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Abstract: Let G be a simple, connected and undirected graph. The atom-bond connectivity index
(ABC(G)) and Randi¢ index (R(G)) are the two most well known topological indices. Recently, Ali and
Du (2017) introduced the difference between atom-bond connectivity and Randi¢ indices, denoted as
ABC — R index. In this paper, we determine the fourth, the fifth and the sixth maximum chemical trees
values of ABC — R for chemical trees, and characterize the corresponding extremal graphs. We also
obtain an upper bound for ABC — R index of such trees with given number of pendant vertices. The role
of symmetry has great importance in different areas of graph theory especially in chemical graph theory.

Keywords: Randi¢ index; Atom-bond connectivity index; tree

1. Introduction

Let G be a simple, connected and undirected graph. having V(G) and E(G) as the set of vertices
and edges respectively. The number of vertices and edges in G are denoted by n m, respectively. Let d,,
denotes the degree of vertex u in G, while A(G) and 6(G) are used to denote the maximum and
minimum degree of G. The distance d (x, y) between vertices x and y is defined as the length of any
shortest path in G connecting x and y. The eccentricity of v; in G is defined ase; = maXy ey (c) dg (v, v)).
For more concepts and terminologies in Graph Theory, we refer to [1].

Topological indices is one of the useful tools of graph theory [2]. Molecular compounds are often
modeled by molecular graphs are used to represent the molecules and molecular compounds with the
help of lines and dots. In study of QSPR/QSAR, topological indices are considered as one of the useful
topics [3].

In 1975, Randié [4] defined the Randi¢ index as follows:

1
R(G)= ). :
uveE(G) Vv dudy

Details about Randi¢ index and most of its mathematical properties can be found in [5-10].
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Estrada et al. [11] proposed the atom-bond connectivity (ABC for short) for a molecular graph as

dy+d, —2

ABC(G) = Y, F

uveE(G)

This index became popular only ten years later, when the paper [12] was published. For the
details, see the surveys [13], the recent papers [14-19] and the references cited therein.

Nowadays, studying the relationship or comparison between topological indices, see [20-23],
is becoming popular. Recently, Ali and Du [24] investigated extremal binary and chemical trees results
for the difference between ABC and R indices. A tree with maximum degree at most three or four
called a binary and chemical tree, respectively.

For a connected graph G of order at least 3, the difference between ABC and R is represented as

(see [24])
Vdy+dy,—2-—1
ABC —R = .
(ABC - R)(G) WGZE(G) e

Note that (ABC — R)(G) > 0 and equality holds if and only if G = P5. So in our discussion we
consider n > 4.

In this paper, motivated by the results in [24], we further investigated the extremal chemical trees
for ABC — R. Moreover, maximal trees with fixed number of pendant vertices are also investigated for
ABC — R index. The techniques used in this paper are very similar to that of Refs. [19,24,25].

2. Preliminary Results

Let the number of edges connecting the vertices of degree p and g is denoted by x, 4. In term of
p,q and x5 ABC — R can be rewritten as follows [24]:

(ABC—R)(G)= Y. vpra-2-1, )

P
d<p<q<A VPq

Let n, be the number of vertices of degree p in G, where 1 < p < 4. Then for any n-vertex
chemical tree the following system of equations holds (see [19,24]):

ny+ny+nzg+ng=mn, 2)

ny +2ny +3n3 +4ny =2(n—1), (3)
X12+ X135 +x14 = 11, €

X12 +2X00 + X234+ Xp4 = 21y, 5)
X153+ X253 +2x33 + x34 = 313, (6)
X14 + Xo4 + X34 +2x44 = 4ny. )

From Equations (2) and (3), it follows that
np+2n3+3nyg =n-—2,

and thus,
n = ny + 2n3 + 2(mod 3). 8)

By solving the sysmtem of Equations (2)—(7), the values of x; 4 and x4 4 are, respectively, given as
below (see also Refs. [24,26]):
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g o2 & 0 2 4 1. 2. .1
14 = 3 3x1,2 9 X1,3 3x2,2 9x2,3 3x2,4 9x3,3 9X3,4,
x44=n_s+1x12+1x13—1x22—§x23—gx24—zx33—§x34-
¢ 3 3 9 v 3~ 9~ 3~ 9 9

