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Abstract: Tropical Algebra is used to model the dynamics of Timed Event Graphs (TEG), a particular
class of Timed Discrete-Event System (TDES) in which we are interested only in synchronization
and delay phenomena. Whenever this TEG has control inputs, we can use them to control the
synchronization of the system to achieve some objective. Thus, this paper formulates a framework
based on tropical algebra and lexicographic optimization to synchronize a TEG when dealing with
many synchronization objectives that are ranked in previous priority order. We call this kind of
problem the Tropical Lexicographic Synchronization Optimization (TLSO). This work develops a
solution to this problem, based on Tropical Fractional Linear Programming (TFLP) and lexicographic
optimization concepts. In this way, the basics of tropical algebra are determined, including essential
terms to this paper, such as left and right residuations, and the following stages of the solution to the
TLSO problem are explained. Therefore, this work presents a general framework based on structured
algebraic models with application to TEG synchronization. By synchronization, we mean balancing
and organizing events chronologically in order to achieve the desired goal. So, we are dealing
with concepts closely related to symmetry ones. An illustrative numerical example is presented,
which demonstrates the implementation of the proposed algorithms. The acquired results confirm
the efficiency of the proposed methodology. Codes used for implementing the algorithms are listed
in the appendix section of the article.

Keywords: tropical algebra; timed discrete-event systems; optimization

1. Introduction

Timed Event Graphs (TEGs) are used to model a wide range of Timed Discrete-Event Systems
(TDES), which is a class of dynamic systems in which the change of state is governed by events [1].
Examples of model applications include manufacturing systems, production chains, queues, and urban
traffic systems [2].

A powerful tool for analysis of TEGs is the so-called Tropical Algebra, which is a kind of
idempotent algebraic structure which can be a semiring or a semifield depending on the application.
French researchers gave the denomination as a tribute to Brazilian mathematician Imre Simon, who
had a considerable influence on the development of automata and semigroup theory [3].

There are many types of tropical algebras that have applications in areas such as mathematics,
engineering, and computer science. Two important examples are the Min-Plus and Max-Plus algebra.
Concerning Max-Plus algebra, several results were obtained for analysis and synthesis of TDES.
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Among them, we highlight remarkable developments in control synthesis for such systems in the last
decades (e.g., [4–9]).

The methodology used in this work addresses the synchronization problem, giving priority
to TEG transitions to be synchronized, as proposed by lexicographic optimization. Each stage of
the general problem is treated as a subproblem, which is solved through Tropical Fractional Linear
Programming (TFLP). This optimization employs the dual iterative method, which, in turn, uses the
residency operation. The original contribution of this paper is a lexicographic formulation of a TFLP
problem aimed at synchronizing multiple disconnected TEGs. As references for TFLP, the reader is
invited to consult [10,11], and for lexicographic optimization, the reference is [12]. More precisely,
the authors propose a framework to synchronize the firing times of the transition of a TEG, considering
a priority list of the pair of transitions that must be synchronized. This framework models this
problem as a Lexicographic variation of a TFLP [10,11]. The authors denote the problem as a Tropical
Lexicographic Synchronization Optimization (TLSO). It is important to stress that this framework can
be applied in a general context. Moreover, as far as the authors’ knowledge goes, there are few works
regarding linear fractional programming applications, and the authors do not find researches that deal
with the insertion of lexicographic optimization in this context. Therefore, this article contributes to a
formulation that unites existing concepts and relates them with a numerical example. As an illustrative
application, traffic light synchronization is used as an example. In particular, this paper refers to
Egmund and Olsder [13], who introduce the basics of Max-Plus algebra to deal with synchronization
between phases in the traffic light system, with the purpose to generate the green waves.

This work has a theoretical impact by proposing a framework capable of synchronizing a
class of models—the timed event graphs. There are few applications of this concept, for instance,
manufacturing [2,14], traffic light control [13], payoff games [10], and multiprocessed systems [15,16].
The remainder of the paper is organized as follows: In Section 2, we introduce the preliminary
concepts, in which the elements of tropical algebra are defined. In Section 3, the Tropical Lexicographic
Synchronization Optimization is discussed, and the used tools to solve it are explained. Section 4
deals with a numerical example, which is explained while developing a study case. Finally, in the
Appendix Section, we provide the listed codes implemented in ScicosLab. Note that Scicolab is a free
package for mathematical computing, similar to Matlab. It can be found in http://www.scicoslab.org.
The software is very convenient to work with tropical algebra since it has many of the related functions
native implemented. (Version 4.4) code for the algorithm.

