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Abstract: In this review, we consider the time reversal T and particle-antiparticle C symmetries that,
being most fundamental, can be violated at microscopic level by a weak interaction. The notable
example here is from condensed matter, where strongly correlated Fermi systems like heavy-fermion
metals and high Tc superconductors exhibit C and T symmetries violation due to so-called non-Fermi
liquid (NFL) behavior. In these systems, tunneling differential conductivity (or resistivity) is a very
sensitive tool to experimentally test the above symmetry break. When a strongly correlated Fermi
system turns out to be near the topological fermion condensation quantum phase transition (FCQPT),
it exhibits the NFL properties, so that the C symmetry breaks down, making the differential tunneling
conductivity to be an asymmetric function of the bias voltage V. This asymmetry does not take place
in normal metals, where Landau Fermi liquid (LFL) theory holds. Under the application of magnetic
field, a heavy fermion metal transits to the LFL state, and σ(V) becomes symmetric function of V.
These findings are in good agreement with experimental observations. We suggest that the same
topological FCQPT underlies the baryon asymmetry in the Universe. We demonstrate that the most
fundamental features of the nature are defined by its topological and symmetry properties.

Keywords: quantum phase transition; fermion condensation; tunneling conductivity;
time-reversal symmetry

1. Introduction

Unusual properties of strongly correlated Fermi systems are observed in superconductors with
high Tc (HTSC) and in heavy fermion (HF) metals due to a quantum phase transition (QPT) occurring
at its quantum critical point (QCP) at T = 0. QPT is caused by external incentives such as chemical
composition, pressure P, density x of electrons (holes), magnetic field B, etc. It is commonly accepted
that QPT is the main cause of the non-Fermi liquid (NFL) behavior demonstrated by strongly correlated
Fermi systems [1]. The thermodynamic, relaxation and transport properties of HF compounds had
been well studied experimentally. On the other hand, the properties of HF metals (and other
strongly correlated Fermi systems), that are not directly related to the density of states (DOS)
or effective mass M∗, had not yet been measured in detail. In this context, scanning tunneling
microscopy and point contact spectroscopy based on Andreev reflection (AR) [2] are sensitive to
both quasiparticle occupation numbers and DOS, which makes them ideal candidates for studying
the effects of particle-hole symmetry violation. The measured physical characteristic in the above
methods is a differential tunneling conductivity or conductance. Asymmetric part of the conductance
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σasym(V) ≡ I′(V)− I′(−V) (I′ ≡ dI/dV, where I is a tunneling current and V is a bias voltage) can
be observed when a system with strongly correlated heavy fermions (like electrons and/or holes) is
both in its normal and superconducting state [3–9]. We note that such an asymmetry does not occur
in conventional metals, especially at low temperatures. Since latter systems are well described by
the Landau Fermi liquid (LFL) theory, which supports the particle-hole C symmetry, the differential
tunneling conductivity and the dynamic conductance become symmetric functions of bias voltage V
in them [1,10–12].

One of the peculiar quantum phase transitions, taking place in the above systems, is so-called
topological fermion condensation quantum phase transition (FCQPT). As a result of this transition,
some of the fermions, comprising strongly correlated Fermi system, condense like bosons,
see Refs [11–13] for details. These condensed fermions form fermion condensate (FC), which is
responsible for many salient features, observed in the above systems. Among other things,
the corresponding theoretical approach is able to describe the NFL properties of HTSC, HF metals,
quantum spin liquids (for different number of spatial dimesions) as well as quasicrystals [1,11–15].
The same approach, being applied to the differential tunneling conductivity in HF metals,
shows convincingly, that latter quantity becomes significantly asymmetric function of bias voltage
V. The underlying physical mechanism is the same as in the archetypical HF metal YbRh2Si2,
where external parameters put the electronic subsystem near FCQPT point in the phase diagram.
The aforementioned asymmetry have been observed experimentally in HF metals both in normal and
superconducting state, see, e.g., [16,17]. The asymmetry of tunneling conductivity is conveyed by the
violation of both the time reversal T and the particle-antiparticle (in solids, particles, or quasiparticles,
correspond to electrons, while antiparticles correspond to holes) C symmetries. The magnetic field
B, being applied to a HF metal sample, returns it to the LFL state so that the corresponding T and C
symmetries are restored, and σasym(V)→ 0 [3,6,7]. One can see, therefore, that a magnetic field destroys
a fermion condensate in a HF metal, restoring the normal Fermi liquid in it. This makes conductivity to
be a symmetric function of V. Latter fact occurs since in normal Fermi liquids, the particle-antiparticle
(C) (or particle (quasiparticle)-hole in solids) symmetry is not violated. More generally, at low
temperatures both the T and the C symmetries are restored, while at elevated temperatures the
NFL behavior can return, breaking the symmetries once more. The experimental observation of
the flat band and a superconducting (SC) state in graphene [18] attracted sturdy attention to the
band flattening, since it can lead to the bulk room-Tc superconductivity in graphite [19]. Both band
flattening and SC state emergency are consistent with recent experimental observations (and their
subsequent theoretical analysis) suggesting that the flattening not only raises the critical temperature
Tc of superconducting phase transition but can as well be accompanied by asymmetric conductivity
that breaks T and C symmetries [3,6,7,19–25].