Note that the detailed calculation of obtaining the values for x1 4 and x4 4 can be referred in [26].
By substituting these values of x1 4 and x44 in Equation (1), one has:

4W3+V6-5  4/3-5/6+1 8V3-V6-7
12 12 12
32V3-13V6-19  4V/3+V6—-6v2+1
36 13 12
8v3+11v6 —18v/2 — 13 2v/342v6—3V2—4
- X23 — X24
36 12
4/3+ 76 —23 4y/3 4 4v/6 —315—5
- % X33 — 13 X34 )

(ABC — R)(G) x1,7_

2,2

Let

8V3—-vV6-7 32v/3 —13v6 — 19 4/3+V6—6V2+1
g = —X12+ 36 X1,3 + B X

12
8v/3+11v6 — 182 — 13 2v3+2v6—-3V2—4
* 36 Y23+ 12 X2
4/3+7v/6—23 4v/3+4v6 —3v/15—5
+ 6 X33+ X3

3 18 A

2,2

4

(10)

Then Equation (9) can be rewritten as

4V/34+v6—-5 4/3-5V6+1
B P n 12 -

(ABC — R)(G) 6. (11)

since

0 ~ 0.367243x;, + 0.127285x; 3 + 0.157701x2, 4 0.0651375x7 3
+0.0100367x7 4 + 0.0298509:x3 3 + 0.00595623x3 4. (12)

From Equation (12) we have § > 0. Moreover Equation (11) implies that a chemical tree which
gives the minimum value of 6 will produce the maximum of (ABC — R).

Theorem 1 ([24]). Consider the set of all n-vertex chemical trees.
(1)  Suppose that n = 0 (mod 3).

(1.1) Forn > 9, the maximum ABC — R value is

4/3+vV6—-5 3+2v2-3V6
12 n 4 '

which is uniquely attained by those trees that contain a unique vertex of degree 2 and no vertex of
degree 3, that is, ny = 1 and n3 = 0, such that the unique vertex of degree 2 is adjacent to two
vertices of degree 4, that is, x1 7 = 0 and xp4 = 2.
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(2)

(3)

(1.2)  Formn > 21, the second maximum ABC — R value is

4\/§+\@—5n+4\/ﬁ—7\@—4\/§+7
12 4 ’

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices
of degree 3, that is, np = 0 and n3 = 2, such that each vertex of degree 3 is adjacent to three
vertices of degree 4, that is, x13 = x33 = 0 and x3 4 = 6.

(1.3) Formn > 21, the third maximum ABC — R value is

4\@+\@—5n+4\/15—4\/§—9\/5+11
12 6 ’

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices
of degree 3, which are adjacent, that is, np = 0, n3 = 2, and x33 = 1 such that each vertex of
degree 3 is adjacent to exactly two vertices of degree 4, that is, x13 = 0 and x34 = 4.

Suppose that n = 1 (mod 3).

(2.1) Forn > 13, the maximum ABC — R value is

4/3+v6—-5 11+ 6415 — 44/3 — 1316
P n 12 ’

and the equality holds if and only if ny = 0 and n3 = 1 such that x13 = 0 and x3 4 = 3.
(2.2) Forn > 13, the second maximum ABC — R value is

4/34++v6-5 122 — 13v/6 — 4/3 + 17
P n 12 ’

which is uniquely attained by those trees that contain exactly two vertices of degree 2 and no
vertex of degree 3, that is, ny = 2 and nz = 0, such that either vertex of degree 2 is adjacent to
two vertices of degree 4, that is, x1 7 = x22 = 0and x4 = 4.

(2.3) Formn > 25, the third maximum ABC — R value is

4\@+\f6—5n+12\/6—6\@—25\@—16\@+29
12 12 ’

which is uniquely attained by those trees that contain a unique vertex of degree 2 and exactly two

vertices of degree 3, that is, np = 1 and nz = 2, such that each vertex of degree 2 and 3 is adjacent

to only vertices of degree 4, that is, x19 = x13 = X3 = X33 = 0, x4 = 2, and x34 = 6.
Suppose that n = 2 (mod 3).