2. Tropical Algebra

This work is heavily based on tropical algebra. Therefore, in this section, we introduce some
concepts and definitions related to this algebra. For more details on academic background, consult a
historical review of Max-Plus tropical algebra [2,17,18]. “Tropical algebra” is a generic name for a
family of idempotent algebraic structures, which can be a semiring or a semifield depending on the
application. A special example of tropical algebra is the so-called Max-Plus Algebra. It is a particular
Tropical structure act on the set Tmax = R∪ {−∞} with two operations, named a⊕ b = max(a, b) and
a⊗ b = a + b. Furthermore, let Tn

max and Tn×m
max be the set of column vectors with n entries in Tmax

and the set of matrices with n rows and m columns in Tmax, respectively. From now on, we consider
that “Max-Plus algebra” and “tropical algebra” can be used as synonyms, and this paper adopts the
latter notation.

This algebra can be extended to matrices and vectors. If A = (Aij), B = (Bij), and C = (Cij)

are matrices of compatible sizes with entries in Tmax, we denote by C = A⊕ B the tropical matrix
sum, in which Cij = Aij ⊕ Bij. Furthermore, we define as C = A⊗ B the tropical matrix product,
in which Cij =

⊕
k

Aik ⊗ Bkj. In later notations, we omit the symbol ⊗ and denote the tropical product

by juxtaposition, so A⊗ B = AB. We use the symbol ε to denote −∞. Let εn×m be a matrix of ε with n
rows and m columns. This article denotes the Max-Plus identity matrix of appropriate order, a matrix

http://www.scicoslab.org
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with 0 in the diagonal and ε outside, by IdT. For a square matrix A, we denote by Ak the kth tropical
power of A, defined recursively as Ak = AAk−1 and A0 = IdT.

If A is a matrix (or a scalar) let −A be the matrix (or the scalar) obtained by switching the sign of

its entries. If a is a vector and b is a scalar b 6= ε, let
a
b

be (−b)a (all the elements of a subtracted by b).

Let ρ(A) denote the spectral radius of A, i.e., the largest eigenvalue. In Tropical Algebra, the eigenvalue
defines the cycle time in a TEG and is still active research topic, with recent results, such as involving

nontrivial eigenvectors [19,20]. The symbol is because
a
b

is the analog of a division in Max-Plus

algebra. If ρ(A) ≤ 0, let A∗ denote the Kleene closure of A, i.e.,
∞⊕

i=0

Ai. It is assumed from now on that

the reader is familiar with the basics of this algebra, including concepts as Kleene closure [21].

Remark 1. Unless stated otherwise, all operations in this paper are done in tropical algebra. So it is essential to
be careful with the symbol that we use for the operations.

An important operation in tropical algebra is the residuation. The residuation works as a kind of
multiplicative inverse in the matrix tropical algebra. This work defines it below:

Definition 1. We define ◦\, ◦/—the left and right residuation of the product, respectively—as (see more details
in [22])

A ◦/ B ≡ max X
XB ≤ A

, (1)

A ◦\ B ≡ max X
AX ≤ B

. (2)

Note that the residuations are implicitly defined by multiobjective optimization problems,
since we want to optimize all the entries of the matrix X of appropriate dimension subject to the
constraint XB ≤ A or AX ≤ B. Perhaps surprisingly, there is indeed a solution X, which is optimal in
all its entries (the so-called utopical solution in optimization), and it is found by the residuations A ◦/ B
and A ◦\ B.

For instance, consider problem (3) below:

max
X

(
x1

x2

)
, (3)

subject to (
1 2
3 4

)
︸ ︷︷ ︸

A

(
x1

x2

)
︸ ︷︷ ︸

X

≤
(

5
6

)
︸ ︷︷ ︸

B

. (4)

Note that this is of the form of (2). Thus, notice that the previous inequality can be rewritten as

1x1 ⊕ 2x2 ≤ 5
3x1 ⊕ 4x2 ≤ 6

⇐⇒ 1x1 ≤ 5 , 2x2 ≤ 5
3x1 ≤ 6 , 4x2 ≤ 6

(5)

Let A ∧ B be the entrywise minimum between the matrices A and B. Consequently,

x1 ≤ 4 , x2 ≤ 3
x1 ≤ 3 , x2 ≤ 2

⇐⇒ x1 ≤ 4∧ 3 = 3
x2 ≤ 3∧ 2 = 2

. (6)
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Therefore, we have that

X =

(
x1

x2

)
≤
(

3
2

)
. (7)

Note that all the previous operations can be reversed. This implies that Xmax = (3 2)T is the
maximum possible value for the matrix X, optimal in all its entries x1 and x2. This is exactly the (left)
residuation: Xmax = A ◦\ B.

The general formula for computing the left residuation is A◦\B = −(AT(−B)).
Analogously, for the right residuation, A◦/B = −((−A)BT). In both cases, in the internal tropical
product, we consider that −ε + ε = ε.

