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Abstract: In this paper, we propose a method to efficiently control the path of non-playable characters
(NPC) in an interactive virtual environment such as a game or virtual reality (VR) by calculating a
weight map and path similarity based on the user’s path. Our method automatically constructs a
navigation mesh that provides a new route to the NPC by referring to the user’s trajectory. Our method
finds more paths that users usually go through as time passes, and the number of users increases.
Accordingly, the paths that NPCs can traverse automatically are updated adaptively to the virtual
environment. In addition, NPC agents can move smartly by assigning high weights to the user’s
preferred paths. We tested the usefulness of the proposed method through several example scenarios
in an interactive environment such as a video game or VR, and this method can be easily applied to
various types of navigation based on the interactive environment.

Keywords: computer graphics; character movement; character animation; path finding; user’s trajectory

1. Introduction

In the real world, there are no roads in areas where people do not often go. As time goes by,
people explore and mark these areas with routes, creating roads where people can travel. Others follow
the path created by those who have been there earlier, and as a result, the path gradually expands
and becomes clear. Inspired by this natural path-creation process, this paper introduces a new way
to explore non-playable character (NPC) paths in an interactive virtual environment. Using existing
static navigation mesh-based methods, when NPCs reach a dead end, that is, without a navigation
mesh, even if the destination is nearby, it may fall into unexpected situations such as NPCs returning
or being caught between obstacles (see Figure 1). This situation occurs because the NPC’s movement
depends only on the static navigation mesh, which in turn leads to another problem in which the
NPC behaves differently from the developer’s intention. This problem is important because it reduces
immersion in the game and eventually leads to a decrease in profits from the game. The proposed
system samples the user’s movement in an interactive environment and then generates a new path
that was not available before. By using the newly generated paths, the existing static navigation mesh
can be expanded and the inefficient route of NPCs can be improved.

Recent developments in graphic hardware have led to the development of interactive applications
related to a number of NPCs. As a result, users experience many interactions with NPCs in virtual
environments such as MMORPG (Massively Multiplayer Online Role-Playing Games) or virtual reality
(VR) contents. The method of finding a path in a virtual environment in real time has been studied in the
field of computer graphics and robotics because it can adaptively and dynamically find the optimal path
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to move the NPC. Most real-time path-finding approaches have focused on how to globally optimize
paths based on roadmaps or graphs to reduce space complexity. Kavraki et al. presented a graph-based
path-finding technique using a stochastic roadmap in a static world [1]. They pre-embedded the
roadmap for the robot’s movement through the given environment in the preprocessing stage and
searched for the path in the roadmap using fast graph search when a specific path needed to be queried.
This approach has been successfully applied to solve various issues related to computer animation [2,3].
This stochastic roadmap approach works well in high-dimensional static environments, but in real-time
processes, low-quality paths are often created. The two-level path-planning method was proposed to
satisfy both the performance and quality of path generation [4,5]. This method calculates the global
path to the destination at the first level and the local collision avoidance path at the second level.
The global path calculates a roadmap graph representing static objects and then calculates the distance
from the destination to the graph nodes using a search algorithm.

(a) The Elder Scrolls V: Skyrim (b) The Witcher 3: Wild Hunt (c) F.E.A.R. 3

Figure 1. Inappropriate behavior of non-playable characters (NPCs) in various games.

As the size and complexity of the virtual environment increases due to the development of
processors and memory, a solution to search a path in a large-scale virtual environment in real-time
is required in many fields. Pettr et al. dealt with the path-finding problem in crowd simulation [6].
They used spatial structuring techniques to generate navigation graphs in crowd simulations to create
complex paths in real-time. They extended this technique to a predictive approach and proposed an
autonomous navigation method considering interactions between pedestrians [7]. Since this method
supports scalable simulation loops, it is possible to update crowd situations while distributing
computational resources over space and time, resulting in efficient path-finding in large virtual
worlds. Recently, virtual worlds are changing into dynamic environments, and Sud et al. introduced
a new approach to explore the paths of many NPCs in this dynamic environment [8]. They used
MaNG (Multi-agent Navigation Graph) based on a Voronoi diagram. In addition, they proposed
AERO (Adaptive Elastic ROadmaps), a responsive roadmap graph using particle-based simulation [9].
Traditional path exploration techniques based on roadmaps or navigation graphs focused on using the
data of the environment itself. Studies trying to control the movement of NPCs in a virtual environment
have grown exponentially in recent years as more and more users want natural interactions with
NPCs. In the virtual world, users can control and interact with specific NPCs to a certain level.
However, due to the irregularity and complexity of the interactive environment, there is a limit to
processing with the existing path search method alone. To solve the path-finding problem in this
environment, this paper proposes a new adaptive navigation method based on user interaction data.

