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Abstract: The explanation of behaviors concerning telemedicine acceptance is an evolving area of
study. This topic is currently more critical than ever, given that the COVID-19 pandemic is making
resources scarcer within the health industry. The objective of this study is to determine which model,
the Theory of Planned Behavior or the Technology Acceptance Model, provides greater explanatory
power for the adoption of telemedicine addressing outlier-associated bias. We carried out an online
survey of patients. The data obtained through the survey were analyzed using both consistent partial
least squares path modeling (PLSc) and robust PLSc. The latter used a robust estimator designed
for elliptically symmetric unimodal distribution. Both estimation techniques led to similar results,
without inconsistencies in interpretation. In short, the results indicate that the Theory of Planned
Behavior Model provides a significant explanatory power. Furthermore, the findings show that
attitude has the most substantial direct effect on behavioral intention to use telemedicine systems.

Keywords: telemedicine; technology acceptance; robust partial least squares path modeling

1. Introduction

Partial least squares path modeling (PLS) has been widely used to analyze data associated with
complex phenomena [1]. The characteristics of PLS have managed to be seen by some social sciences
researchers as a fundamental tool to try to explain causal relationships among concepts of the real
world [2]. Many enhancements have been incorporated into PLS throughout the years. Among them,
it is worth mentioning the following, multigroup analysis [3], identifying and treating unobserved
heterogeneity [4], measures of model fit [5], predictive power assessment [6], and consistent PLS
(PLSc) [7]. Despite the several enrichments of PLS [8], handling outliers in the context of PLS has been
broadly ignored [9]. Johnson and Wichern [10] referred to an outlier as an observation in a dataset that
appeared to be inconsistent with the rest of that dataset.

Commonly, two types of outliers are observed. Some outliers arise following no pattern, i.e.,
unsystematic outliers. Other outliers arise systematically, being part of a population different from
the rest of the observations [11]. Considering that outliers are often found in empirical social
sciences research, ignoring outliers is extraordinarily likely to lead to inaccurate results and debatable
conclusions. Considering the above, robust PLS has recently been proposed to address this problem [9].
A highly robust estimator designed for elliptically symmetric unimodal distributions is central to this
proposal. This option is considered to be a better approach for only identifying and manually removing
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outliers, which has two drawbacks. First, outliers may not be easily identified by visualization or
statistical methods. Second, even if this is possible, removing outliers would imply information lost
and the sample size decreasing [9]. On the basis of the robust PLS proposal, this study is aimed at
evaluating a social phenomenon where the analysis should be as free as possible from outlier-related
bias. This research addresses a current social phenomenon, telemedicine acceptance during the
COVID-19 pandemic, comparing the two known models, the Theory of Planned Behavior (TPB) and
the Technology Acceptance Model (TAM). Therefore, in the following paragraphs, we develop both
the telemedicine and technology acceptance concepts.

First, telemedicine refers to healthcare services provided by healthcare providers in a
patient-centered manner, from a geographical distance, and using digital technologies [12]. Over
the last decade, a technology shift has created a rise in the accessibility to technology and mobile
services, including mobile health services [13]. However, although telemedicine technology has been
in use for over five decades, it has still not moved past a pilot stage, with traditional in-person service
preferred [14]. Global statistics back up this claim, as only ten percent of people have ever used
telemedicine. Within this group of people, their approval level is positive, with two out of three
individuals stating they would use the service again [15]. The usage of telemedicine is not the same
across the globe. There is higher usage in developing countries within Asia and the Middle East (31%
in Saudi Arabia, 27% in India, 24% in China, and 15% in Malaysia). However, in Europe, telemedicine
is less common (2–4% in Belgium, Serbia, Russia, France, Spain, and Hungary) [15]. The current
global COVID-19 crisis adds a new layer to the literature surrounding telemedicine and its usage.
The onset of the virus has highlighted the ability of health providers to manage patient visits triaged to
telemedicine services. It has also shown the importance of connectivity and how quickly the logistics
behind these services could be put into place [16]. Telemedicine allows patients with mild conditions to
obtain the attention that they need while minimizing their exposure to other patients with more severe
conditions [17]. The ability to support healthcare workers during this time is a significant focus, as
they are battling with pressure from the virus, which not only presents itself as a high rate of occupied
resources but also a high rate of resources being removed due to exposure [18]. Concern regarding this
quick spread of telemedicine is related to how long the measures in place will last past the pandemic.
While the pre-pandemic adoption was not high, the telemedicine model greatly benefits both the
patient and the provider from a business standpoint (e.g., [19]). Providers with better telemedicine
services aim to gain a better competitive advantage, from which patients can significantly benefit [20].
This competitive advantage is more critical than ever at a time when governments are struggling to
minimize both the death toll and the virus’ economic impact [21].