3. Tropical Lexicographic Synchronization Programming

In general, the purpose of this research is to synchronize the transitions of the TEGs,
which describes the discrete event systems. In this section, we propose a framework for establishing
synchronization among the transitions of a TEG, a model for TDES. This is applicable in, for instance,
traffic light systems synchronization, as is discussed further in this paper. Note that this is only
one of the various possible applications of this kind, in which it is desired to have synchronization
among transitions.

3.1. Motivation

As an example of application of the proposed procedure, consider a traffic light system, in which
the goal is to obtain synchronization between phases at adjacent crossings, which allows green waves,
a sequence of green lights in continuous crossings.

A traffic light system can be modeled as a TEG [13]. Figure 1 illustrates a TEG example in which
we have two subsystems, in which each one is related to a crossing. Each transition xi represents a
change of phases in each crossing, in which a phase corresponds to a combination of enabled green
lights. We also have transitions ui, which represents the control of each phase. This means that we can
delay the end of each phase.

Figure 1. Timed Event Graph (TEG) of synchronization example.

A correct synchronization of the system allows the creation of green waves. The synchronization
consists on having firing times xi as close as possible. Thus, the problem involves choosing the firing
times ui, which optimize the synchronization of the system, considering a priority order. Prioritization
is necessary because it may not be possible to synchronize all the transitions xi, it is the same as
synchronizing the TEG. More details are seen in the next section.

Note that the application of traffic light control is only one of the possible applications.
For instance, we could consider manufacture processing and other systems that need sharing and
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synchronization of resources. The generic framework used to solve these described problems is
proposed in the next subsections.

3.2. Formulation of the Tropical Lexicographical Synchronization Problem

Consider the Tropical linear system below, in which we have the state x[k] ∈ Tn
max and input

u[k] ∈ Tm
max

x[k + 1] = Ax[k]⊕ Bu[k + 1]. (8)

We suppose that our policy for u[k] is u[k] = λkµ, in which λ is a scalar and µ is a constant
vector of the same dimension as u[k]. With this same λ and µ we can obtain a closed-loop controller
u[k] = Fx[k], see [23]. If λ > ρ(A), it is known [8] that there are a finite K such that for all k ≥ K,
x[k] = λkχ for a constant vector χ of same dimension as x[k] that depends on µ. Let M = ((−λ)A)∗B.
More precisely,

χ(µ) = Mµ. (9)

For a fixed choice of λ > ρ(A), we want to choose the vector µ such that the entries of x[k] in
steady-state (k ≥ K) are as close as possible, i.e., they are synchronized. Unfortunately, it is not possible
to have all the entries of x[k] synchronized (i.e., equal), because we may not have enough freedom in
µ to achieve such an objective. So, we need to prioritize the synchronizations. So, it is necessary to
define some elements:

• Let P be the number of pairs of transitions of the TEG that we want to synchronize.
• Let L be the list of P pairs of indexes (i(p), j(p)) of entries of x[k] that we want to synchronize,

ordered according to a decreasing defined priority. So, for instance, the pair of indexes (i(1), j(1))
is more important to be synchronized than the pair of indexes (i(2), j(2)). Furthermore, we assume
that in a pair (i(p), j(p)), xi(p)(k) ≥ xj(p)(k), i.e., we pre-specify a temporal order on the state in
those indexes (the firing time xi(p) comes after the firing time xj(p), or, in the best case, at the same
time).

• Let δp = xi(p)(k)− xj(p)(k). This is the synchronization index for the pth pair, which we want to
minimize. Since the xn(k) represent the firing times of the transitions for the kth time, δp represents
the delay between the kth firing time of transition xj(p)(k) and the kth firing time of transition
xi(p)(k). (So, if δp equals to 0, the transitions happen simultaneously).

Note that, since xi(p)(k) ≥ xj(p)(k), this is always a non-negative number. Moreover, since x[k] =
λkχ(µ) is in steady-state, one can see that δp = χi(p)(µ)− χj(p)(µ), and therefore is independent on
both k (that is why the symbol δp does not depend on k, although the definition seems to depend on k)
and λ, depending only on χ, which in turn depends on our decision variable µ according to (9).

We finally conclude that a higher priority pair has an utmost priority over a lower priority pair.
This implies that we have a lexicographical optimization on the indexes δp. Let IT

p and JT
p be the i(p)th

and j(p)th row of the matrix M. Let mr be the rth row of M, respectively. Note that xp(k) = λkmT
p µ.

So, our optimization problem is

lex min
µ

{
IT
p µ

JT
p µ

}
p=1,2,...,P

subject to: IT
p µ ≥ JT

p µ, p = 1, 2, ..., P.

(10)

It is possible that a pair of (i(p), j(p)) cannot be synchronized, given the previous constraints.
In Section 3.5, it is explained how this can be detected. In this case, we need to skip this pair and
continue to the next one.