In this review, based on experimental data and their theoretical explanation, we show that both
T and C symmetries break when HF metal and/or HTSC are located near the topological FCQPT.
We have also shown that latter HF compounds exhibit NFL properties in their superconducting,
pseudogap and normal states. As a result, the asymmetric part σasym(V) of the differential tunneling
conductivity is sustained throughout latter states. Since the application of magnetic field destroys the
NFL properties, it also recovers the above symmetries, nullifying σasym(V). This nullification is in good
agreement with the recent experimental observations [18,26,27] and has been predicted theoretically
in Refs. [3,6,7]. Thus, the existence of the asymmetric part σasym(V) is a consequence of the NFL
behavior. We note that in case of triodes and diodes the asymmetric part σasym(V) 6= 0 occurs due to
diametrically opposite physical reasons, since in the case of the HF metals σasym(V) can be destroyed
by applying weak magnetic field. Therefore σasym(V) measurements can be viewed as a powerful
and versatile tool to investigate the fundamental NFL physics of strongly correlated Fermi systems.
This fact is due to the time reversal T and particle-hole C symmetries violation in the NFL phase of
latter systems. We speculate that similar violations generated by topological FCQPT can take place at
large scales in the Universe.
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The review is organized as follows. In the following Section 2 we present short discussion of QPT
and outline special properties of topological QPTs. In Section 3 the topological FCQPT is reviewed.
Here we show that FCQPT leads to C and T symmetries violation. Section 4 deals with the asymmetric
conductivity of HF compounds near the topological FCQPT. Here we discuss main properties of
the asymmetric conductivity. In Section 5 we compare our theoretical results on the asymmetric
conductivity with experimental facts collected on heavy-fermion metals and high Tc superconductors.
In Section 6 we analyze the violation of T and C symmetries in the Universe, and show that the
existence of the time arrow, baryon asymmetry and the high entropy of the Universe can be accounted
for, provided that the Universe undergoes the topological FCQPT. Section 7 summarizes the main
results of the review and outlines the perspectives in searches for the violations of the symmetries
within the framework of topological approach.

2. Quantum Phase Transitions

HF compounds are fundamental systems in the condensed matter physics that are very well
studied experimentally, which until very recently have lacked theoretical explanations [1,11,12].
Many notable and yet unexplained NFL properties of HTSC, HF metals and other strongly correlated
fermionic systems are likely to be due to magnetic phase transitions of quantum nature [1,28].
QPT takes place at its QCP separating the ordered phase that emerges as a result of quantum phase
transition from the disordered phase. It is usually suggested that magnetic (e.g., ferromagnetic and
antiferromagnetic) QPTs are responsible for the NFL behavior. The critical point of the corresponding
phase transitions that we call ordinary phase transitions, can be shifted to absolute zero by varying
the non-thermodynamic parameters such as chemical composition, P, B, etc. Both the ordered side of
ordinary phase transition and disordered side are described within the framework of the LFL theory,
supporting C and T symmetries [1,11,12,29]. As a result, one concludes that within the framework of
ordinary quantum phase transition notion, it is impossible to explain the observed experimentally
σasym(V) and the corresponding C and T violations. To still explain the observed NFL behavior,
the notion of quantum and thermal fluctuations, that accompany QCP, has been proposed in Ref. [28].
This notion, unfortunately, lacked universality. Namely, being able to explain theoretically one
peculiarity, this idea was not suitable to describe the whole bunch of other features in HF compounds.
The only possibility to deliver the universal description of the above asymmetry as well as of the other
NFL features, was to introduce the new type of QPT [1,11–13].

The LFL theory is based on the Landau paradigm that a Fermi liquid properties are defined by
its excitations, named quasiparticles. Quasiparticles are fermions with the effective mass M∗ [29].
Within the LFL theory, the approximate constancy of the effective mass M∗ is accepted, and it is
based on the fact that conventional metals are well described within the approximate constancy of M∗.
As a result, the single-particle spectrum of quasiparticles with the effective mass M∗ weakly depends
on temperature T and magnetic field B. In the LFL theory, the single-particle spectrum ε(p, T) is a
variational derivative

ε(p) =
δE[n(p)]

δn(p)
, (1)

of the system energy E[n(p)] with respect to the quasiparticle distribution (or occupation numbers)
n(p). In turn, the spectrum ε(p) is related to the occupation numbers n(p, T) by the well-known
Fermi-Dirac distribution

n(p, T) =
{

1 + exp
[
(ε(p, T)− µ)

T

]}−1

. (2)

Here, µ is chemical potential. At T → 0 the distribution represents the step function. The both
functions are symmetrical with respect to particles and holes [29]. Taking into account that the Fermi
energy EF of conventional metal EF ∼ 104 K, we conclude that M∗ can strongly depend on T and B
at very high values of T and B. Latter feature is fundamentally different from Landau supposition
about quasiparticle effective mass constancy in the normal Fermi liquid. In other words, now M∗
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(which in Fermi liquid approach, defines all observable properties of HF compounds) starts to depend
on external stimuli like temperature, pressure and/or magnetic field [1,11,12]. Thus, to explain the
observed properties of HF compounds, including the asymmetrical conductivity σasym(V), we must
employ a topological quantum phase transition represented by the topological FCQPT, transforming
the Fermi surface into Fermi volume, and forming flat bands [1,11–13]. Such a topological phase
transition is to be a quantum phase transition, and, as we will see in Section 3, violates C and T
symmetries, while the effective mass starts to strongly depend on T and B.