Techniques for modeling the independent movement of individual agents as well as generating
crowd movement have been proposed [10–12]: this includes agent-based methods, methods using
cellular automata, and methods using continuous flow.

Agent-based methods generally determine the direction and behavior rules based on local
information of individual agents. Reynolds used simple local rules to group them effectively [13].
The model has been extended to fields such as analyzing movements according to psychological or
sociological preferences [14,15]. In addition, Berg et al. proposed a method to improve collision
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avoidance by including the velocity of obstacles in the motion rules [5]. The cellular automata
approach proposed an evolutionary model for agent location by solving cellular automata. This has
been extended to a variety of approaches, including techniques using static and dynamic fields [16],
grid-based behavioral rules [17], and rules based on behavioral models [18]. Since these approaches
are not physical based, they are only used in certain fields under specified conditions. The flow-based
approach calculates the movements of various agents in a similar way to the physical-based flow.
In the process of discretizing a 2D simulation space, the agent is treated like particles covered by SPH
(Smoothed Particle Hydrodynamics) [19,20]. These particles are usually advected according to the
potential field to create the motion of the agent. In addition, studies have been proposed to control
motion based on continuous granular flow [21] and continuum mechanics [22]. Most of these methods
considered the local movement of the target, and some approaches even modelled the group of agents
in consideration of global movement [8,9].

A∗ search algorithm is widely used for real-time path finding in an interactive environment [23].
D∗(Dynamic A∗ algorithm) is a highly accurate method in a partially known or constantly changing
environment [24]. A∗-based algorithms require a static quantized research space depending on
the nature of the environment. Stout et al. proposed a method to quantize the environment using
rectangular grids, quad trees, convex polygons, and navigation meshes [25]. Navigation mesh is a
data structure used by agents to find paths in a large virtual space. This is generally implemented
as a graph structure, and this structure has been modified and improved by numerous algorithms.
Recently, it is widely used in games [26,27] and commercial path-finding software [28,29].

Methods based on navigation mesh typically include preprocessing and runtime steps. During the
preprocessing step, (1) loading terrain data and (2) generation of navigation mesh are performed.
Using the loaded terrain data, the area in which the agent is allowed to move is made into a navigation
mesh. When finding such a movable area, it is identified by using the slope information of the terrain
or manually by the developer. In the runtime step, (1) destination setting, (2) shortest path search,
and (3) agent movement are performed. Movement of the agent is specified according to the event
trigger or user interaction. In the shortest path search step, the A∗ algorithm is applied to calculate
the shortest path to the destination included in the navigation mesh. In the movement step, the NPC
moves along the calculated shortest path, avoiding collision with other agents due to local deviations
inside the navigation mesh.

In an interactive virtual environment, the agent is classified as playable characters (PCs) and
non-playable characters (NPCs). The movement of NPCs is simpler than that of the PC and moves
along the shortest path mentioned above. However, due to the nature of the navigation mesh, the area
not covered by the navigation mesh becomes an area where the NPC cannot move. The process of
moving a PC in an interactive environment is slightly different from that of an NPC. A PC is usually
moved by point designation or direction change determined by the user. Point designation means that
the user directly designates the destination of the PC and is generally done through a mouse click.
The directional change is determined by user input on the direction to be moved from the current
position of the PC and is generally done through the direction key. A PC with a destination designated
as a point uses the navigation mesh to find a path in the same way as an NPC, and when a direction
key is used, the PC moves at a predetermined speed in a predetermined direction without referring to
the navigation mesh.

The structure of this paper is as follows: Section 1.1 explains the research on planning NPC
behavior in games and virtual environments, and Section 1.2 explains the limitations of previous
research and the necessity of the proposed method. Section 2.1 explains how to create an accumulation
map from user’s path data, and Section 2.2 explains how to obtain the path data necessary to verify
the proposed method. Finally, the experimental results are explained in Section 3. In particular,
Section 3.1 explains the difference between the proposed method and the grid-based approach and the
improvement in our study, and Section 3.2 explains the scalability of the proposed method.
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1.1. Specific Technical Survey: NPC Behavior Planning in Games and Virtual Environments

Since the proposed technique is used to control NPC behavior not only in game but also in virtual
environments, we review the latest methods related to this.