We define problems of this type as Tropical Lexicographic Synchronization Optimization (TLSO).
Since the parameters of the problem are the matrix M, the list L, and the scalar λ > ρ(A), we can
denote the problem by TLSO(A, B,L, λ).
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3.3. Lexicographic Optimization Problem

In a general form, a Lexicographic Optimization Problem consists of solving lex minµ fi(µ),
i = 1, 2, ..., p, subject to a constraint g(µ) ≤ 0. Note that the objective functions fi(µ) are ordered so an
index i has more priority than index i + 1. One procedure to solve this kind of problem consists of
solving a sequence of traditional optimization problems for j = 1 to j = p:

min
µ

f j(µ)

subject to: g(µ) ≤ 0 ,
fi(µ) = f ∗i , i = 1, 2, ..., j− 1

(11)

in which f ∗i is the optimal value of fi(µ) in the previous problem [12].

3.4. Tropical Fractional Linear Programming

We want to solve a TLSO, which is a Lexicographic Optimization Problem. We use the strategy
explained in Section 3.3, which reduces lexicographic optimization problems into a sequence of
traditional optimization problems. In our case, the particular traditional optimization problems are
TFLP. The general form of a TFLP problem is

max
µ

wTµ⊕ α

f Tµ⊕ β
,

subject to: Rµ⊕ r = Sµ⊕ s
(12)

in which w, α, f , β, R, r, S, s are parameters. This kind of problem has been studied in [10,11],
and algorithms have been proposed to solve them. The algorithm proposed in [11], in particular,
relies on the ability to solve a particular case of TFLP. This particular case is called Max-Type Tropical
Linear Problem (Max TLP):

max
υ

gTυ,

subject to: Eυ⊕ e = Dυ⊕ d.
(13)

In order to guarantee that the solution υ for this problem is finite, the constraint of (13) must
generate a set, which is upper bounded; in better words, there must exist a finite vector υmax such that
υ ≤ υmax. From now on, we assume that this is true.

An algorithm to solve this problem is called Dual Method [11]. This is an iterative method that
works with the following recursion:

υ[k + 1] = E◦\(Dυ[k]⊕ d) ∧ D◦\(Dυ[k]⊕ e) ∧ υ[k], (14)

with the initial condition υ(0) = υmax. In each iteration k, the following conditions must be tested:

e ≤ Dυ[k]⊕ d, and
d ≤ Eυ[k]⊕ e.

(15)

If these conditions are not true, the algorithm halts, and we can conclude that the feasible set
of (13) is empty. Otherwise, when the algorithm converges (new υ equal to a previous υ), it is able to
find the optimal solution for the optimization problem. Note that the algorithm is independent of g.
It turns out that, indeed, the solution µ is independent of these elements (see [11]). Any solution υ

which is optimal for a vector g1 is also optimal for any other g2. More generally, any objective function
f (υ) which is nondecreasing implies the same behavior. This happens because the algorithm in (14)
will find a solution υ inside the feasible set of (13) that is maximal in any entry of υ [24].

When using the discussed Tropical Dual method by solving (14), we can solve the TFLP
problems by converting Max-Type TFLP into Max-Type TLP problem according to Figure 2 through
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Charnes–Cooper conversion [25]. The complete TFLP problem is defined in (12). It is straightforward
to adapt the Charnes–Cooper transformation to the tropical setting [11]. Set

θ =
µ

f Tµ⊕ β
,

θ̂ =
0

f Tµ⊕ β
.

(16)

Figure 2. Using Max-Type Tropical Linear Problem (Max TLP) to solve Tropical Fractional Linear
Programming (TFLP) problems (adapted from [11]).

Then, by dividing (in tropical algebra) both sides of the affine equation on (12) by f Tµ⊕ β, it can
be rewritten as

max
θ,θ̂

wTθ ⊕ αθ̂,

subject to:
Rθ ⊕ rθ̂ = Sθ ⊕ sθ̂;

f Tθ ⊕ βθ̂ = 0

(17)

in which the additional equation f Tθ ⊕ βθ̂ = 0 condenses (16).
Define the vector

υ =

[
θ

θ̂

]
. (18)

Let n and m be the number of rows and columns of R, respectively. With this definition, we can
rewrite (17) as

max
υ

[wT α]︸ ︷︷ ︸
gT

υ,

subject to:[
R r
f T β

]
︸ ︷︷ ︸

E

υ⊕
[

εn×1

ε

]
︸ ︷︷ ︸

e

=

[
S s

ε1×m ε

]
︸ ︷︷ ︸

D

υ⊕
[

εn×1

0

]
︸ ︷︷ ︸

d

.
(19)

Remember that εn×1 is a vector of ε with n rows and one column, and ε1×m is a vector of ε with
one row and m columns.