(3.1) Forn > 5, the maximum ABC — R value is

4/34+v6—-5  4/3-5V/6+1
12 nt 12 '

which is uniquely attained by those trees that contain no vertex of degree 2 or 3, that is, ny =
nz = 0.
(3.2) Formn > 17, the second maximum ABC — R value is

4\@+\/5—5n+6\/ﬁ+6ﬁ—17\@—8\/§+19
12 12 ’

which is uniquely attained by those trees that contain a unique vertex of degree 2 and a unique
vertex of degree 3, that is, ny = n3 = 1, such that each vertex of degree 2 and 3 is adjacent to only
vertices of degree 4, that is, x1p = x13 = X33 = 0, Xo4 = 2, and x34 = 3.
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(3.3) Formn > 29, the third maximum ABC — R value is

4\@+\£—5n+18\/ﬁ—29\@—20\@+31
12 12 ’

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly three
vertices of degree 3, that is, ny = 0 and nz = 3, such that each vertex of degree 3 is adjacent to
three vertices of degree 4, that is, x13 = x33 = 0, and x34 = 9.

3. Maximum ABC — R Index for Chemical Trees

In this section, we present a main result which deals with the maximal chemical trees for
ABC — R index.

Theorem 2. Consider the set of all n-vertex chemical trees.
(1)  Suppose that n = 0 (mod 3).

(1.1)  Forn > 21, the fourth maximum ABC — R value is

4¢§+%—5n+18\/ﬁ+36ﬁ—36\@—63%+81
12 36 ’

and the equality holds if and only if np = 2 and nz = 1 such that x19 = x13 = x22 = x23 =0,
Xo4 = 4 and X34 = 3.
(1.2)  Forn > 33, the fifth maximum ABC — R value is

4\@+\@—5n+ 544/15 + 18v/2 — 72+/3 — 99v/6 + 117
12 36 ’

and the equality holds if and only if np = 1 and nz = 3 such that x; 9 = x13 = x23 = x33 =0,
X24 = 2 and X34 = 9.
(1.3) Forn > 33, the sixth maximum ABC — R value is

4/3+vV6-5 242 —124/3 — 216 + 33
12 n 12 '

and the equality holds if and only if ny = 4, n3 = 0 such that x15 = x5 = O and x4 = 8.
(2)  Suppose that n = 1 (mod 3).

(2.1) Forn > 37, the fourth maximum ABC — R value is

4/3++6—-5 724/15 — 84+/3 — 111/6 + 123
"t 36 ’

and the equality holds if and only if np = 0 and n3 = 4 such that x13 = x33 = 0 and x34 = 12.
(2.2)  Forn > 37, the fifth maximum ABC — R value is

43+ 6 — 5 N 24+/15 + 18+/2 — 361/3 — 661/6 + 90
12 36 ’

and the equality holds if and only if ny =1, n3 = 2 such that x33 = 1,x10 = x13 = x23 =0,
Xp4 =2,and x34 = 4.
(2.3) Formn > 37, the sixth maximum ABC — R value is

4\/§+\£—5n+ 18v/15 + 54v/2 — 48+/3 — 75v/6 + 105
12 36 ’
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and the equality holds if and only if np = 3 and nz = 1 such that x1p = x13 = x22 = x23 =0,
Xo4 = 6, and X34 = 3.

(3)  Suppose that n = 2 (mod 3).
(3.1) Formn > 29, the fourth maximum ABC — R value is

4/34+v6—-5 18v/2 — 8v/3 — 17/6 + 25
P n 12 '

and the equality holds if and only if np = 3 and n3 = 0 such that x15 = xp0 = 0 and xp4 = 6.
(3.2)  Forn > 29, the fifth maximum ABC — R value is

4\@+\/€—5n+42\/ﬁ—78\@—48\/§+96
12 36 ’

and the equality holds if and only if ny = 0 and n3 = 3 such that x13 =0, x33 = land x34 = 7.
(3.3) Formn > 29, the sixth maximum ABC — R value is

43+ %—571 N 361/15 + 361/2 — 60+/3 — 87+/6 + 111
12 36 ’

and the equality holds if and only if np = 2 and n3 = 2 such that x1, = x13 = X2 = X23 =
X33 = 0, X4 = 4 and X34 = 6.

Proof. First, we claim that 6 > 0.080294 when x15 + x13 + x22 > 1 or xp3 > 2. More precisely, from
Equation (12),

e whenxjp>1,
L8367

0
12

~ 0.367243 > 0.080294,

e whenx;3>1,

g 32V3- ;2\@_ 19~ 0.127285 > 0080294,

o whenxyy >1,

9>4\@+\/6—6ﬁ+1

12

~ (0.157701 > 0.080294,

e whenxy3>2,

8v/3+11v6 —18v2 — 13

0>2
- 36

~ 0.130275 > 0.080294.