NPC behavior planning generally follows a hard-coded method or works to minimize a given
objective function: hard-coded methods include rule-based systems, finite state machines [30],
or behavior trees [31], and objective functions include the POPCoP [32] and Goal-oriented action
planning (GOAP) [33] techniques. Rule-based systems (RBS) are used to manage AI behavior according
to a set of rules. These are the basic forms of artificial intelligence systems [34] and are one of the
most frequently used methods in games [35]. Finite state machines (FSMs) [36] provided a more
sophisticated method to control NPCs in video games. Agents of the FSM model go through a set of
distinct states during game play. For example, the guard NPC is usually in the post state, but when a
sound is heard nearby, it switches to the searching state and moves. As such, FSMs are widely used in
game development because they are easy to understand and run efficiently. However, it is cumbersome
to create detailed FSMs for various NPCs, so a method of automatically generating them was also
proposed [30].

Behavior tree is also a method used to control NPC behavior [31]. Each node allows NPCs to
perform specific tasks or visits other nodes to control various actions. In this method, the behavior of an
NPC for each node is activated while searching the behavior tree from the root node to the child node.
For example, (1) the character moves to the door, (2) checks whether the door is locked, (3) unlocks
the door if it is locked, and (4) decides the action to take after opening the door. This method has a
problem that the behavior tree becomes too large when there are too many actions to be considered.
To solve this problem, Shoulson et al. introduced a method of parameterizing the behavior tree by
encapsulating a subtree [37].

The search-based planning technique is also used to generate NPC behavior in games, and in
most games, it is used to control the behavior of NPC agents by using A* graph search similar to the
behavior tree concept. The navigation mesh [38] is used to calculate the search-based path-planning
structure in video games, and this is a mesh structure that encodes the part that can be explored in the
game environment.

Goal-oriented action planning (GOAP) [33] is an expanded NPC behavior-planning method based
on STRIPS, a classic planning method. GOAP is a graph approach that allows us to select potential
NPC actions using abstraction of game elements and state space. A low-level behavior using GOAP is
controlled by a simple three-state FSM. Geib et al. [39] proposed a way to express both plan recognition
and planning so that we can understand what the PC is trying to do and can create a plan to support
the PC. This method is similar to ours in that it observes the behavior of the PC, but it is a system that
predicts and guesses the plan of the PC. In other words, this study is a system that proposes and plans
a series of subgoals to help the PC and is different from our method. As the latest research on tactical
behavior planning, N. Sturtevant proposed a way to consider the relationship with NPCs during path
planning [40]. This technique focused only on path planning and used interactions with NPCs as a way
to supplement the search cost function by classifying it separately without considering the distance of
movement. Uriarte and Ontanon used past game play experience data when constructing policies that
can be used to plan new game play decisions [41]. They used the Monte Carlo tree search technique to
construct a policy and applied the policy to the StarCra f t game to demonstrate the results.

1.2. Problem Statement

As mentioned earlier, there are various methods for NPC behavior planning, but most of them are
methods of searching for NPC behavior in a quantized space considering predefined rules or obstacles.
In general, the path of an NPC is determined by searching the space created by the static surrounding
environment. The problem with these approaches is that it can only be used in a static environment.
Of course, it can be extended in the form of Dyanmic NavMesh, but in this case, it is ambiguous
to present the relevant conditions in virtual environments and it is difficult to verify its accuracy.
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If an NPC moves along NavMesh, which is based on the surrounding environment, regardless of static
or dynamic, its path will not take into account the movement created by interactions with people.
Although there is no guarantee that the user’s path always interacts with the surrounding environment,
we propose a framework for NPC behavior planning based on the user’s path and search for a path
that is close to the correct answer from the perspective of an actual user. In addition, our method
improves the quality and stability of the navigation mesh based on path similarity so that the path is
not broken.

2. Method

In this paper, we propose a novel method to find the path of the agent using trajectory data
in which the user moves to solve the path-finding problem in an interactive environment. The key
idea in this study begins with the assumption that the user controls the character more efficiently
than the algorithm chooses. From this assumption, considering the trajectory in which the character
moves that the user controls, a path similar to the player’s choice is generated when the agent moves.
In the early days when the virtual environment was operated, there was no accumulation of trajectory
information from user movement, so it relied only on the original navigation mesh to find a path for
the NPC to move along. As time goes by, users become familiar with the environment and discover
new routes such as shortcuts, resulting in better paths as data accumulates. For example, PCs can
move to unplanned routes on the system by jumping off cliffs or by specifying where the path is cut
off, but NPCs do not. If the system learns paths optimized by the PC’s experience and can integrate
these learning results into path finding of the NPC, the NPC will be able to move more efficiently and
naturally. This process is called path expansion calculated based on physical attributes, and in this
paper, path expansion is designed based on statistical data based on physical attributes of actual users.