Second, multiple authors have explored telemedicine acceptance using models rooted in
technology acceptance theories or behavioral theories [14]. In general, these studies indicate that
technology acceptance models perform better than behavioral models when it comes to telemedicine
acceptance [14,22,23]. The TPB and the TAM are the two most popular models to explain the use of
systems [24–26] and, in particular, within the adoption of telemedicine systems, their utilization has
been highlighted separately [27–31] or in a complementary way [32]. Previous ideas led us to choose
TPB and TAM in the present study as a research framework. The TPB originated from the Theory of
Reasoned Action (TRA) [33]. The TRA proposed that attitude toward behavior and subjective norms
surrounding that behavior directly affects the individual’s behavioral intention. Attitude relates to
how individuals perceive behavior. If the behavior is perceived as beneficial to themselves, they are
more likely to partake in the behavior. Social norms are the way that individuals perceive others’
beliefs regarding their behavior. If individuals see the behavior as viewed to be beneficial by those
around them, then, they are more likely to partake in the behavior. Lastly, behavioral intention is how
likely they are to participate in the observed behavior. The TPB adds a new concept to the TRA, i.e.,
perceived behavioral control [25]. Perceived behavioral control is the individual’s perceived ability to
perform the observed behavior. It considers if the individual believes that participating in this behavior
is within their capabilities. If they believe that the behavior is within their reach, then they are likely to
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have a higher intention to take part in the behavior. Similar to the TPB, the TAM proposed by Fred
Davis [25] also had its roots in the TRA. The TAM looks at how users accept a technology through
the same measure as the TRA and the TPB, i.e., behavioral intention. However, the TAM proposes
different variables in order to predict behavioral intention. In the TAM, attitude, perceived use, and
perceived ease-of-use are used to measure the individual’s behavioral intention to use technology.
Perceived use relates to how individuals perceive that the technology will be useful to them; perceived
ease-of-use is how much effort the individual perceives that the technology requires to use it [25].
The TPB and the TAM both assume that once an individual develops an intention to partake in a
behavior or use technology, they can carry out this behavior. This intention is the most significant
predictor of this occurrence [25]. Since models are abstractions of a phenomenon within a context, their
explanatory capabilities must be systematically tested to determine their usefulness in new settings.
Therefore, comparing which model best explains telemedicine adoption in the current context emerges
as a necessary action.

In this context, the objective of this study is to determine which model, TPB or TAM, provides
greater explanatory power for the adoption of telemedicine addressing outlier-associated bias.

The main contributions of this study are three-fold. First, from a practical viewpoint, this research
provides empirical evidence of the application of the robust PLS proposal to test the outlier bias effects
in a PLS model based on primary data. Second, from an academic viewpoint, this study contributes
by testing the technology acceptance theories’ applicability in a new social context, validating the
circumstances where these theories can be supported. Third, from a social perspective, this study
gives an exploratory baseline to define public policies that support telemedicine implementation in a
pandemic context.

The organization of this paper is as follows: In Section 2, we explain the data collection process and
methods used to analyze the data; in Section 3, We present the results of this data analysis; in Section 4,
we offer a discussion of these results; and finally, in the last section, we provide a summary of the
outcome of this study.

2. Methods

2.1. Data

A cross-sectional study was carried out between January and June 2020. A convenience sampling
technique was used to collect data from Brazilian adults. The anonymity of the respondents was
guaranteed in the data collection process. According to standard socioeconomic studies, no ethical
concerns were involved other than preserving the participants’ anonymity.

Specifically, the data was obtained through an online questionnaire for current and future adult
telemedicine users in Brasilia. The scales were adapted from Jen and Hung [32]. A 7-point Likert scale
was used with answers ranging from 1 (strongly disagree) to 7 (strongly agree). Table 1 shows the
questions that were included in the online questionnaire. Figure 1A,B represents the variables and
relationships associated with the models under study.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 15 

 

Table 1. Questions included in the study questionnaire. 

Latent Variable Item Description 

Subjective norms 

SN1 
The experts who influence my behavior would think that I 
should use telemedicine services. 