Symmetry 2020, 12, 1597 8 of 18

This problem is a Max-type TLP as (13) and can be solved by Algorithm 1. The program’s code in
the Scicoslab language is listed in Appendix A.1. Once θ and θ̂ are obtained, in order to return to the
original variable, one needs to revert (16).

µ = ( f Tµ⊕ β)θ =
θ

θ̂
. (20)

Algorithm 1: Tropical Dual Function: TDual Algorithm
l
Inputs: E, D, e, d;
Output: v;
1. Initialize upperbound variable v(k) equals to vector of big numbers with size of E;
2. Initialize stop flags: converge = f alse; itok = true; condi = true;
3. Initialize iteration k = 0;
4. while not converge AND itok AND condi do

Calculates the new v(k + 1) according to Equation (14);
Increasing the step k = k + 1;
Execute the test of conditions (15), store condi;
Verify the convergence, store converge;
Execute test of maximum iterations, store itok;

5. if not condi OR not itok then
v equals empty;

6. Return v.

The TFLP method is implemented by the function TFLP(w, α, f , β, R, r, S, s), in which w, α, f , β,
R, r, S, and s are parameters and it returns µ and δ, in which δ is the value of the optimal objective
function, according to the implementation listed in Algorithm 2. The program’s code in the Scicoslab
language is listed in Appendix A.2.

Algorithm 2: Tropical Fractional Linear Programming: TFLP

Inputs: w, α, f , β, R, r, S, s;
Outputs: u, δ;
1. Create the matrices E, e, D, d according to (19);
2. Calls the Dual Method to solve Max TLP;
3. if solution is empty then

u equals to empty and δ equals to empty;
else

If the solution exists, convert back to the original variable according to (20);
δ = (w ∗ u + α)− ( f ∗ u + β);

4. Return u, δ.

3.5. Tropical Lexicographic Synchronization Programming

We solve the TLSO (10) using the general strategy proposed in Section 3.3. This implies solving a
sequence of TFLPs (12), as discussed in Section 3.4. In this subsection, we describe this procedure in
more detail.

First, note that the constraints in problem (10) can be rewritten as

lex min
µ

{ IT
p µ

JT
p µ

}
p=1,2,...,P

subject to: (IT
p ⊕ JT

p )µ = IT
p µ.

(21)
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Remember that we have a list L of pairs (i(p), j(p))

L = {(i(1), j(1)); (i(2), j(2))...(i(P), j(P))} (22)

ordered by a decreasing priority and also that xi(p)(k) ≥ xj(p)(k). So, according to the procedure
described in 3.3, the first problem that we need to solve is

min
µ

IT
1 µ

JT
1 µ

subject to: (IT
1 ⊕ JT

1 )µ = IT
1 µ,

(23)

a TFLP (as in (12)) which can be solved using the procedure described in Section 3.4. After this TFLP is
solved, we obtain a solution µ∗1 , and then we compute the first δ1 as

δ1 =
IT
1 µ∗1

JT
1 µ∗1

. (24)

Now, the next step is to create the second problem in the sequence. We need to change the
objective function to IT

2 µ− JT
2 µ and also to add two new constraints:

(IT
2 ⊕ JT

2 )µ = IT
2 µ. (25)

IT
1 µ

JT
1 µ

= δ1 ⇐⇒ IT
1 µ = δ1 JT

1 µ. (26)

The second problem, in addition to the previous constraints and the change of objective function,
is augmented by two new constraints, one to synchronize the new pair and another constraint to
guarantee the previous result δ1:

min
µ

IT
2 µ

JT
2 µ

(27)

subject to:

(IT
2 ⊕ JT

2 )µ = IT
2 µ

IT
1 µ = δ1 JT

1 µ (28)

(IT
1 ⊕ JT

1 )µ = IT
1 µ.

From the third problem on, up to p = P, we have two more constraints for each new pair:

min
µ

IT
p µ

JT
p µ

(29)

subject to:

(IT
p ⊕ JT

p )µ = IT
p µ
}

p = P (30)

IT
p−1µ = δp−1 JT

p−1µ

(IT
p−1 ⊕ JT

p−1)µ = IT
p−1µ

}
p = P− 1

...
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IT
2 µ = δ2 JT

2 µ

(IT
2 ⊕ JT

2 )µ = IT
2 µ

}
p = 2 (31)

IT
1 µ = δ1 JT

1 µ

(IT
1 ⊕ JT

1 )µ = IT
1 µ

}
p = 1.

If the pth pair cannot be synchronized, that is, if the Algorithm 2 returns µ equal to empty, the pair
is deleted from the list L, the size P of the list L is updated, and the iteration p is not increased.