In an interactive environment, PCs generally adapt to the environment through their own play
experience, improving their ability over time and showing smarter movements, but NPCs always
show constant movement because there is no change in ability or movement. Users often exploit these
agents’ vulnerabilities during games, and this problem is a factor that degrades the quality of content.
Evolutionary algorithms or artificial neural networks may be the solution, but to properly control the
movement of the NPC using these techniques, an appropriate objective function based on various
parameters is required. On the other hand, the proposed method allows the NPC to make smarter
decisions when searching the path by learning only location information among various physical
attributes of the user. In this paper, when the start point and destination of the PC agent are determined,
path data are collected by calculating the behavior pattern, the path of the NPC is improved based on
the collected data, and the path is finally adaptively changed.

Before calculating the trajectory of the PC, we calculate the path of the NPC under the assumption
that we already have user’s path data or that it is stored in the server (see Section 2.1). In the future,
in order to verify the validity of the proposed NPC path control method, a method of obtaining path
data in consideration of the user’s behavior pattern will be described, and finally, experiments will be
conducted using these data (see Section 2.2). A list of symbols is available in Table 1.

2.1. Generation of Accumulation Map with User’s Path

We used 1000 path data to find the paths that users frequently use and build η, a density map,
by accumulating the paths in a histogram format. Figure 2a is the accumulation map according to the
movement path, and the closer the color is to red, the more users pass by.
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Table 1. List of symbol used in the paper.

Symbol Description Value

η Accumulation map –
κ Navigation mesh –
p∗ Jittering movement of NPC –

pstart Starting point of NPC –
pcur Current location of NPC –
pdest Destination of NPC –
pmid Transit point of NPC –

Q Shortest path search algorithm (i.e., A*) –
R Stochastic motion of NPC –
θ Altered direction –
ε Uniform random number –
k Scattering coefficient k > 0
δ Smoothed Heaviside function –
h Size of the grid cell –
Ω Cumulative map of NPC –

(a) Accumulation map (b) Refined navigation mesh

Figure 2. Visualization of the accumulation map and refined navigation mesh.

Based on this map, a navigation mesh, κ, was created using NavMesh provided by Unity3D
(see Figure 2b). κ was normalized to extract the region near the route upon which the user mainly
traveled, and κ was created only for regions with a density value of 0.1 or higher. In this way,
a navigation mesh was built around the path upon which the user mainly traveled. The most stable
result was obtained when the threshold of η for pruning the navigation mesh was set to 0.1 after
several experiments.

After κ was generated by the process described above, the NPC could be moved using it. Figure 3a
shows the navigation mesh constructed from pstart to pdest, and the path that the NPC actually moved
along was marked as a dark square. This method was meaningful in that it was built in consideration
of the user’s path, but as shown in Figure 3a, the path was sometimes cut off (see the circled region in
Figure 3a) because it was excessively dependent on the threshold of η when creating the navigation
mesh. This method obtains different paths each time according to the user’s threshold selection. If the
threshold is too small or large, κ is unstablely pruned, resulting in a disconnected path, and the NPC
cannot moving properly (see Figure 3b).
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(a) NPC’s path (threshold of η: 0.1) (b) Unstable navigation
mesh

Figure 3. Visualization of the path of an NPC with η and the unstable case (circled region in
(a): discontinuous path).

In order to generate a navigation mesh based on the path that the user frequently uses without
sensitively responding to η, valid paths are collected based on the path similarity between the PC
route and κ. In this process, if the PC path and the coordinates of κ overlap, its similarity value is high,
and in this paper, PC paths with a similarity value of 70% or more were collected. Taking Figure 4
as an example, Figure 4a,b show paths with high similarity and Figure 4c shows paths with low
similarity, which are significantly different from the navigation mesh. Figure 5 shows how the number
of collected paths and similarity affect the formation of a navigation mesh. Compared to the left side of
Figure 3a, a stable path was created without any broken areas. In the case of Figure 5b,c, different types
of navigation mesh were created as the number of collected paths and similarity were changed, but the
difference was not large in terms of the direction of the path itself and the navigation mesh was created
a without disconnected path (see Figure 5).

(a) Valid (b) Valid (c) Invalid

Figure 4. Valid and invalid paths of playable characters (PCs) with path similarity.

(a) 70%, num.: 50 (b) 70%, num.: 15 (c) 80%, num.: 15

Figure 5. Visualization of navigation meshes with different path similarities and collected paths
(%: similarity, num.: number of collected paths).