SN2 My family would think that I should order the 
telemedicine service. 

SN3 My friends would think that I should order the 
telemedicine service. 

Perceived behavioral control 

PBC1 I have the knowledge and ability to operate the 
telemedicine service. 

PBC2 I think I can handle the telemedicine service. 

PBC3 
Using the telemedicine service is entirely within my 
control. 

Attitude 

ATT1 Using the telemedicine service is a good idea. 

ATT2 
The telemedicine service increases the healthcare service 
quality. 

ATT3 The adoption of telemedicine reduces the risks associated 
with health 

ATT4 The telemedicine service is valuable. 

Perceived usefulness 

PU1 The telemedicine service will be beneficial to the care of 
people. 

PU4 
Using the telemedicine service will reduce the 
psychological burden of people. 

PU3 
The advantages of the telemedicine service will outweigh 
the disadvantages. 

Perceived ease of use 

PEOU1 
Instructions for using equipment in the telemedicine 
service will be easy to follow. 

PEOU2 It will be easy to learn how to use the telemedicine service. 

PEOU3 It will be easy for people to operate the equipment in the 
telemedicine service. 

Behavioral intention 

BI1 I am glad to present the telemedicine service to my close 
ones. 

BI2 I will adopt the telemedicine service. 

BI3 
I will adopt the telemedicine service based on my close 
ones’ necessities. 

 

  

(A) TPB Model (B) TAM Model 

Figure 1. (A) Theory of Planned Behavior (TPB) model; (B) Technology Acceptance Model (TAM) model. 
  

Figure 1. (A) Theory of Planned Behavior (TPB) model; (B) Technology Acceptance Model (TAM) model.



Symmetry 2020, 12, 1593 4 of 14

Table 1. Questions included in the study questionnaire.

Latent Variable Item Description

Subjective norms

SN1 The experts who influence my behavior would think
that I should use telemedicine services.

SN2 My family would think that I should order the
telemedicine service.

SN3 My friends would think that I should order the
telemedicine service.

Perceived behavioral
control

PBC1 I have the knowledge and ability to operate the
telemedicine service.

PBC2 I think I can handle the telemedicine service.

PBC3 Using the telemedicine service is entirely within my
control.

Attitude

ATT1 Using the telemedicine service is a good idea.

ATT2 The telemedicine service increases the healthcare
service quality.

ATT3 The adoption of telemedicine reduces the risks
associated with health

ATT4 The telemedicine service is valuable.

Perceived usefulness

PU1 The telemedicine service will be beneficial to the care
of people.

PU4 Using the telemedicine service will reduce the
psychological burden of people.

PU3 The advantages of the telemedicine service will
outweigh the disadvantages.

Perceived ease of use

PEOU1 Instructions for using equipment in the telemedicine
service will be easy to follow.

PEOU2 It will be easy to learn how to use the telemedicine
service.

PEOU3 It will be easy for people to operate the equipment in
the telemedicine service.

Behavioral intention

BI1 I am glad to present the telemedicine service to my
close ones.

BI2 I will adopt the telemedicine service.

BI3 I will adopt the telemedicine service based on my
close ones’ necessities.

2.2. Partial Least Squares Path Modeling and Robust Partial Least Squares Path Modeling

Traditional and robust PLS were utilized to test the proposed research models. Two models
define PLS, i.e., the measurement model and the structural model [34]. The first model examines the
instrument’s reliability and validity, and the second model evaluates the relationships among the latent
variables. Figure 2 shows the PLS algorithm; a detailed description of the algorithm can be found
in [35].

In the PLS procedure, a Pearson correlation matrix is a relevant input, even though Pearson
estimates are highly sensitive to unsystematic outliers, which can finally conclude in distorted PLS
results. To cope with this shortcoming, Schamberger et al. proposed using a robust correlation
coefficient to define a robust PLS [9]. The minimum covariance determinant (MCD) was central to
their approach [36]. The MCD estimator is a highly robust estimator of multivariate location and
scatter, being the one with the highest asymptotic breakdown point (BP), see Figure 3. The MCD
is designed for elliptically symmetric unimodal distributions. The MCD has been used to develop
robust multivariate techniques, such as principal component analysis, factor analysis, and multiple
regression [37]. In summary, the MCD coefficient estimates the variance-covariance matrix of a sample
set based on a subsample of the total observations with the smallest positive determinant. The robust
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PLS algorithm uses the MCD correlation as an input, maintaining unaltered the subsequent PLS steps,
and therefore confronts the outlier issues without removing them from the sample set [9].
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Figure 3. Compare classical and minimum covariance determinant (MCD) covariances.

