model for Secure
Data transmission in Separated Network. Asia-Pac. J. Multimed. Serv. Converg. ArtHumanit. Sociol. 2015, 5,
539–547. [CrossRef]

6. OPSWAT. Image-Borne Malware. 2016. Available online: https://www.opswat.com/blog/image-borne-
malware-how-viewing-image-can-infect-device (accessed on 1 September 2020).

7. Jeon, D.J.; Park, D.G. Real-time Malware Detection Method Using Machine Learning. J. Korean Inst. Inf.
Technol. 2018, 16, 1598–8619. [CrossRef]

8. Jung, D.S.; Lee, S.J.; Ryu, D.J. A study on the correspondence malicious traffic between the network data
transfer systems in a network isolation environment. Winter Proc. J. Commun. Netw. 2016, 1152–1153.

9. Threatpost. Stealthy Malware Hidden in Images Takes to GoogleUserContent. 2018. Available online:
https://threatpost.com/stealthy-malware-hidden-in-images-takes-to-googleusercontent/13418 (accessed on
1 September 2020).

10. Virusbulletin. How It Works: Steganography Hides Malware in Image Files. 2016. Available
online: https://www.virusbulletin.com/virusbulletin/2016/04/how-it-works-steganography-hides-malware-
image-files (accessed on 1 September 2020).

11. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P. Stegomalware: Playing Hide and Seek with Malicious
Components in Smartphone Apps. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 496–515, LNCS 8957.

12. Kaspersky. PNG Embedded—Malicious Payload Hidden in a PNG File. 2016. Available
online: https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297 (accessed on
1 September 2020).

13. Park, I.H.; Seoung, W.S. A Study on Concealing Malicious Code Using a Image File: Method and
Countermeasure. J. Inst. Electron. Eng. Korea 2009, 2009, 235–236.

14. Keum, Y.J.; Choi, H.J.; Kim, H.K. Hiding Shellcode in the 24Bit BMP Image. J. Korea Inst. Inf. Secur. Cryptol.
2012, 22, 691–705.

http://www.av-test.org/en/statistics/malware/html
http://www.hunesion.com/?page_id=3192
http://www.itscc.kr
http://dx.doi.org/10.14257/AJMAHS.2015.12.12
https://www.opswat.com/blog/image-borne-malware-how-viewing-image-can-infect-device
https://www.opswat.com/blog/image-borne-malware-how-viewing-image-can-infect-device
http://dx.doi.org/10.14801/jkiit.2018.16.3.101
https://threatpost.com/stealthy-malware-hidden-in-images-takes-to-googleusercontent/13418
https://www.virusbulletin.com/virusbulletin/2016/04/how-it-works-steganography-hides-malware-image-files
https://www.virusbulletin.com/virusbulletin/2016/04/how-it-works-steganography-hides-malware-image-files
https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297

Symmetry 2020, 12, 1621 18 of 18

15. Lee, J.H.; Kim, C.L.; Lee, S.H.; Park, J.I. Image steganography and its discrimination. J. Broadcast. Eng. 2018,
23, 462–473.

16. Saumil, S. Stegosploit: Hacking with pictures. In Proceedings of the 6th Annual HITB Security Conference,
Amsterdam, The Netherlands, 26–29 May 2015.

17. Cabaj, K.; Caviglione, L.; Mazurczyk, W.; Wendzel, S.; Woodward, A.; Zander, S. The New Threats of
Information Hiding: The Road Ahead. IT Prof. 2018, 20, 31–39. [CrossRef]

18. Rama, P.; Sahoo, P.K. Scanning Tool for Identification of Image with Malware. Int. J. Adv. Comput. Tech. Appl.
2016, 4, 170–175.

19. Subhedar, M.S.; Mankar, V.M. Current status and key issues in image steganography: A survey. Comput. Sci.
Rev. 2014, 13, 95–113. [CrossRef]

20. Ji, S.S. Locating and Searching Hidden Messages in Stego-Images. J. Korea Ind. Inf. Syst. Soc. 2009, 14, 37–43.
21. Wingate, J.E.; Watt, G.D.; Kurtz, M.; Davis, C.W.; Lipscomb, R. Defending against insider use of digital

steganography. In Proceedings of the Conference on Digital Forensics, Security and Law, Arlington, VA,
USA, 18–20 April 2007; pp. 175–184.

22. Park, B.H.; Kim, D.Y.; Shin, D.C. A Study on a Method Protecting a Secure Network against a Hidden
Malicious Code in the Image. Indian J. Sci. Technol. 2015, 8, 26. [CrossRef]

23. George, G.; Savaridassan, P.; Devi, K. Detect Images Embedded with Malicious Programs. Int. J. Pure Appl.
Math. 2018, 120, 2763–2777.

24. Karampidis, K.; Kavallieratou, E.; Papadourakis, G. A review of image steganalysis techniques for digital
forensics. J. Inf. Secur. Appl. 2018, 40, 217–235. [CrossRef]

25. Wiseman, S.R. Poison Pixels—Combatting Image Steganography in Cybercrime. In Proceedings of the RSA
Conference, San Francisco, CA, USA, 16–20 April 2018. HTA-W02.

26. Saurabh, C.; Amritha, P.P.; Sethumadhavan, M. Stegware Destruction Using Showering Methods. Int. J.
Innov. Technol. Explor. 2019, 8, 256–259.

27. Wiseman, S.R. Steg Analysis. 2020. Available online: https://rsa2018.deep-secure.com/poisonPixels/
poisonPixels.html (accessed on 1 September 2020).

28. File Signatures. Public Database of File Signatures. 2020. Available online: https://filesignatures.net/
(accessed on 1 September 2020).

29. OpenStego. Free Steganography Solution. Available online: https://sourceforge.net/projects/openstego/

(accessed on 1 September 2020).
30. Lin, X. Steganography and Steganalysis. In Introductory Computer Forensics; Springer: Berlin/Heidelberg,

Germany, 2018. [CrossRef]
31. Al-Sanjary, O.I.; Ahmed Ibrahim, O.; Sathasivem, K. A New Approach to Optimum Steganographic Algorithm

for Secure Image. In Proceedings of the 2020 IEEE International Conference on Automatic Control and
Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 20 June 2020; pp. 97–102. [CrossRef]

32. VirusTotal. Premium Service. 2019. Available online: https://support.virustotal.com/hc/en-us/articles/
115003886005-Private-Services (accessed on 1 September 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MITP.2018.032501746
http://dx.doi.org/10.1016/j.cosrev.2014.09.001
http://dx.doi.org/10.17485/ijst/2015/v8i26/84140
http://dx.doi.org/10.1016/j.jisa.2018.04.005
https://rsa2018.deep-secure.com/poisonPixels/poisonPixels.html
https://rsa2018.deep-secure.com/poisonPixels/poisonPixels.html
https://filesignatures.net/
https://sourceforge.net/projects/openstego/
http://dx.doi.org/10.1007/978-3-030-00581-8_21
http://dx.doi.org/10.1109/I2CACIS49202.2020.9140186
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methods for Hiding Malicious Code in an Image File
	Methods to Detect and Prevent Malicious Code from Being Hidden in an Image File

	Malicious Code Hidden in an Image File
	Methods for Neutralizing Hidden Malicious Code
	Image Conversion
	Image Transformation with Nonlinear Transfer Function

	Implementation
	Evaluation
	Experimental Setup
	Results and Analysis
	Result of Neutralizing Hidden Malicious Code in Image Files
	Validation Analysis of Neutralization Result

	Conclusions
	References