In the process of implementing the accumulation map, the path-similarity could be easily
measured by checking whether the entire NPC path exists on the refined navigation mesh. We sample
the η(p∗) value corresponding to the NPC position p∗, and if this value is above the threshold,
it is regarded as a valid position (threshold of η : 0.1). After eta is investigated for all positions
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constituting the path, if valid positions are more than 70% of the total path, it is regarded as a valid
path (see Equation (1)).

|η(p∗j ) > 0.1|
|p∗| > 0.7 (1)

where j is the index of the position constituting the path, and |p∗| is the number of all positions
constituting the path. As a result, we used the NavMesh supported by Unity3D to construct a
navigation mesh, and we built it in the form of our proposal by delivering only the valid paths
using flag.

2.2. Collecting User’s Path Data

The jittering movement p∗ is calculated by using the following equation in order to collect
metadata for the evolution of the agent (see Equation (2)).

p∗ (x) = (1− δ (w)) Q (x) + δ (w) R (x) (2)

δ (w) =


0 w < −ε,
1
2 −

w
2ε −

1
2π sin

(
πw
ε

)
−ε ≤ w ≤ ε,

0 ε < w.

(3)

In Equation (3), w = ‖pstart−pdest‖
‖pcur−pdest‖

− 1, and pstart, pcur, and pdest indicate the starting point, current
location, and destination, respectively. Q is the location obtained through the shortest path search
algorithm such as the A∗ algorithm, and R is the stochastic motion calculation based on the discrete
random walk to model the movement pattern of the PC agent. When users find their way, they
usually build zigzag paths because, at first, they are more concerned about their surroundings than
about distant destinations. In order to model this, we set up θ to randomly turn the direction slightly
(see Figure 6). When the NPC is far from the destination (i.e., starting point), they are strongly
influenced by the movement caused by R, so they move freely regardless of the location or direction of
the destination. This pattern is calculated in the method as follows (see Equation (4)).

cosθ =
2ε + k− 1
2kε− k + 1

(4)

where θ, ε ∈ [0, 1], and k ∈ [−1, 1] represent the altered direction (in radian), a uniform random
number, and the scattering coefficient, respectively. If k = 0 is isotropic scattering movement, k > 0 is
forward scattering movement and k < 0 is a backward scattering movement.

Figure 6. Zigzag pattern of an NPC’s path: θ indicates the altered direction (see Equation (4)).

In this paper, we applied k to the positive number to show a zigzag path toward the destination.
Usually, when a PC agent is near the starting point, the shortest path to the destination is not fixed,
so zigzag paths appear, while the closer it gets to the destination, the faster and more accurately
it finds the destination. The weight that affects this motion is δ (see Equation (3)). δ is a smoothed
Heaviside (step) function, and when the NPC is near the starting position, the path with an irregular
pattern appears because δ grows. As the NPC gets closer to the destination, δ becomes smaller,
irregular movement decreases, and it moves straight toward the destination. We employed ε = 1.5h,
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where h is size of the grid cell. Depending on the shape of Kernel, the NPC’s path appears to be
different, and in this paper, it was experimented and shown in Figure 7b.

(a) h=0.8 (b) h=0.5 (c) h=0.2

Figure 7. The graph of weight parameter δ with Equation (3).

As shown in Figure 8, in the process of proceeding from pstart to pdest, R causes an irregular path
near the starting point. However, when the obstacle is concave, the NPCs sometimes get stuck and
cannot escape the obstacle. To avoid this problem, we conducted experiments under four conditions
and showed two results with slightly different settings for each condition (see Figure 9). The locations
of pstart and pdest are randomly set to be slightly different for each experimental scene. cond. 1 is
not allowed to go back the way the NPC has passed, and this condition has been suggested not to
repeatedly hover over the local area. The NPC does not hover in the same area entirely, but sometimes,
the R that produces the irregular movement of the NPC used by Equation (2) causes it to be stuck and
unable to escape (see Figure 9a). If the obstacle is close to the starting position, δ becomes larger, so the
movement of the NPC becomes more unstable due to the random pattern.

cond. 2 allows the NPC to go back on the path it went through, and because of this condition,
when the destination is obscured by a concave obstacle, sometimes it cannot escape the obstacle and
continues to hover near the corner of the obstacle (see Figure 9b). cond. 3 uses the cumulative map, Ω,
to allow the NPC to pass through the same place again up to three times. Excluding the place where
the NPC once went in the path calculation, it often goes past the obstacle too far, so we made it possible
for the NPC to repeatedly pass the same place up to three times to compute path flexibly.

Figure 8. NPC’s path with Equation (2).
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(a) Path using cond.1 (b) Path using cond.2 (c) Path using cond.3

(d) Path using cond.4 (e) Path using cond.5

Figure 9. Visualization of the path of NPC with various conditions.