All calculations were performed using the statistical programming environment R [38]. In particular,
an ad hoc script was built based on the simplePLS function from the SEMinR package [39] to integrate
the MCD correlation. MCD estimates were determined by the cov.rob function from the MASS
package [40]; Figure 4 shows the MCD algorithm. These modifications affect Steps 2 and 4 of the PLS
algorithm. Since the models contained common factors and followed the literature [41], the consistent
PLS (PLSc) method was applied. The PLSc method applies a correction for attenuation to consistently
estimate factor loadings and path coefficients among common factors [7,42]. The following section
shows the results associated with these analyses for the empirical study.
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2.3. Statistical Analysis Plan

First, a primary analysis was carried out. This analysis consisted of the description of the
characteristics of participants in the study and the preliminary evaluation of data using descriptive
statistics. Next, a PLS analysis was carried out [34] which consisted of two broad phases. These
phases applied to both the traditional [7] and the robust PLSc method [9]. The first phase was
the measurement model analysis of TPB and TAM. Two analyses were carried out in this phase.
First, the reliability analysis of the indicators and constructs associated with the models; second,
we analyzed the convergent and discriminant validity of these same constructs. The second phase
was the structural model analysis of TBP and TAM. This phase evaluated the relationships among
the variables, considering the determination coefficients and the strength of the relationships. Finally,
a resampling procedure evaluated the statistical significance of the estimates associated with the
strength of the relationships.

3. Results

3.1. Primary Analysis

A total of 200 surveys were completed for the study. The majority of the completed surveys
were from males (56%), and the average age was 39.9 years old. See Table 2 for more details of the
distribution of the variables of interest.

Table 2. Distribution of the variables of interest.

Variable N %

Gender
Male 111 56

Female 89 44
Total 200 100

Age Mean 39.9 ± 16.65
Range 18–85 years
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Table 3 shows the descriptive statistics of the items that integrate the measurement models for
TPB and TAM.

Table 3. Descriptive statistics.

Item Average SD Asymmetry Kurtosis

SN1 3.68 1.403 −0.055 0.020
SN2 3.52 1.378 −0.462 −0.590
SN3 3.61 1.421 −0.326 −0.526

PBC1 4.24 1.184 −0.174 −0.090
PBC2 4.46 1.267 −0.231 −0.064
PBC3 4.33 1.216 −0.148 −0.149
ATT1 5.00 1.315 −0.724 0.836
ATT2 4.66 1.358 −0.555 0.246
ATT3 4.21 1.286 −0.456 0.140
ATT4 4.98 1.260 −0.632 1.260
PU1 4.97 1.361 −0.618 0.591
PU4 3.96 1.256 −0.093 0.367
PU3 4.46 1.424 −0.314 −0.266

PEOU1 4.52 1.613 −0.530 −0.244
PEOU2 4.98 1.428 −0.675 0.347
PEOU3 4.64 1.698 −0.606 −0.211

BI1 4.23 1.448 −0.398 0.088
BI2 4.60 1.315 −0.356 0.241
BI3 3.99 1.470 −0.280 −0.141

3.2. Partial Least Squares Path Modeling (PLS) Analysis

3.2.1. Measurement Models Analysis

Table 4 indicates the assessment of the measurement models. The table shows the following two
indicators: (1) Composite reliability which is a measure of internal consistency reliability that does not
assume equal indicator loadings, in their place, it considers indicator loadings in its calculation and
values greater than 0.7 are adequate [34] and (2) Average variance extracted (AVE) which is a measure
of convergent validity, defined as the degree to which a construct explains the variance of its indicators,
values exceeding 0.5 are acceptable [34]. In addition, the discriminant validity assessment using the
Fornell–Larcker criterion indicates acceptable values [34].

Table 4. Assessment of the measurement models.

Model/Latent Variable
Traditional PLSc Robust PLSc

Composite Reliability AVE Composite Reliability AVE

TPB
Behavioral intention 0.822 0.588 0.834 0.594

Attitude 0.908 0.693 0.910 0.694
Subjective norms 0.901 0.744 0.897 0.743

Perceived behavioral control 0.906 0.747 0.912 0.751

TAM
Behavioral intention 0.824 0.589 0.834 0.594

Attitude 0.905 0.692 0.906 0.692
Perceived usefulness 0.869 0.646 0.914 0.652
Perceived ease of use 0.905 0.740 0.896 0.739

3.2.2. Structural Models Analysis

To indicate an intermediate result of the structural analysis, Figure 5 shows the plot of the score
values for the two models, at the top with traditional PLSc and the bottom with robust PLSc.
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perceived usefulness.