So we may assume that x1» = x13 = x22 = 0, and x3 = 0 or 1. It follows from Equations (5)
and (6) that

Xo4 =213 — X33 (13)
and
2x33 + X34 = 313 — X23. (14)
Casel. xp3 = 1.

Observe that 1, > 1, n3 > 1, and thus xp 4 > 1 from Equation (13).
If x5 4 > 2, then by the Equation (12),

0> 8\/§+11\@—18\@—13+2 2v/34+2V6—-3V2—4

% W ~ 0.0852109 > 0.080294.
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Suppose now that x4 = 1. If x33 = 0, then by Equation (14), x3 4 > 2, together with Equation (12),
it leads to

8v3+11v6—18vV2—13 2/3+2V6—-3V2—4
> +
36 12
4v/3 446 —3y/15—5
+2. 5
~ 0.08708666 > 0.080294. (15)

If x33 > 1, then by Equation (12),

8vV3+11v6—18vV2—-13 2v/3+2V6—-3V2 -4
> +
36 12
4/3+76—23
_l’_
36
0.1050251 > 0.080294. (16)

Q

Case 2. xp3 = 0.

From Equations (13) and (14), it follows that
X24 = 2712 (17)

and
2X3,3 + X34 = 3n3. (18)

If x33 > 3, then by Equation (12),

3'4\@+7\@—23

0>
- 36

~ 0.0895526 > 0.0802936.

If x33 = 2, then nz > 3, and x3 4 > 5 from Equation (14), and thus by Equation (12),

) 4\/§+7\@—23+5 4/3 446 —3y/15—5

>
= 36 18

~ 0.0894829 > 0.0802936.

Now, we consider the two cases: x33 = 1 and x33 = 0.
Subcase 2.1. x33 = 1.

Clearly, n3 > 2. The proofs will be partitioned into several parts according to the value of n3:
ny =2,n3 =3,n3 > 4.

Firstly suppose that n3 = 2, then, x3 4 = 4 from Equation (14). Note that the case n; = 0 is known
to belong to one of the first three minimum 6 values, see Theorem 1-(1.3). If np = 1, thenn = 1 (mod 3)
from Equation (8), x2 4 = 2 from Equation (17), and by Equation (12),

5 2\/§+2\/6—3\/§—4+4¢§+7%—23+4 4/3+4v6 —3v/15—5

b = 12 36 18

~ 0.0737492.

If ny > 2, then, x5 4 > 4 from Equation (17), and by Equation (12),

2V342vV6—-3vV2—4  4/3+7V6-23 4/3+4v6 —3v/15—5
4. + +4.
12 36 18
0.09382262 > 0.0802936.
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Next, suppose that n3 = 3, then x3 4 = 7 from Equation (14). If np = 0, then n = 2 (mod 3) from
Equation (8), xp 4 = 0 from Equation (17), and by Equation (12),

_4ﬁ+7\@—23+7 4v/3+4y6 31155
- 36 ' 18

0 ~ 0.0715445.

If np > 1, then x4 > 2 from Equation (17), and by Equation (12),

2V342vV6—-3V2—4  4/3+7vV6-23 4/3+4v6 —3v/15—5
2. + +7-
12 36 18
~ 0.0916179 > 0.0802936.

Finally, if n3 > 4, then x3 4 > 10 from Equation (16), and by Equation (12),

4/34+ 76— 23 4y/3 4 4v/6 —3y15—5
b = 36 +10- 18

0.0894132 > 0.0802936.

R

Subcase 2.2. x33 = 0.

In this case, x3 4 = 3n3 from Equation (18). This time, we partition the proofs according to the
valueof ny: np =0, np =1, 1, =2, 1, = 3,1y = 4,1y > 5.

Firstly suppose that n, = 0, thatis, x, 4 = 0 from Equation (17). Note that the cases n3 = 0,1,2,3
were known to belong to the first three minimum 6 value, see Theorem 1. If n3 = 4, then n = 1 (mod 3)
from Equation (8), x3 4 = 12, and by Equation (12),

4/3 4+ 46 —-315 -5

0=12. ~ 0.0714748.
18

If n3 > 5, then x34 > 15, and by Equation (12),

4/3 +4v6 3155
18

~ 0.08934345 > 0.0802936.