This value was obtained by experimenting with various scenes, and in most cases, a stable path
was found. cond. 3 had a higher probability of avoiding obstacles than the two conditions previously
introduced, but there were occasional situations in which it could not take into account irregular
obstacle patterns or find a path by hovering around (see Figure 9c). cond. 4 uses R and Ω together
when NPC enters the convex region surrounding the obstacle (see Figure 10). When the NPC is near
a concave obstacle, it often tries to move in the direction of the destination and fails to escape in the
opposite direction, so we move the NPC in various directions based on the convex region R, making
it easier to get out of the obstacle. We randomly set the locations of pstart, pdest, and obstacles for the
four conditions mentioned above and conducted 1000 experiments. NPCs reached their destinations
avoiding obstacles with success rates of cond.1 : 10%, cond.2 : 13%, cond.3 : 20%, and cond.4 : 96%,
respectively. In this paper, the data of cond.4, which has the highest success rate, is used as metadata to
control the movement of the NPC (see Figure 9d).

Figure 10. Convex region of obstacle.

In addition, we can set the intermediate position, pmid, to pass through to obtain different path
patterns for several obstacles. As shown in Figure 9e, the left figure has no transit point (pmid), so paths
are set only in a similar pattern, but the right figure can consider a more diverse user path because
a slightly different form of the path can be created each time due to pmid. We created pmid in the
user-designated or random location and we determined that this method was similar to the actual
PC behavior pattern because users move under different judgments. At the beginning of the game,
different path types will appear due to the randomness inherent in the algorithm, but as users’ data
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accumulates, the paths that they frequently go to will become clear. In this paper, we simulated the
path data of users by the method described above because it is difficult to secure a large amount of
user data.

Among the various conditions defined above, the reason that the success rates of cond.1 and cond.2
are low is because there is no action to observe while searching the surroundings like seeking state.
For stable navigation, it is necessary for NPC to look around, not just towards destination, and this
action increases the chances of finding the best path. When an NPC observes only a local area near
itself, it often fails to find an optimal path, and this problem also occurs in a simple Q-Table-based
reinforcement learning or Markov decision process. We are trying to find the optimal path in the end
by randomly generating movements that seem to observe in all directions, rather than the NPC moving
only toward the maximum reward. However, in cond.1 and cond.2, they are only to prevent or allow
NPC to go back the way it already passed, so NPC tends to move around the same place or to care
about only the destination. This often leads to a situation where the NPC is stuck in an obstacle and
cannot escape, resulting in a low success rate.

3. Results and Discussion

The experimental results of this study were performed using a computer equipped with an
Intel Core i7-7700K CPU, 32 GB RAM, and nVidia GeForce GTX 1080Ti GPU. To demonstrate the
excellence of the proposed method, we checked the paths of NPCs in various environments, and it
was confirmed that the unbroken path was stably generated. We propose a dynamic navigation mesh
that is automatically updated in consideration of the user’s path, so that the movement of the NPC can
be easily improved without manual intervention by a developer or designer.

Figure 11 is the result of setting pstart and pdest in the diagonal direction and observing the
movement of NPCs. In this experiment, pstart and pdest were set to multiple points to prevent NPCs
from being concentrated in one place. As shown in Figure 11b,c, NPCs in the red ellipses moves
smoothly to pdest by using the navigation mesh created based on the user’s path.

(a) Entire navigation mesh (b) Frame: 21 (c) Frame: 65

Figure 11. Scene 1—movement of NPCs with the navigation mesh (red dot: pstart, blue dot: pdest, and
red wire: NPCs).

Figure 12 shows the result of the NPCs moving according to the navigation mesh created based
on the curved paths of PCs. In Figure 12a,b, black areas represent obstacle regions that NPCs or PCs
cannot access. Figure 12b is the result of collecting path data using the equation, and 1000 path data
were used in this paper. It takes about 12 min to calculate the 1000 paths required for NPC path control,
and it is the longest time-consuming process in the proposed framework. We performed this process to
obtain path data similar to the user’s path, and if there are enough user data in the game server, we can
skip this process and proceed in real-time. Figure 12c is a navigation mesh created by accumulating
frequently passed paths in histogram format, and Figure 12d is an updated navigation mesh based on
path similarity to prevent path breakage. By using this updated mesh, as shown in Figure 11, it worked
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stably not only in straight but also curved paths. Figure 13 shows the results of experiments in different
environments. The number of branching points and their distributed shapes may vary depending on
the threshold of the η proposed in our method, but the NPCs moved stably without breaking the path
from the starting point to the destination.

(a) Input map (b) Trajectory data (c) κ using η (d) κ using path similarity

(e) Frame: 25 (f) Frame: 73

Figure 12. Scene 2—curved path of an NPC.