3. Fermion Condensation State

Although the effect of fermion condensation had already been described in several sources
(like monographs [11,12] and reviews [1,15]), here we recapitulate the basics of FC theory [1,11–15].
In HF compounds, the topological FCQPT is driven by external stimuli like chemical composition,
pressure as well as electric, magnetic, elastic fields etc. For instance, as HF electrons (quasiparticles)
concentration x reaches some critical value xFC, the quasiparticle spectrum becomes k-independent
forming the so-called flat bands. This flat part does not occupy whole spectrum; it rather emerges in a
segment pi-p f , where pi stands for initial value and p f is for final value of quasiparticle momentum.
As the effective mass M∗ is defined by the second derivative of the spectrum, it becomes infinite
(diverges) in its flat part. Beyond xFC, the quantum phase transition (FCQPT for concreteness) occurs
so that the zero-temperature quasiparticle distribution is no more step function. This implies that
the quasiparticle spectrum = ε(p) is determined by minimization of the Landau energy functional
E[n(p)] [13] to yield

δE[n(p)]
δn(p, T = 0)

= ε(p) = µ; pi ≤ p ≤ p f , (3)

where µ is the chemical potential. At T = 0 Equation (3) defines the occupation number n0(p),
which is a minimum of the above functional E[n(p)]. The ordinary n0(p) is portrayed in Figure 1
for dimensionless (in the units of Fermi energy EF) temperatures T/EF = 0.01 and T/EF = 0.0001.
This Figure shows that FC breaks the C symmetry as n0(p) does not have characteristic step-like shape
at T = 0; rather, it has several steps. Latter steps make the conductivity to acquire an asymmetric part.
Figure 1 also shows that at increasing temperatures C asymmetry diminishes, and eventually vanishes
at T > Tf with Tf being a characteristic temperature, where FC ceases to be important [1,11].

Now consider how the presence of σasym(V) signals the violation of T and C symmetries.
Suppose that we have a contact between HF and ordinary metal. Let us initially have the electronic
(i.e., that of negatively charged quasiparticles) current directed from HF to an ordinary metal.
Applying voltage V to the contact, we change the sign of quasiparticle charge which alters immediately
the current direction. Simultaneously, one obtains exactly the above electronic current under the
voltage sign change V → −V. In this case, the differential conductivity acquires an asymmetric part
σasym(V) = σd(V) − σd(−V) due to C symmetry break (Figure 1). Also, the substitution t → −t
(t is time) for constant charge generates the change of current direction only. As latter direction change
can be accomplished by V → −V also, it is clear that time inversion symmetry is violated if σasym exists.
Hence, if C or T symmetries are violated, nonzero σasym(V) appears. Concurrently, the simultaneous
transform e→ −e and t→ −t does not change anything, which means that combined CT symmetry
is preserved. It is obvious that the same consideration is true for ρd(V) = (σd(V))−1. It should be
noted that in the present case the symmetry with respect to coordinates sign flip (i.e., parity P) is not
violated so that the combined general CPT symmetry is kept intact. It is well known that partial C and
T symmetries conserve for the systems of fermions, described by Landau theory. This implies that for
these systems (like ordinary metals) σd(V) is a symmetric function so that conductivity asymmetry is
not observed in them at low T [8,10].
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Figure 1. Quasiparticle spectrum (a) and occupation number (b) for the FC phase vs dimensionless
momentum k = p/pF. Reported is the case of very small (10−4EF − 10−2EF) temperatures; pF and
EF are Fermi momentum and energy respectively [1,6]. Vertical lines (red and blue for temperatures
shown in the panels) in panel (b) correspond to EF where n(k, T) = 0.5 (horizontal line). In the panel
(a), at ki < k < k f (marked by dashed horizontal lines with ki and k f standing for initial and final
momenta respectively) and T = 0.0001EF (blue curve), ε(k, T) is almost dispersionless and marked
“Flat band”. Latter implies that the density of states N0 → ∞ in the range k f − ki. The occupation
number n(k, T) develops more asymmetry relatively to EF so that C invariance is broken, yielding
NFL regime. To illustrate the asymmetry, the area in panel (b), where holes are “living”, is labeled “h”
(in red color), while that for quasiparticles, by “p” (in black color).

To derive the expression for σ(V), we first calculate the bias-dependent current I(V) flowing
through the metallic contact via tunneling. This can be accomplished by the so-called Harrison
method [10,30]. This method uses the fact that I(V) is a linear function of so-called Bardeen transition
probability P12 [31]. This quantity is the probability for a particle (say, an electron) to tunnel from
initial state 1 to final state 2 through a layer. It is given by the expression

P12 ∼ |t12|2N2(0)n1(1− n2), (4)

where N2(0) is the state 2 DOS, n1,2 are corresponding quasiparticle distributions with a transition
matrix element t12. The expression for total tunneling current I reads in this case

I ∼ P12 − P21 ∼ |t12|2N1(0)N2(0)×[
n1(1− n2)− n2(1− n1)

]
=

|t12|2N1(0)N2(0)(n1 − n2). (5)

The transition amplitude t12 has been calculated in WKB approximation [10,30] with respect to
transition amplitude t

t12 =
t√

N1(0)N2(0)
, (6)

The integration of (5) with respect to the energy ε yields following formula for I(V) [10,30]:

I(V) = 2|t|2
∫ [

nF(ε− µ−V)− nF(ε− µ)
]
dε. (7)
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The coefficient 2 in front of the integral (7) accounts for the two projections of the electron spin
and µ is the chemical potential. In the above expressions, the dimensionless (so-called atomic) units
h̄ = e = m = 1 have been used. As usual, e and m are the electron charge and mass, respectively.
Besides that, nF(ε) is a quantity for a normal metal. Since temperature is low, nF ≈ θ(ε− µ), where θ(x)
is a Heaviside function.