The implementation of the TLSO is given by the function TLSO(A,B,L,lambda) in Algorithm 3.
The program’s code in the Scicoslab language is listed in Appendix A.3, in which the parameters A
and B are Max-Plus matrices. In ScicosLab the Max-Plus denomination is used instead of Tropical. L is
the priority pairs list L represented by a matrix with P rows and two columns, and λ is a scalar that is
related to the period. The function TSLP returns the optimal µ∗.

It is important to stress that the TLSO is tropical homogeneous—that means, if µ is a solution, so is
αµ with α, a scalar. Therefore, we can shift the vector µ that we obtain after we solve the problem,
so that all its elements are non-negative.

A numerical example is developed in Section 4 to clarify the TLSO method.

Algorithm 3: Tropical Lexicographic Synchronization Optimization: TLSO

Inputs: A, B,L, λ;
Output: u∗;
1. Define M = [((−λ)A)B]∗;
2. Define the maximum possible iterations: P=size(L);
3. Initialize the first pair iteration p = 1;
4. while (p < P) do

Obtain the pth pair (i, j) of the list L;
Obtain the line i and j of the matrix M;
Define w, f , R, and S (iteration constraints (30) and prior constraints (31));
Define r and s as vector of ε;
Call the function TFLP and obtain u;
if u is empty then

erase pair p of the list L and update the size P of list L;
else

u∗ = u;
p = p + 1;

5. Return u∗.

4. Numerical Example

In this section, we develop a numerical example. We work with the TEG illustrated in Figure 1.
As mentioned in the motivation Section 3.1, the illustrated TEG can model a traffic light system,
which has two subsystems that refers to crossings. For more about the traffic light modeling with
TEGs, see [13,26].
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We suppose that the state equations are known and is given as follows:

x1(k + 1) = 10.6x4(k)

x2(k + 1) = 38.6x1(k + 1)

x3(k + 1) = 12x2(k + 1)

x4(k + 1) = 20.8x3(k + 1)

x5(k + 1) = 20.8x8(k) (32)

x6(k + 1) = 15.7x5(k + 1)

x7(k + 1) = 12x6(k + 1)

x8(k + 1) = 25.9x7(k + 1)

We also suppose that the list L of pairs that have a connection is known and is given as follows:

L = {(3, 7), (4, 8), (4, 7))}. (33)

With these equations, we can write in state-space form x[k + 1] = Ax[k]⊕ Bu[k + 1] once we
define the matrices:

A0 =

[
A1

0 ε4×4

ε4×4 A2
0

]
, A1 =

[
A1

1 ε4×4

ε4×4 A2
1

]
, (34)

in which,

A1
0=


ε ε ε ε

38.6 ε ε ε

ε 12 ε ε

ε ε 20.8 ε

 , (35)

A2
0=


ε ε ε ε

15.7 ε ε ε

ε 12 ε ε

ε ε 25.9 ε

 , (36)

A1
1=


ε ε ε 10.6
ε ε ε ε

ε ε ε ε

ε ε ε ε

 , (37)

A2
1=


ε ε ε 20.8
ε ε ε ε

ε ε ε ε

ε ε ε ε

 . (38)

The matrices A0 and A1 have relation with the times x[k + 1] (next state) and x[k] (current state),
respectively. We execute the operation Kleene closure (see [21]) and obtain the matrix A = A∗0 A1:

A =

[
A1 ε4×4

ε4×4 A2

]
, (39)

in which,

A1=


ε ε ε 10.6
ε ε ε 49.2
ε ε ε 61.2
ε ε ε 82

 , (40)
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A2=


ε ε ε 20.8
ε ε ε 36.5
ε ε ε 48.5
ε ε ε 74.4

 . (41)

The matrix B is associated to control transition, thus, we obtain the matrix B = A∗0 , as

B =

[
B1 ε4×4

ε4×4 B2

]
, (42)

in which,

B1 =


0 ε ε ε

38.6 0 ε ε

50.6 12 0 ε

71.4 32.8 20.8 0

 , (43)

B2 =


0 ε ε ε

15.7 0 ε ε

27.7 12 0 ε

53.6 37.9 25.9 0

 . (44)

The cycle time of the system can be obtained by calculating the eigenvalue, which results λ = 82s.
Once the data (A, B,L, λ) is ready, as a result we get the synchronizing vector µ from the algorithm
TLSO (Algorithm 3, listed code Appendix A.3).

Obtaining matrix M: The TLSO algorithm uses the parameters λ, A, and B to calculate the matrix
M = ((−λ)A)∗B, as

M =

[
M1 ε4×4

ε4×4 M2 ,

]
(45)

in which,

M1=


0 −38.6 −50.6 −71.4

38.6 0 −12 −32.8
50.6 12 0 −20.8
71.4 32.8 20.8 0

 , (46)

M2=


0 −23.3 −35.3 −61.2

15.7 0 −19.6 −45.5
27.7 12 0 −33.5
53.6 37.9 25.9 0

 . (47)

Step one: The algorithm TLSO starts the search by finding an optimal synchronized vector µ by
solving the first optimization problem for the first pair of indexes from the list L.