(a) 80%, num.: 15 (b) 70%, num.: 50

Figure 13. Scene 3—movement of an NPC with various navigation meshes (%: similarity, num.: number
of collected path data).

Figure 14 shows the navigation mesh of NPC moving according to various colliders. Figure 14a,b
have the same init. state, only their start positions and destinations are different. In the navigation
mesh to which path-similarity is not applied, the problem of path break occurs, but the proposed
method generates a navigation mesh stably. In particular, even though only 15 collected path data
were used in Figure 14a, the path to the destination avoiding obstacles was well extracted.

Figure 15 is the result created using the path data of real users randomly selected, not the
method introduced in Section 2.2. As shown in the figure, the navigation mesh was stably generated.
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The proposed method was able to obtain similar results when using real user path data as well as
when using virtual user path data.

(a) 80%, num.: 15 (b) 80%, num.: 30

Figure 14. Scene 4—movement of an NPC with various navigation meshes (%: similarity, num.: number
of collected path data).

(a) 80%, num.: 30 (b) 80%, num.: 30

Figure 15. Scene 5—movement of an NPC with various navigation meshes (%: similarity, num.: number
of collected path data).

Figure 16 is a VR demonstration to check whether each NPC moves naturally according to the
navigation mesh from the first-person perspective. Like the previous results, the red and blue boxes
represent pstart and pdest, respectively, and it was confirmed that NPCs naturally ran to the destination.
Since it is a first-person view using VR HMD (Head-Mounted Display), we turned around while
running to observe the movement of the following NPCs and confirmed that they move naturally
along the navigation mesh. As shown in this result, our method can be applied not only to games but
also to applications that control agents based on navigation mesh, such as VR contents.

As confirmed from the results so far, if the proposed method is used, the NPC moves depending
on the path the PC has passed, so different types of navigation meshes can be generated in the same
map. Therefore, it is possible to overcome the limitations of existing NPCs, which always showed
uniform movement on the same map, and because creation and update of the dynamic navigation
mesh can be efficiently performed, user’s intervention and time required for game production or
maintenance can be greatly reduced. Many interactive graphic applications, such as games and VR
contents, use numerous maps, and in particular, identifying the movable area on each map takes a long
time and requires a lot of labor. Our method can greatly shorten this process, and since the navigation



Symmetry 2020, 12, 1592 14 of 18

mesh is automatically generated based on the user’s movement, all processes can be easily updated.
In this paper, 1000 paths were calculated to obtain virtual user’s path data, and most of them took
10 to 15 min. The accumulation map calculated during this process can be calculated much faster by
using the actual user’s data stored in the game server. In the process of creating a navigation mesh,
not all of the 1000 path data but only the path selected by path similarity is used, so it is possible to
quickly create a stable navigation mesh. In this paper, about 15 to 50 path data were selected for each
scenario, and after the navigation mesh was created, the movement of an NPC could be controlled in
real time. In addition, in order to measure the time required in the process of updating the navigation
mesh using the proposed method, the navigation mesh was periodically updated using a path created
differently in the same map, and it usually took 3 to 7 s to build η.

(a) Base navigation mesh: Figure 12 (b) Base navigation mesh: Figure 13a

Figure 16. Demonstration of NPC movement in a virtual reality (VR) environment.

Table 2 shows the configuration and computation time of the experimental results in this paper.
In all examples, 1000 path data were used, and the calculation took about 12 minutes without significant
influence by the shape of the collider. Actually, it takes a lot of time to obtain user path data, and the
process of calculating the navigation mesh η does not take long. The proposed method showed that if
a sufficient amount of user data is stored in the DB, the navigation mesh can be updated in about 3∼5
seconds. Since Figure 15a,b use real user path data, there are no path DB number and computation cost.
We used a grid resolution of 50×50 to calculate η in all experimental examples, and since sufficient
navigation meshes were built under this configuration, we did not increase the resolution any more.
If the resolution of the grid is increased, the overall calculation time will be increased.

Table 2. Computation time and size of our example scenes.