It follows from Equation (7) that the current is due to quasiparticles with the energies µ ≤ ε ≤
µ + V so that I(V) = c1V and σd(V) ≡ dI/dV = c1, c1 = const, while the DOS is constant at µ.
Thus, the LFL theory defines σd(V) as a constant. This constant is obviously an even, symmetric
function of the bias voltage V, i.e., σd(V) = σd(−V). In fact, the symmetry of σd(V) holds under the
LFL condition of C and T symmetries conservation. This means that σd(V) is symmetric function
for two ordinary metals contact. Please note that in more involved evaluation of N1 and N2 entering
Equation (5), they acquire energy dependence for ε ' µ so that one should insert them into the
integrand of Equation (7) [32–34]. This has been done, for instance, in Equation (5) [34] for scanning
tunneling microscope tip interacting with a magnetic adatom. This does not break the C symmetry in
the LFL case. The situation becomes drastically different if HF metal is placed under the conditions,
generating flat bands [13,14]. In this case, the C symmetry is also broken [1,11], the system has
fermion condensate so that the DOS in the integrand of Equation (7) strengthens the tunneling spectra
asymmetry as the above DOS N(ξ, T) depends strongly on ε ' µ, see Figure 2. This results in a
strong asymmetry of N(ξ, T) relatively to µ. Consequently, dN(ξ, T)/dξ 6= 0 at ε = EF so that at ε ∼ µ

(or ξ → 0), the DOS can be expanded in power series as N(ξ, T) ' a0 + a1ξ. It is obvious that σasym(V)

is determined primarily by a1 rather than a0, for a0 is related to a constant value of DOS, as it is typical
for the LFL theory. In this case, a1 ∝ M∗, where M∗ is the effective mass. At low temperatures it is
given by [1,6]

M∗(T) ' pF
p f − pi

4T
. (8)

The quasiparticles with the spectrum ε and occupation number n0(p) are well described by the
expression (8) at T � Tf , where Tf is some threshold temperature. Latter quantity determines the
situation, when all “FC traces” disappear [1]. In this case, the following inequality fulfills

µ− 2T ≤ ε ≤ µ + 2T. (9)

In superconducting phase, M∗ does not depend on T if T ≤ T∗c . Here T∗c is the temperature
of phase transition, which is characterized by disappearance of superconducting gap or pseudogap.
The expression for effective mass then reads [1,6]

M∗(T) ' pF
p f − pi

2∆1
, (10)

where ∆1 is the maximal superconducting gap at zero temperature.
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Figure 2. Function N(ξ, T) (ξ = (ε − µ)/µ) for three values of T (normalized to µ) shown in the
legend [1,6].

It is noted that C symmetry break causes the T symmetry violation. Figure 1 illustrates the
resulting low-temperature spectrum ε(k, T) as well as portrays the function n(k, T). It also shows that
the presence of the flat band violates T symmetry. The broken C symmetry results in the difference
in areas where holes (h in Figure 1) and particles (p in Figure 1) are “residing” [1]. Please note that
in superconducting phase the system exhibits the asymmetrical tunneling conductivity near FCQPT
and beyond the FCQPT point. This is because in this case particle-hole symmetry is still violated.
Figure 3 demonstrates that this is consistent with experimental data [1,6].

Figure 3 shows the schematic T− B phase diagram for CeCoIn5. The main point is that a magnetic
field Bc0 induces QCP. This field, in turn, lies deep inside the superconducting part of the phase
diagram [35]. It is clearly seen from Figure 3 that Bc2 > Bc0 [36,37] so that ordinary Fermi liquid
properties exist at T ≤ Tcross until the superconducting phase begins to appear. Latter phase destroys
normal state entropy surplus [1].

S0 ∼∑
p
[n0(p)(1− n0(p))] ∝

p f − pi

pF
= k f − ki. (11)

In magnetic field, the entropy S0 leads to the transformation of the type II superconducting
phase transition into the type I. The reason is that at low temperatures the entropy Ssc(T) of SC
state becomes Ssc(T) � S0, which is discontinuous as it should be for first order transitions [1,38].
This observation agrees with experimental results [39,40]. It not only relates S0 to the asymmetrical
conductivity but explains the entropy excess in the Universe, see Section 6. Thus, we see that the
most fundamental features of the nature are defined by its topological and symmetry properties.
In Figure 3, the crossover region along with line Tcross(B), divides the phase diagram into NFL and LFL
parts, i.e., divides the diagram into two parts with different topology. Therefore, at low temperatures,
these parts are separated by the first order phase transition, for the topological charge cannot change
continuously [1,14,19].
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Figure 3. Schematic T− B phase diagram of HF compounds like the archetypical CeCoIn5. Black arrows
traversing the transition region, explain the LFL-NFL (at fixed magnetic field B, vertical) and
opposite transition (at fixed temperature, horizontal) respectively. Blue solid curve demarcates the
superconducting (SC) state at B < Bc2. Here Bc2 and Bc0 are, respectively, the critical field for SC state
and the QCP, hidden inside SC part of the phase diagram. Flat band exists for magnetic fields B ≤ Bc0.
Label “PG” between yellow dashed and blue solid curves denotes the pseudogap state. The FL and
NFL parts of the phase diagram are divided by shaded area (marked “Crossover region”) with the
solid line Tcross(B) inside it. A part of the line Tcross(B) is situated inside the SC part. S0 marks the
entropy surplus, responsible for σasym(V) appearance.