In the first iteration (p = 1), the pair (3,7) from the list L is used, we have ip = 7 and jp = 3. In this
way, I1 (48) is the 7th line and J1 (49) is the 3rd line of the matrix M:

IT
1 =

[
ε ε ε ε 27.7 12 0 −33.5

]
(48)

JT
1 =

[
50.6 12 0 −20.8 ε ε ε ε

]
. (49)

In order to solve the first TFLP problem (see Section 3.4), we use w = I1, α = 0, f = J1, β = ε,
R = I1 ⊕ J1, r = ε, S = I1, and s = ε.



Symmetry 2020, 12, 1597 13 of 18

The lexicographic algorithm calls the function TFLP (Algorithm 2) for these defined variables
(w, α, f , β, R, r, S, s). The function returns the variables µ∗1 :

µ∗T1 =
[
−50.6 −12 0 20.8 −27.7 −12 0 33.5

]
(50)

and δ1 = 0 (perfect synchronization between the transitions x7 and x3). In that way, we have the first
vector µ∗1 .

Second step: At the second iteration (p = 2) the pair (3, 8) is used, we have i(2) = 3 and j(2) = 8,
being I2 and J2:

IT
2 =

[
ε ε ε ε 53.6 37.9 25.9 0

]
, (51)

JT
2 =

[
71.4 32.8 20.8 0 ε ε ε ε

]
. (52)

From (28), we compute the R (53) and S (54) variables in the second iteration (p = 2):

R =

 ε ε ε ε 53.6 37.9 25.9 0
50.6 12 0 −20.8 ε ε ε ε

ε ε ε ε 27.7 12 0 −33.5

 , (53)

S =

 71.4 32.8 20.8 0 53.6 37.9 25.9 0
ε ε ε ε 27.7 12 0 −33.5

50.6 12 0 −20.8 27.7 12 0 −33.5

 . (54)

The second iteration returns from the function TFLP the result of µ∗T2 :

µ∗T2 =
[
−76.5 −37.9 −25.9 −5.1 −53.6 −37.9 −25.9 0

]
(55)

and δ2 = 5.1, which is the best synchronization possible in this case for this index pair.
Third step: At the third iteration (p = 3), we have the pair (4, 7), in which we compute I3 and J3

correspondent to stages i(3) = 4 and j(3) = 7:

IT
3 =

[
ε ε ε ε 27.7 12 0 −33.5

]
, (56)

JT
3 =

[
71.4 32.8 20.8 0 ε ε ε ε

]
. (57)

Once I3 (56) and J3 (57) are defined, we compute R and S as

RT =



ε 76.5 ε 50.6 ε

ε 37.9 ε 12 ε

ε 25.9 ε 0 ε

ε 5.1 ε −20.8 ε

27.7 ε 53.6 ε 27.7
12 ε 37.9 ε 12

0 ε 25.9 ε 0
−33.5 ε 0 ε −33.5


, (58)
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ST =



71.4 ε 71.4 ε 50.6
32.8 ε 32.8 ε 12
20.8 ε 20.8 ε 0

0 ε 0 ε −20.8
27.7 53.6 53.6 27.7 27.7

12 37.9 37.9 12 12
0 25.9 25.9 0 0

−33.5 0 0 −33.5 −33.5


. (59)

Using these parameters R (58) and S (59), the third problem is solved, and the variable µ returns
empty, which indicates that the algorithm does not converge and the synchronization is not possible.
Therefore, we have to skip this phase and keep the last vector µ∗ = µ∗2 . Since there are no more pairs
to synchronize, the algorithm is over.

As we explained in Section 3.5, we can shift the vector µ in a way that we have only non-negative
values. Thus, we use µ = λµ∗2 , obtaining

µT =
[

5.5 44.1 56.1 76.9 29.4 44.1 56.1 82
]

. (60)

The proposed example in this section clarifies the implementation of the lexicographic algorithm
for synchronization among stages according to the previously defined list. In the first iteration, there is
the perfect synchronization (δ1 = 0). In the second iteration, the synchronization is possible with delay
(δ2 = 5.1). Lastly, in the third iteration, it is not possible to synchronize (µ is empty).

5. Conclusions

In this work, we propose the TLSO (Tropical Lexicographic Synchronization Optimization)
framework. This framework is based on TFLP (Tropical Fractional Linear Programming), which allows
the formulation and solution of problems in which it is desirable to synchronize transitions of
TEGs. As far as the authors’ knowledge goes, there are few practical TLFP applications in the
literature. Thus, this article’s contribution is the formalization and utilization of TFLP for modeling of
synchronization problems, in which we develop a numerical example of traffic light synchronization.
It is important to note that if synchronization is not feasible, the method will handle it.