The results concerning the analysis of the two research models are indicated in Table 5a,b.
The coefficient of determination (R2) indicates the amount of the variance of the dependent variables
that is explained by the variables that predict it. The path coefficients (β) express the extent to which the
independent variables contribute to the explained variance of the dependent variables. The significance
of the β coefficients was calculated using bootstrapping. Bootstrapping is a resampling technique
used to determine standard errors of coefficient estimates to evaluate the coefficient’s statistical
significance without relying on distributional assumptions. We used 999 bootstrap samples. Both
estimation techniques lead to similar results without inconsistencies in interpretation. The analysis
using traditional PLSc indicates that the TPB explains 85.8% of the intention to use telemedicine,
whereas the TAM explains 81.5%. The analysis using robust PLSc indicates very similar results (84.5%
versus 80.8% with TAM). In both methods, the TAM analysis indicates that none of the variables in
that model which explain behavioral intention is statistically significant.
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Table 5. (a) Structural results (coefficient of determination). (b) Structural results (path coefficients).

(a)

Model/Independent Variable Traditional PLSc Robust PLSc

R2 R2

TPB
Behavioral intention 0.858 0.845

TAM
Perceived usefulness 0.336 0.310
Attitude 0.932 0.840
Behavioral intention 0.815 0.808

(b)

Model/Relationship
Traditional PLSc Robust PLSc

Original Boot
Mean Boot SD Perc 0.025 Perc 0.975 Original Boot

Mean Boot SD Perc 0.025 Perc 0.975

TPB
Attitude -> behavioral intention 0.713 0.707 0.075 0.546 0.838 0.712 0.709 0.079 0.534 0.851
Subjective norms -> behavioral intention 0.243 0.248 0.075 0.107 0.395 0.240 0.249 0.076 0.110 0.389
Perceived behavioral control -> behavioral intention 0.084 0.087 0.061 −0.034 0.206 0.080 0.084 0.064 −0.034 0.216

TAM
Perceived ease of use -> perceived usefulness 0.579 0.576 0.084 0.403 0.732 0.557 0.580 0.084 0.397 0.729
Perceived ease of use -> attitude 0.031 0.025 0.075 −0.136 0.168 0.103 0.020 0.077 −0.134 0.169
Perceived usefulness -> attitude 0.947 0.953 0.055 0.843 1.063 0.855 0.956 0.058 0.844 1.071
Perceived usefulness -> behavioral intention 0.044 0.214 6.813 −2.819 2.563 0.121 −0.140 10.396 −2.215 2.743
Attitude -> behavioral intention 0.860 0.689 6.814 −1.634 3.691 0.787 1.043 10.395 −1.850 3.092
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4. Discussion

This study was presented as the proper context to justify the use of robust PLSc. In this sense,
we must highlight two elements. First, the differences between the results of both techniques are
minimal, which rules out bias due to outliers in the models’ estimations. Although all the estimates
decrease when robust PLSc is applied instead of traditional PLSc, the variations are minimal. On the
one hand, for the TPB model, the determination coefficient of the behavioral intention varies by 1.5%,
and the maximum variation in the path coefficient is 1.2%. On the other hand, for the TAM model,
the maximum variation in the path coefficients is 9.7%. Moreover, while this makes the following
paragraphs of this discussion possible, we believe that this result is partly due to the TPB model’s
parsimony and broad application. Second, the robust PLSc approach has a significant challenge
related to the extended computation time of the estimates, especially in the bootstrapping process.
This problem calls into question the use of this technique beyond exploratory purposes if the sample
size is large.

Our results show that the TPB model has significant explanatory power, while the TAM model
does not. This outcome indicates that in the sample context, the TPB model is more parsimonious than
the TAM model, meaning that we can have significant results with fewer measures. The TAM model
does not explain the behavioral intention of using telemedicine. One possible explication is related to
the fact that the current study is based on a concept to use technology rather than a demonstration of
the technology itself. Since the TAM variables rely on the perceived usefulness and ease of use, the lack
of specifications with respect to what the technology will look like could affect these results. Another
possible explanation is related to telemedicine being a broader field than just the technology. There are
more external variables that affect the behavioral intention to participate in telemedicine. Last but not
least, the application of non-consistent PLS methods could be the cause of explanatory power lacking;
the literature provides examples of the application of these methods [43,44].