4. Asymmetric Conductivity Near the Topological FCQPT

The tunneling current I between ordinary and HF metals is given by Equation (7) with one of the
distribution functions of ordinary metal nF substituted with n0

I(V) = 2|t|2
∫

N(ε, T) [n0(ε− µ−V)− nF(ε− µ)] dε. (12)

Clearly, from Equations (8) and (12) that σasym becomes finite, since particle-hole C symmetry is
violated. As a result, we arrive at the equation for σasym(V) when the system in its normal state [1,6,7]

σasym(V) ' c
(

V
2T

) p f − pi

pF
∝
(

V
2T

)
S0. (13)

We recall that the factor (p f − pi)/pF = k f − ki, see Figure 1.
Tunnel conductivity remains asymmetric as a high-Tc superconductor or a HF metal passes

into the superconducting state from the normal state. The reason is that the function n0(p) and the
related N(ε, T) again determine the differential conductivity. It is well-known that it is the Landau
interaction, which defines the occupation number n0(p). It then becomes clear, that any weaker
interaction (like pairing one) would not distort n0(p) substantially. This has been shown in Refs. [1,6,7].
This implies, in turn, that at T ≤ Tc, the conductivity stays almost intact. Figure 4 shows that this
theoretical result is in fairly good coincidence with experiments. Note that the effective mass has the
form (10) if the metal with FC becomes superconducting. This actually determines the asymmetrical
part σasym(V) of its conductivity.
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Figure 4. Temperature dependence of the asymmetric part σasym(V) extracted from measurements
on YBa2Cu3O7−x/La0.7Ca0.3MnO3 bilayers of the differential conductivity at different temperatures
shown in the figure [41]. The dashed line shows the linear dependence of σasym(V) on the variable V
over a wide range, see Equation (15).

Also, in superconducting case, the density of states Ns(E) alters, being zero inside the gap ∆,
i.e., Ns(E) = 0 at E ≤ |∆|. This fact should be accounted for in calculations of tunneling conductance.
The expression for above altered DOS reads

Ns(E) = N(ε− µ)
E√

E2 − ∆2
, (14)

Here, ∆ is the superconducting gap at T = 0 and E is the quasiparticle energy in the
superconducting state, related to the normal state quasiparticle energy as ε− µ =

√
E2 − ∆2. It follows

from Equation (14) that the tunneling conductance can be asymmetric function of the bias voltage V,
provided that the density of states N(ε− µ) is asymmetric with respect to the Fermi level [4] as is in the
case of Fermi systems with FC, see Figure 2. As we have mentioned above, N(ξ, T) ' a0 + a1ξ, with the
coefficient a0 does not contributing to the asymmetric conductance. Consequently, the expression for
the system in its superconducting state becomes

σasym(V) ' c
V
∆1

p f − pi

pF
= c

V
∆1

(k f − ki). (15)

Here, c is a constant of the order of unity. The scale 2T entering Equation (13) is replaced by the
scale ∆1 in Equation (15), therefore, in that case the asymmetrical part does not depend on T when
the system in its superconducting or pseudogap states. This observation is in good agreement with
experimental facts, see Section 5. Similarly, as Equation (13) is valid up to V ∼ 2T, Equation (15) is
valid up to V ∼ ∆1 [1,6,7].

5. Asymmetric Conductivity in Heavy-Fermion Metals and High Tc Superconductors

The asymmetric conductivity σasym(V) can be observed when both HTSC and HF metals are
shifted from their normal to superconducting phase, since n0(p) and N(ε, T) are responsible for
the asymmetric part of their measured differential conductivity. As we have mentioned above,
since pairing interaction (leading to superconductivity) is substantially weaker then initial Landau
one, both occupation number n0(p) and the density of states N(ε, T) are almost the same as those in
the normal phase [6,7,11,16]. This implies that below Tc the conductance still remains asymmetric,
which coincides with experimental data in Figure 4.
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To illustrate the strength of Equations (13) and (15), we consider the temperature dependence of
the asymmetric part σasym(V) of point contact spectra on YBa2Cu3O7−x/La0.7Ca0.3MnO3 bilayers with
Tc = 30 K [41]. The data showing that σasym(V) remains constant up to temperatures of Tc and persists
up to temperatures well above Tc, see Figure 4 [1,6,7]. It is also seen from Figure 4 that σasym(V) starts
to diminish at T ≥ Tc. These observations are in excellent agreement with the behavior described by
Equations (13) and (15), and are strong evidence, supporting the FC theory [1,11–14].