6 >15-

Next, suppose that n, = 1, that is, xp4 = 2 from Equation (17). Note that the cases n3 = 0,1,2
were known to belong to the first three minimum 6 values, see Theorem 1. If n3 = 3, then n = 0 (mod 3)
from Equation (8), x34 = 9, and by Equation (12),

5. 2V3+2V6-3V2—4  4/3+4/6-3V15-5

1 18 ~ 0.0736795.

0:

If n3 > 4, then x34 > 12, and by Equation (12),

6 > 2_2\@+2%—3ﬁ—4+12.4ﬁ+4\@—3\/ﬁ—5
12 18
~ 0.091548 > 0.0802936.

Now, suppose that n; = 2, that is, x, 4 = 4 from Equation (17). The case n3 = 0 was known to
belong to one of the first three minimum 6 values, see Theorem 1-(2.2). If n3 = 1, then n = 0 (mod 3)
from Equation (8), x3 4 = 3, and by Equation (12),

. 2V3+2V6-3V2—4  4/3+4/6-3V15-5

1 18 ~ 0.0580155.

0:
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If n3 = 2, then n = 2 (mod 3) from Equation (8), x3 4 = 6, and by Equation (12),

g 2VB3+2V6-3V2—4 - 4/3+4V/6-3V15-5

12 18

= ~ 0.07588419.

If n3 > 3, then x34 > 9, and by Equation (12),

2v/34+2V6—3v2—4 4/3 +4v6 —3v15—5
> 4. +9.
12 18
0.09375289 > 0.0802936.

Q

Suppose that n, = 3, that is, x4 = 6 from Equation (17). If n3 = 0, then n = 2 (mod 3) from
Equation (8), x3 4 = 0, and by Equation (12),

. 2V3+2V6-3v2—4

5 ~ 0.0602202.

9:

If n3 =1, then n = 1 (mod 3) from Equation (8), x34 = 3, and by Equation (12),

23 +2v6—3v2 -4 4v/3+4v6—3/15—5
6 12 +3 18

0= ~ 0.0780889.

If n3 > 2, then x34 > 6, and by Equation (12),

23 42v6—3v2 —4 4y/3 4 4v/6 —3y15—5

6 > 6- +6-
12 18

~ 0.0959576 > 0.0802936.

Suppose that n, = 4, that is, x4 = 8 from Equation (17). If n3 = 0, then n = 0 (mod 3) from
Equation (8), x34 = 0, and by Equation (12),

8_2\@+2\@—3\@—4

~ 0.0802936.
R 0.0802936

9:

If n3 > 1, then x34 > 3, and by Equation (12),

2v3+2vV6—-3v2—4 4v/3+4v6—3/15—5
8- +3-
12 18
~ 0.0981623 > 0.0802936.

0 >

Finally, if np > 5, then x; 4 > 10 from Equation (17), and by Equation (12),

2V3+2v6—-3V2—4

17 ~ 0.100367 > 0.0802936.

6>10-

In conclusion, we obtain the following

(i) Ifn =0(mod3), then the fourth, fifth and sixth minimum 6 values are 0.0580155, 0.0736795 and

0.0802936, respectively.
(i) If n =1 (mod 3), then the fourth, fifth and sixth minimum 6 values are 0.0714748, 0.0737492 and

0.0780889, respectively.
(iii) If n =2 (mod 3), then the fourth, fifth and sixth minimum 6 values are 0.0602202, 0.0715445 and

0.07588419, respectively.
Now, the Equation (11) implies the fourth, fifth and sixth maximum ABC — R. [

In Figures 1-3, the chemical trees with the smallest numbers of vertices in Theorem 2 are listed.



Symmetry 2020, 12, 1591 10 of 14

'>W:f‘f’

PRI
11ttt

Figure 1. Chemical trees with the fourth (A), the fifth (B) and the sixth (C) maximum ABC — R values

.E>'?I*/I ﬁ/&;<g<
NGV SR EEEE

(E)

>ttt

)

Figure 2. Chemical trees with the fourth (D), the fifth (E) and the sixth (F) maximum ABC — R values
in Theorem 2-(2).
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G

<14<
WL ﬁ< 1.