Figure (Selected Number
of Path Data)

(Number/Time of Path DB
(to Get Path Data
for Calculating) η)

(Computation Time
for Calculating η) Grid Resolution of η

Figure 11 30 1000/12 min 5 sec 50×50
Figure 12 30 1000/12 min 5 sec 50×50

Figure 13a 15 1000/12 min 3 sec 50×50
Figure 13b 50 1000/13 min 7 sec 50×50
Figure 14a 15 1000/12 min 3 sec 50×50
Figure 14b 30 1000/13 min 4 sec 50×50
Figure 15a 30 – 4 sec 50×50
Figure 15b 30 – 4 sec 50×50

3.1. Comparison between Our Method and Previous Approaches

Heuristic search finds the path from the start state to the goal state in the graph. Heuristic search
techniques such as A* [25], similar to ours, are based on Dijkstra’s algorithm, but use a heuristic
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method to guide the search process. This algorithm discretizes the space in the form of an implicit
graph that connects the space of the game world state to the surrounding state in order to apply graph
search to the behavior planning domain of NPC. Many games use the A* algorithm, but since only the
surrounding environment is statically considered, the NPC’s movement is also static. Weighted A* [42]
is a heuristic search technique that is biased toward a destination more than the A* algorithm. Actually,
this method can search a path to a destination within a calculation time shorter than A*. However,
since this method is also based on the A* algorithm, the movement of the NPC only considers the
surrounding environment, but not the movement of the PC.

The ARA* (Anytime A*) [43] technique quickly finds an initial solution and then continues to
improve it until the given time is over. Therefore, this method can adjust the degree of performance
and stability according to the specified search time. Since this technique also focuses on improving
performance, behavior planning is not much different from the previously mentioned techniques.
D* [44] and D* Lite [45] solved the limitations of static A* approaches by efficiently replanning the
search space when the surrounding environment changes dynamically. These methods reuse the search
tree obtained from previous planning episodes and update the graph structure in consideration of the
changes. Compared to the traditional A* and Weighted A* techniques, dynamic surroundings can be
considered, but these techniques also have a structure that is difficult to reflect the user’s movements
or behavior patterns according to events. Independent Multi-Heuristic A*, Shared Multi-Heuristic
A* [46], and improved Multi-Heuristic A* algorithms [47] are heuristic search techniques used for
the search process. These methods have been used to deal with difficult topographic search spaces
or large terrain, and do not adaptively update the navigation mesh based on the user’s movement.
The aforementioned techniques actually calculate a path based on the movement of the NPC focused
on the terrain change, and our method creates a path by analyzing the motion of the PC. NPCs in
games or VR contents should react to the user’s motion rather than the surrounding terrain to make
the user more immersed in the contents. However, since the process of constructing a navigation mesh
in consideration of the surrounding environment and the user’s movement can be easily integrated
with existing techniques, the portability of our technique is good.

3.2. Development Potential

The proposed navigation mesh can be used in robotics as well as the movement of NPCs in games
and VR contents. Robot vacuum cleaner is a representative product that moves in consideration of
the surrounding environment (see Figure 17). A robot vacuum cleaner cleans a given indoor space
by scanning surrounding furniture or room structures. In this process, the robot vacuum cleaner
builds a navigation mesh through the scanning function (see Figure 17a), and cleans the interior by
moving as if an NPC moves in games. Sometimes, it is necessary to intensively clean a certain area
by analyzing the trajectory that the user moves as well as the designated space. If the user’s path
is analyzed by measuring sound or connecting to external devices such as a smartphone, and the
navigation mesh is periodically updated based on this, the robot vacuum cleaner will be able to show
smarter performance.

Recently, robotic path planning techniques based on machine learning have been continuously
proposed [48]. These are techniques to find map features or map coordinate space in the
process of scanning space [49]. In addition to research that scans space while tracking based on
ray-tracing, there are also C-space techniques that accurately scan space based on CAD data [50].
Recently, methods for finding a path based on supervised learning (i.e., Rein f orcement Learning,
Support Vector Machines, etc.) have also been proposed [49]. By integrating our method with the
techniques studied focusing on the spatial accuracy mentioned above, it can be extended to a more
user-friendly path-finding technique.
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(a) Robot vacuum cleaner (b)The navigation mesh obtained through
the scanning function of a robot vacuum
cleaner

Figure 17. A robot vacuum cleaner that moves according to the navigation mesh.

4. Conclusions and Future Work

In this paper, we proposed a framework that can control the NPC’s movement path by analyzing
the user’s path. In particular, even with the same map, the NPC moves in various changed paths
according to the change in the user’s movement trajectory rather than a fixed path. A stable navigation
mesh can be created by adding a path-similarity technique so that the paths that users mainly use are
not cut off. The data used in all results were 1000 path data, and after the construction of the navigation
mesh, the NPCs moved in real time. In the future, we will apply this result to contents with a vast
map such as VR and expand the technique so that NPC scan automatically determine the pattern of
running, walking, climbing, or descending while interacting with the user. In addition, we plan to
study a navigation mesh generation technique that more accurately controls the movement of NPCs
by reflecting various physical properties such as sound, speed, and viewpoint as well as location when
real users navigate the map.
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