In order to find out if the electron density is nonuniform in Bi2Sr2CaCu2O8+x, the spectroscopic
measurements have been undertaken in Ref. [42]. These measurements were augmented by tunneling
microscopy at low temperatures. The manifestation of the above non-uniformity is local DOS and
superconducting gap spatial fluctuations. They can serve as a consistence check for Equation (15).
The inhomogeneity observed in the integrated DOS is not induced by impurities but is inherent
property of the system. This is supported by observations relating the value of the integrated local
DOS to the concentration x of local oxygen impurities. Spatial variations in the differential tunnel
conductivity spectrum are shown in Figure 5a. Clearly, the differential tunnel conductivity is highly
asymmetric in the superconducting state of Bi2Sr2CaCu2O8+x. The differential tunnel conductivity
shown in Figure 5a may be interpreted as measured at different values of ∆1(x) but at the same
temperature, which allows studying the ∆σd(V) dependence on ∆1(x). Figure 5b shows the asymmetric
conductivity σasym(V) obtained from the data in Figure 5a. Indeed, for small values of V, σasym(V) is a
linear function of voltage consistent with Equation (15) and the slopes of the respective straight lines
of σasym(V) are inversely proportional to the gap size ∆1.
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Figure 5. Spatial variation of the spectra of the differential tunnel conductivity obtained in
measurements on Bi2Sr2CaCu2O8+x. (a) Lines 1 and 2 belong to regions in which the integrated
local DOS is very low. Low differential conductivity and the absence of the gap are vivid features that
we are dealing with a bad metal. Line 3 indicates the large gap (65 meV) with mildly pronounced
peaks. The integrated value of the local DOS for curve 3 is rather small, but is larger than that for lines 1
and 2. Line 4 depicts the gap of about 40 meV, which is close to the average value of the gap. Line 5
corresponds to the maximum integrated local DOS, and depicts the smallest gap of about 25 meV,
and has two well pronounced coherent peaks [42]. (b) The asymmetric part σasym(V) of the differential
tunnel conductivity in the high-Tc superconductor Bi2Sr2CaCu2O8+x, extracted from the data exposed
in Figure 5a, as a function of the voltage V (mV). The lines are numbered in accordance with the
numbers of the curves in Figure 5a. Evidently, σasym(V) is a linear function of V, while the slope of
σasym(V) is inversely proportional to the gap size ∆1, see Equation (15).

Both the point contact spectroscopy and the tunneling conductivity have recently been used to
investigate the archetypical HF metal CeCoIn5 in its superconducting, pseudogap (PG) and normal
states [16,43]. The asymmetric part σasym(V) shown in Figure 6a (the point contact spectroscopy [16])
and (b) (the tunneling conductivity [43]), have been extracted from experimental data collected on
CeCoIn5 [16,43], and σasym(V) has been observed in CeCoIn5 both in its superconducting, PG and the
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NFL normal states. It is seen from Figure 6a that σasym(V) takes place in the NFL normal states at 10 K,
while in the PG state at 2.6 K σasym(V) coincides with that of the SC states with Tc = 2.3 K. As seen
from Figure 6b, σasym(V) has similar traits. The lower the temperature (down to PG state), the more
asymmetric is a conductivity. After that, the asymmetry stays almost constant down to ' 0.3 K,
thus supporting the validity of the main results presented in Section 4. As a result, we conclude that
the physics of the PG state is given by the presence of the FC state, while the PG state is directly related
to the SC one.
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Figure 6. The asymmetric part σasym(V) in CeCoIn5. Panel (a). The asymmetric part is extracted
from the experimental data [16]. It is seen that at T ≤ 2.6 K CeCoIn5 in both its PG state and the SC
state, σasym(V) becomes temperature independent; Tc = 2.3 K is the superconducting phase transition
temperature. Panel (b). The asymmetric part σasym(V) is extracted from the experimental data [43].
Again, at T ≤ 2.7 K CeCoIn5 in its PG and SC states, and the asymmetrical part σasym(V) becomes
temperature independent, see Equation (15). At T ≥ 2.7 K σasym(V) diminishes, as it follows from
Equation (13).

At sufficiently low temperatures and under the application of magnetic field B, the LFL behavior
and the C and T symmetries are restored, which makes the asymmetric part σasym(V) of the tunneling
conductivity vanish [1,3,6,7,11]. To observe the finite asymmetry of the conductivity, the measurements
must be carried out when HF metals under the consideration demonstrate the NFL behavior
characterized by the particle-hole asymmetry. Latter asymmetry is the typical feature of HF metals
located near the topological FCQPT. Thus, we conclude that the emergence of σasym(V) is the typical
feature of the NFL behavior. It is seen from the schematic phase diagram of Figure 3 that under
the application of magnetic field B the HF metal transits from its NFL to LFL behavior so that the
asymmetric part σasym(V) vanishes. As has been predicted within the framework of the FC theory,
σasym(V) is finite in the archetypical HF metal YbRh2Si2, and it disappears, provided that the metal is
shifted to the LFL state by magnetic field, as it is depicted by the arrows in Figure 3 [3,6,7]. For the first
time, this suppression of the asymmetrical part σasym(V) was observed in the HF metal YbCu5−xAlx
(for x = 1.5) in high magnetic fields of 20 T [1,44]. The asymmetric conductivity σasym(V) is observed
in the archetypical HF metal YbRh2Si2, and attributed to the influence of Fano resonances [26]. On the
other hand, the suppression of the asymmetrical part have been observed in YbRh2Si2 [27], as reported
in Figure 7. In that case magnetic field B is applied parallel to the magnetically hard c axis and the
suppression takes place at B ≥ 7 T. We note that such a suppression can hardly be related to the
elimination of the Fano resonances in magnetic fields. As a result, we can safely assume that that
the asymmetry is induced by the topological FCQPT, rather than by Fano resonances. Along this
way, we predict that the suppression of σasym(V) in YbRh2Si2 can be observed at low magnetic fields
B ∼ 0.2 T, provided that B is applied parallel to the easy magnetic axis and at T ∼ 0.1 K.
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Figure 7. The asymmetric part σasym(V) at different applied magnetic fields, shown in the legend.
Asymmetrical part σasym(V) is extracted from the experimental data [27]. At B ≥ 7 T σasym(V) vanishes
at V ≤ 2 mV, for at these magnetic fields the system exhibits the LFL behavior, as seen from the phase
diagram in Figure 3.