The research gap served by this work is the lexicographic proposition together with models
resolved by TFLP for synchronization of TEGs subject to delays. The framework proposed in this
research is limited to the characteristics resulting from the time events graph model, which applies to
systems subjected to synchronization and delay phenomena. The study does not apply to systems
where there is a dispute over resources of another nature. As future work, we propose the formulation
for broader models, represented by more general TDES. Another possibility for future work is to
consider an approach for closed-loop systems. The proposed lexicographic method is also suitable
for other systems, such as manufacturing systems, and others in which synchronization and resource
sharing are desired.
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Abbreviations

The following abbreviations are used in this manuscript:

DES Discrete-Event Systems
TDES Timed Discrete-Event Systems
TEG Timed Event Graph
TFLP Tropical Fractional Linear Programming
TLSO Tropical Lexicographic Synchronization Optimization

Appendix A. Codes of Algorithms

In this section, we list the implemented codes of algorithms in a practical free language
Scicoslab. Note that all the listed codes are in Scicoslab’s language, that implements tropical algebra
in its Max-Plus mode. Therefore, the bar symbol (/) implements the right residuation operation,
the backslash symbol (\) implements the left residuation operation, the plus symbol (+) implements
the oplus operation (⊕), and the asterisk symbol (*) implements the otimes operation (⊗).

Appendix A.1. Code of Algorithm Tropical Dual

The program’s code that implements the Algorithm 1 TDual, in the free language Scicoslab, is
listed below:

// Implementation of Algorithm 1:TDual
// Tropical Dual Function
function [vnew]=TDual( E, D, e, d )

big=1000;
itmax=10000;
tol=#(0.0001);
// initialize upperbound
vprev=#(ones(size(E,2), 1)*big);
k=0;
// stop flags
converge=%F;
itok=%T;
condi=%T;
while (~converge & itok & condi)

// Recursive Equation (14)
vnew=(E\(D*vprev+d)) &
(D\(E*vprev+e))&vprev;

k=k+1;
// test conditions (15)
condi = and(e <= (D*vnew+d)) &

and(d <= (E*vnew+e));
converge=sum(vprev-vnew)<tol;
itok = (k < itmax);
vprev=vnew;

end;
if ~condi | ~itok

vnew=[];
end
return [vnew];

endfunction
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Appendix A.2. Code of Algorithm TFLP

The program’s code that implements the Algorithm 2 TFLP, in the free language Scicoslab, is
listed below:

// Implementation of Algorithm 2:TFLP
// Tropical Fractional Linear Programming
function [u,delta]=TFLP(w,alfa,f,Beta,R,r,S,s)
n = size(R,1);
m = size(R,2);
epsn = full(%zeros(n,1));
epsm = full(%zeros(1,m));
// create the matrices according to (19)
E = [ R r ; f Beta ];
e = [ epsn ; %0 ];
D = [ S s ; epsm %0];
d = [ epsn; 0 ];

// calls the Dual Method to solve Max TLP in (19)
[v] = TDual( E, D, e, d );
// verify if the solution is found
if isempty(v)

u =[];
delta = [];

else
// convert back to the original variable according to (20)
y = v(1:$-1);
z = v($);
u = y*z;
delta= (w*u+alfa)-(f*u+Beta);

end
return [u,delta];

endfunction

Appendix A.3. Code of Algorithm TLSO

The program’s code that implements the Algorithm 3 TLSO, in the free language Scicoslab, is
listed below:

// Implementation of Algorithm 3:TLSO
// Tropical Lexicographic Synchronization Optimization
function [u]=TLSO(A,B,L,lambda)
M=star(A-lambda)*B;
// maximum possible iterations

P=size(L,1);
p=1; // first iteration
while (p<P)
i(p) = L(p,1);
j(p) = L(p,2);
I(p,:) = M(i,:(p,:),:);
J(p,:) = M(j(p,:),:);
// iteration constraint Equation (30)
w = I(p,:);
f = J(p,:);
R = I(p,:)+J(p,:);
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S = I(p,:);
// prior constraints (31)
n = p-1;
while (n>0)
R = [ R; J(n,:); I(n,:)+J(n,:)];
S = [ S; delta(n)*J(n,:);I(n,:)];
n=n-1;

end;
r = full(%zeros((p-1)*2+1,1));
s = full(%zeros((p-1)*2+1,1));
[u,delta(p)]=

TFLP(w,alpha,f,Beta,R,r,S,s);
if isempty(u)
L(p,:) = [];
P = size(L,1);

else
ustar=u;
p=p+1;

end;
end;
return [ustar];

endfunction
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