)

Figure 3. Chemical trees with the fourth (G), the fifth (H) and the sixth (I) maximum ABC — R values
in Theorem 2-(3).

4. Upper Bound for ABC — R Index of Molecular Trees

In this section, we consider the class of molecular tress and investigated the sharp bound on
ABC — R for this class of graphs.
Let 7y,n, be the set of molecular trees satisfying

X1,4 = N1,

1
X2,2 =n— 2711 + 3— ng,g,

and

2
Xp4 = N1 — 4 — §X2,3.

Theorem 3 ([19]). Let T be a molecular tree with n vertices, ny > 5 of which are pendant vertices. Then

V2 V3-V2 V2
7”4’7”1*7

(ABC)(T) < 5

with equality holds if and only if T € Ty n,.

Obviously, from Equation (1) we obtain

(ABC —R)(T) = \/E\/glx1,3+\/§2_1x1,4+\/§_1 V31
1 1 V5 -1 V6 —1

Xp4+ X33+

/gt 3% ﬁxs/rf‘ g e 19)
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Now let 7,/ ,,, be the set of molecular trees satisfying
X1,4 = N1,

Xop =n—2ny+3,

and
X24 = N1 — 4.

Theorem 4. Let T be a molecular tree of order n and nq > 5 pendant vertices, then

V2—-1 2-3y242V3 1 3
ABC — R)(T) < _— ==
(ABC W(T) < 7N + i ny + 32
with equality holds if and only if T € T,/ ..
Proof. Since T is a molecular tree, we have Equations (2)—(7). Suppose that
fi = x2+x13+x14
fo = x12+x23
fs = x13+tx3+2x33+x34
fa = x1atx34+2x44,
that is,
A = m
fo = 2np—2x0—x24
fs = 3n3
fo = 4ng— x4,
we have
4
Y fi = 2(n—1)=2(x20+224)
i=1
4
1 3
Y ofi = n—(xp+5x24),
i=1 ! 4
implying that
34 41
X2 = 5 Y fi—4) -fi+n+3
~ —
i=1 i=1
4 4 q
x2,4 = —2Zf1+42*f1—4
i=1 i1t
Thus we have
X14 = N1 —X12—X13
X = n—-2m+3—x —lx —lx —i—lx +Ex +x
22 = 1 127 3%13 — 3X23 T 3X33 + 334 + Y44

np —4-+x +1x —gx —éx —§x —2x
1 12T 3X¥13 ~ 3X23 — 3433 — 3434 44

X2,4

12 of 14
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Substituting them back into Equation (19), we have

V2 -1 +2—3ﬁ+2\@n 1 3

(ABC—R)(T) = 5 n 4 1+ﬁ_§
4—+2-23 8 —v2—10v3 446
T e 12 13

X
3+ 6 33

2v/15 —4—+2—-2/3
+ 12 Y34

V2-1 2-3V2+2V3 1 3

n+ 4+ ——=

2 4 V2 2
—0.219579x1 5 — 0.078064x; 3 — 0.005879:x7 3
—0.069036x3,3 — 0.094362x3 4 — 0.137628x4 4

1+v2-16 1-42
+ 6 le

6—3
+ \f4 X4I4

Q

with negative coefficients x; 5, X1 3, X2,3, X33, X3 4 and x4 4. Thus

V2—1  2-3V2+23 1 3
n+ n+—=—=
2 4 V2 2
and equality in above holds if and only if x15 = x;3 = X203 = x33 = X34 = x44 = 0, or equivalently,
X1,4 = N1, Xpp =N — 2n1 + 3, Xp4 =M1 — 4,ie., T € 7;/,,11. O]

(ABC —R)(T) <

5. Conclusions

In this paper, we considered more maximum values of the difference ABC — R, where ABC and R
are the atom-bond connectivity index and Randi¢ index, respectively. In particular, we characterized the
fourth, the fifth and the sixth maximum chemical trees with respect to the invariant ABC — R, and thus
extended the result by Ali and Du [24] in 2017. It is very challenging to find more maximum values of
ABC — R invariant unless new efficient method is introduced. By using the technique from [19], we also
obtained a sharp upper bound for the ABC — R index of molecular (or chemical) trees with fixed number
of pendant vertices. The work on bounds for the ABC — R index of general graphs and trees is widely
open and one can consider many directions.
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