The differential resistance dV/dI as a function of the current I can be a hallmark of the NFL
behavior and the violation of C and T symmetries, since the symmetry properties of dV/dI are
similar to those of σd(V). They are described by Equations (13) and (15). These observations are
in accordance with experimental facts. Indeed, the differential resistance dV/dI, as a function of
bias current I at two different magnetic fields B measured on graphene [18], is reported in Figure 8.
The asymmetric part of the differential resistance σasym(kΩ) = dV/dI(I)− dV/dI(−I) diminishes at
elevated magnetic field, and vanishes at B ' 140 mT, as seen from Figures 8 and 9. This observation
is of great importance, for graphene has a perfect flat band generated by the topological FCQPT that
violates the C particle-hole symmetry [18]. Notably, it has been suggested that the band flattening
leads to the time-reversal symmetry breaking [12,17,24].
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Figure 8. Differential resistance in kiloohms vs bias current I at several magnetic fields (legend) [18].
The asymmetry in differential resistance is most pronounced at small fields B ≤ 80 mT.
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Clearly seen from Figure 9, that under the application of tiny magnetic field B ' 140 mT the
asymmetric part σasym(kΩ) of the differential resistance vanishes, since evidently the system transits to
the LFL state, as seen from Figure 3. In that case we expect the resistivity ρ(T) to change from ρ(T) ∝ T
to ρ(T) ∝ T2 under the application of magnetic fields inducing the LFL behavior. Simultaneously,
the residual resistivity ρ0 = ρ(T → 0) abruptly drops, as observed in measurements on the archetypical
HF metal CeCoIn5 [35,45].
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Figure 9. The asymmetric part of the differential resistance σasym(kΩ) = dV/dI(I) − dV/dI(−I)
is extracted from experimental data, obtained in measurements on graphene [18] and provided in
Figure 8.

6. Violation of T and C Symmetries in the Universe

The interconnection of physics is comprised by the complicated and fundamental relations among
its different branches, for instance between solid state physics and astrophysics. Latter relations,
being of core importance, give an example of the intimate connection between very large and very
small. As discussed in the Introduction, the demonstrated above particle-hole C symmetry violation
in solids has its large-scale counterpart in the asymmetry between matter and antimatter in the early
Universe. This is because the weak interaction cannot alter the baryon number that preserves the
stability of a proton [46]. In this case, the FCQPT concept delivers the underlying physical mechanism
for both aforementioned processes. This implies that the FC phenomenon spans from the atomic scale
to that of the Universe and hence is rather general and not seldom in the nature. Since the details
of matter-antimatter (baryon) asymmetry is discussed in details in [11,46–49], here we make some
general remarks regarding this question.

It is well-known (see, e.g., [47–49]) that the relation between particles and antiparticles in the
Universe is governed by so-called CP (or more generally CPT) symmetry, which is the result of
successive action of charge conjugation (C), transforming a particle into antiparticle (electron into hole
and vice versa in solids) and parity (P), which reverses the directions of spatial coordinates. The time
inversion symmetry, T, changes t to −t. The overall CPT symmetry thus transforms particles into
antiparticles. The common wisdom is that during and shortly after the Big Bang, the number of
particles in the Universe was approximately equal to that of antiparticles. Later on, as the temperature
falls, this equality vanished, giving rise to the current, highly asymmetric state. Please note that
in solids electrons and holes are so-called quasiparticles (roughly speaking, quantized elementary
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excitations of some ground state or vacuum); in cosmology the particles (antiparticles) correspond to
baryons (antibaryons), which are the real elementary particles, with nonzero rest mass, for instance
quarks and antiquarks [49].

The mapping of “very small” (quasiparticles in solids) onto “very large” (baryons in the Universe)
can be best understood using a spontaneous symmetry-breaking concept. Like in solids, where the
symmetries is often broken in different phase transitions (for instance in quantum phase transitions
as temperature is reduced to zero or almost zero), it is believed that the Universe, during cooling
down, went through a series of symmetry-breaking quantum phase transitions. One of them is the
above discussed FCQPT. Under the supposition that hole in a Fermi liquid is a baryon, while the
quasiparticle is an antibaryon, we can easily see the correspondence between particle-hole (in a solid)
and baryon-antibaryon (in the Universe) symmetries. As already discussed, the conductivity in
ordinary metals is a symmetric function of the bias voltage V, which is predicted by the LFL theory
and which, in turn, is a consequence of particle-hole symmetry, “built in” in Landau’s approach to
Fermi liquids. As already seen above, the latter symmetry is disrupted in solids, demonstrating NFL
properties, which is the case for HF compounds and high-Tc superconductors.