The TPB-based results highlight four points. First, the determination coefficient of the behavioral
intention variable (R2 = 0.84), which results from applying robust PLSc, can be described as
substantial [2]. This result implies that its predictor variables determine a high variability of the
behavioral intention construct. This result must be supported by recent studies about the adoption
of telemedicine in emerging countries, however, in general, the explanatory power of these studies
has been moderate. This characteristic is evidenced in the following examples. On the basis of a
sample of physicians and nurses in public hospitals in Malaysia, a TAM-based model explained 41.5%
of the acceptance of telemedicine [45]. In Nigeria, using the data of physicians and nurses, a model
based on the unified theory of acceptance and use of technology explained 49.7% of the variation
in intention to use telemedicine [46]. On the basis of a sample of Pakistani patients, a TAM model
explained a total of 62% of the variance of the intention to use telemedicine [43]. Second, the attitude
variable was the most significant predictor of behavioral intention (β = 0.71, robust PLSc). This result
is concordant with previous patient-based research [47]. Third, the subjective norms variable was
a significative predictor of behavioral intention (β = 0.24, robust PLSc). In previous patient-based
studies, the subjective norms factor had a significant effect on the intention to use [43,47], which
contrasted with its effect on physician-based studies [48]. Fourth, the perceived behavioral control
factor does not affect behavioral intention. This last result is in line with both previous patient-based
and physician-based studies [48,49].

Telemedicine has been useful in crisis outbreaks in the past [50]. Today, telemedicine is
displaying its potential in the COVID-19 pandemic, for example, e-triage, e-consultations, remote
monitoring of the intensive care unit, and patients being attended to remotely by health personnel,
including those currently in quarantine [51]. Unfortunately, telemedicine has not been promoted and
scaled-up homogeneously in all countries [52]. For example, Italy did not include telemedicine at a
fundamental level when the pandemic started. In comparison, France actively fostered the use of
telemedicine [50]. COVID-19 is creating a great deal of learning about telemedicine’s effectiveness
in times of crisis. However, nation-wide telemedicine programs, especially in developing countries,
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cannot be designed and implemented overnight [16,17]. According to this research’s results, the attitude
toward telemedicine is the most relevant variable to explain the intention of using these services
by patients. A practical implication of this study is that communication strategies should focus on
showing the benefits of these technologies, initially with vicarious experiences, and then stimulating
engagement with these services. This promotion of engagement is associated with patients and also
with family members or caregivers, as well as health service providers.

The outcomes of this study can serve as a good starting point for future research about telemedicine
usage intention in developing countries. Future research could include larger sample sizes and different
population samples. It would be noteworthy to see the difference between a population sample from a
country that has many COVID-19 cases and a sample of a country with a low number of cases.

Some limitations must be considered in the present study. First, telemedicine adoption in
developing countries, particularly at the COVID-19 pandemic, is an unexplored research area. Thus,
the results of this investigation should not be lightly generalized to other settings. Second, this study
used a convenience sampling technique appropriate for an initial exploratory research such as this one,
but which limits the generalization of the findings. Third, this study used the more traditional versions
of the TAM and the TPB. Although only the TPB model provides good explanatory power, these results
indicate the necessity of considering other antecedent variables concerning developing countries, such
as cultural values, hedonic motivation, self-efficacy, and habit. In this vein, future studies could make
comparisons with extended models explicitly developed for telemedicine adoption.

5. Conclusions

This study was aimed at determining which model, TPB or TAM, provided greater explanatory
power for the adoption of telemedicine addressing the outlier-associated bias. We carried out an
empirical study on a sample of Brazilian adults. From the responses, we tested both the TPB and the
TAM models to explain the behavioral intention to use telemedicine.

According to the results of both PLSc and robust PLSc analysis, the TPB provides significant
explanatory power. Both estimation techniques lead to equivalent results without inconsistencies in
interpretation. Additionally, the TPB structural results show that attitude has the strongest effect on
behavioral intention to use telemedicine systems.

Our global findings suggest that statistical notions and methods associated with robustness can
be effortlessly implemented in standard techniques used by social scientists. However, the community
has not been readily receptive to these improvements. We hope that this study will be useful to advance
in that sense.
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