Indeed, experimental observations of low-temperature differential tunneling conductivity in
high-Tc superconductors [10] and HF metals like CeCoIn5 and YbCu5−xAlx [44] show that it is
obviously asymmetric. Under the influence of external stimuli (like T and B), the latter asymmetry
disappears. As LFL theory has many intrinsic symmetries (like particle-hole), which finally yield
the symmetric conductivity, it cannot be used to explain the asymmetry, see Section 3. In this case,
to describe the observed asymmetric conductivity theoretically, one should inevitably use the FC
approach [46]. We note that although fundamental microscopic interaction in the FC formalism
is invariant with respect to quasiparticles and holes interchange, it yields spontaneous C and
T symmetries breaking at low temperatures due to the topological reconstruction of the Fermi
surface [1,3,6–8,13,14]. This reconstruction yields the dependence of the quasiparticle spectrum
ε(p) in FC phase on different external stimuli [11,12], which, in turn, generate NFL anomalies in
observable properties of HF metals and high-Tc superconductors. Experiment shows that in the latter
strongly correlated fermion systems, ε(p) becomes strongly temperature and magnetic field dependent.
Thus, n(p, T) is no more step function, varying gradually from 1 to 0 in the low temperature limit [1,13].
As FCQPT in solids is accompanied by the so-called flat bands formation (so that a fermion, sitting
in such band, cannot propagate and hence condenses), the approach of Ref. [46] is based on this
observation, valid, for instance, in HF compounds . This quantum phase transition, in turn, breaks the
particle-hole symmetry, generating, inter alia, the observable asymmetric conductivity.

Similar argumentation can be utilized to gain insights into baryon-antibaryon asymmetry in
the Universe. Note that it fits perfectly into the existing cosmological models. It has been proposed
in Ref. [46] that the Universe was completely symmetric in its initial state. The baryon-antibaryon
asymmetry has been explained in terms of macroscopic FCQPT which looks like almost the same to
that in HF metals but in much larger scale. In the parameter space, the Universe gets to the FCQPT
point after the initial inflation during the strong (by 10 orders of magnitude) cooling. As the result
of FCQPT, the fermion condensate appeared in the Universe. Latter condensate is indeed a source of
excess of matter over the antimatter. At further cooling, the Universe acquired the NFL properties,
generated by the above fermion condensate. Our analysis shows, that latter condensate may be the
maker of C and T symmetries break, thus distorting the particle-antiparticle balance in the Universe
and the time arrow emergence. At finite temperatures baryon-antibaryon asymmetry reenters as an
inherent property of the system located in the FC state. Latter property stems from Fermi surface
deformation properties. Namely, it is due to the topological transformation of the Fermi sphere
accompanied by deviation of the distribution function n(p) from the step function at low temperatures,
as shown in Figure 1 and described in Section 3. As the temperature decreases, the system approaches
the FC state with the corresponding flat band which increases the CT asymmetry violation [12,46].
The details rely upon the specific form of interparticle interaction. This mapping of the quasiparticles
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in solids to the baryons gives some hint on the origin of symmetries in the Universe as salient features
of condensed matter can readily be verified experimentally as well as computed numerically and
sometimes analytically.

Another interesting result, coming as a bonus of our Universe-non-Fermi Liquid analogy, is the
high entropy of the Universe related to the term S0, see Equations (11) and (13). Latter correspondence
micro (condensed matter) and macro (cosmology) physics should be further studied. This is because
while in condensed matter, almost every property is accessible experimentally, in cosmology we cannot
judge about its underlying physics directly. Rather, indirect methods should be used in this case.
One of such indirect methods is correspondence between stellar objects and their condensed matter
counterparts. As properties of the ground state (corresponding to a vacuum in the Universe that can
be represented by both the dark energy and the dark matter) in solids are well understood both from
ab initio calculations and experiment, the above correspondence allows us to shed light on those in
cosmology and particle physics like the existence of the time arrow, the large entropy and the absence
of the antimatter in the Universe.

7. Conclusions

Fundamental symmetries is a powerful method to gain information about physical system
spanning from atoms in solids to the galaxies and their clusters in the Universe. Knowledge of
such symmetries and conditions for their violation permit us to gain a general knowledge about
physical systems without solving any equations, which are often very complicated. Quite frequently,
the microscopic approach to condensed matter (e.g., computer simulations) gives only particular
information about specific solids (or class of solids with identical symmetries of their crystal lattice,
but still with different microscopic interatomic interactions) but not about universal features, inherent
in wider class of physical systems.

Here we discuss two phenomena which are seemingly very far from each other: the asymmetric
conductivity in solids with strongly correlated fermions and baryon asymmetry in the Universe.
We have already shown that the asymmetric part σasym of the tunneling conductivity/resistivity in
solids arises due to the fermion condensation phenomenon in the corresponding substance. This shows
that the low-temperature properties of strongly correlated fermion systems are universal, and this
universality allows us to consider these strongly correlated systems, or HF compounds, as representing
the new state of matter in the sense that this state do not depend on either atomic properties of
HF compounds or on microscopic details of baryons in the Universe [12]. This is one of the major
messages of the present short review. In addition, the universality, in turn, is due to the fact, that the
considered fermion condensation phenomenon occurs due to the change of the topological class
of the corresponding Fermi surface. This immediately implies the universality of both the above
asymmetries as topology is one more milestone of contemporary physics—the topological class of
an object can reveal a lot about its physical properties [1,11–14,19,50]. We argue here, that existing
microscopic approaches,-based either on model calculations within Hubbard and Kondo models
or simulations (constructed actually from more sophisticated versions of the latter models) cannot
describe adequately the appearance and destruction of asymmetric conductivity in solids. We speculate
that the presented FC theory, which is based on general topological and symmetry arguments, can be
well considered to be a candidate to explain not only the above discussed but many other properties
of seemingly different physical objects from a uniform point of view [1,11–14,19,50–52]. To the best
of our knowledge, the effective theories of gravity, even their quantum versions, cannot explain the
baryon asymmetry, the existence of time arrow, the large entropy and other yet unexplained problems
of contemporary cosmology and large-scale astronomy.
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