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Abstract: Let G be a simple, connected and undirected graph. The atom-bond connectivity index
(ABC(G)) and Randić index (R(G)) are the two most well known topological indices. Recently, Ali and
Du (2017) introduced the difference between atom-bond connectivity and Randić indices, denoted as
ABC− R index. In this paper, we determine the fourth, the fifth and the sixth maximum chemical trees
values of ABC− R for chemical trees, and characterize the corresponding extremal graphs. We also
obtain an upper bound for ABC− R index of such trees with given number of pendant vertices. The role
of symmetry has great importance in different areas of graph theory especially in chemical graph theory.

Keywords: Randić index; Atom-bond connectivity index; tree

1. Introduction

Let G be a simple, connected and undirected graph. having V(G) and E(G) as the set of vertices
and edges respectively. The number of vertices and edges in G are denoted by n m, respectively. Let du

denotes the degree of vertex u in G, while 4(G) and δ(G) are used to denote the maximum and
minimum degree of G. The distance dG(x, y) between vertices x and y is defined as the length of any
shortest path in G connecting x and y. The eccentricity of vi in G is defined as ei = maxvj∈V(G) dG(vi, vj).
For more concepts and terminologies in Graph Theory, we refer to [1].

Topological indices is one of the useful tools of graph theory [2]. Molecular compounds are often
modeled by molecular graphs are used to represent the molecules and molecular compounds with the
help of lines and dots. In study of QSPR/QSAR, topological indices are considered as one of the useful
topics [3].

In 1975, Randić [4] defined the Randić index as follows:

R(G) = ∑
uv∈E(G)

1√
dudv

.

Details about Randić index and most of its mathematical properties can be found in [5–10].
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Estrada et al. [11] proposed the atom-bond connectivity (ABC for short) for a molecular graph as

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

dudv
.

This index became popular only ten years later, when the paper [12] was published. For the
details, see the surveys [13], the recent papers [14–19] and the references cited therein.

Nowadays, studying the relationship or comparison between topological indices, see [20–23],
is becoming popular. Recently, Ali and Du [24] investigated extremal binary and chemical trees results
for the difference between ABC and R indices. A tree with maximum degree at most three or four
called a binary and chemical tree, respectively.

For a connected graph G of order at least 3, the difference between ABC and R is represented as
(see [24])

(ABC− R)(G) = ∑
uv∈E(G)

√
du + dv − 2− 1√

dudv
.

Note that (ABC− R)(G) ≥ 0 and equality holds if and only if G = P3. So in our discussion we
consider n ≥ 4.

In this paper, motivated by the results in [24], we further investigated the extremal chemical trees
for ABC− R. Moreover, maximal trees with fixed number of pendant vertices are also investigated for
ABC− R index. The techniques used in this paper are very similar to that of Refs. [19,24,25].

2. Preliminary Results

Let the number of edges connecting the vertices of degree p and q is denoted by xp,q. In term of
p, q and xp,q ABC− R can be rewritten as follows [24]:

(ABC− R)(G) = ∑
δ≤p≤q≤∆

√
p + q− 2− 1
√

pq
xp,q. (1)

Let np be the number of vertices of degree p in G, where 1 ≤ p ≤ 4. Then for any n-vertex
chemical tree the following system of equations holds (see [19,24]):

n1 + n2 + n3 + n4 = n, (2)

n1 + 2n2 + 3n3 + 4n4 = 2(n− 1), (3)

x1,2 + x1,3 + x1,4 = n1, (4)

x1,2 + 2x2,2 + x2,3 + x2,4 = 2n2, (5)

x1,3 + x2,3 + 2x3,3 + x3,4 = 3n3, (6)

x1,4 + x2,4 + x3,4 + 2x4,4 = 4n4. (7)

From Equations (2) and (3), it follows that

n2 + 2n3 + 3n4 = n− 2,

and thus,
n ≡ n2 + 2n3 + 2(mod 3). (8)

By solving the sysmtem of Equations (2)–(7), the values of x1,4 and x4,4 are, respectively, given as
below (see also Refs. [24,26]):
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x1,4 =
2n + 2

3
− 4

3
x1,2 −

10
9

x1,3 −
2
3

x2,2 −
4
9

x2,3 −
1
3

x2,4 −
2
9

x3,3 −
1
9

x3,4,

x4,4 =
n− 5

3
+

1
3

x1,2 +
1
9

x1,3 −
1
3

x2,2 −
5
9

x2,3 −
2
3

x2,4 −
7
9

x3,3 −
8
9

x3,4.

Note that the detailed calculation of obtaining the values for x1,4 and x4,4 can be referred in [26].
By substituting these values of x1,4 and x4,4 in Equation (1), one has:

(ABC− R)(G) =
4
√

3 +
√

6− 5
12

n +
4
√

3− 5
√

6 + 1
12

− 8
√

3−
√

6− 7
12

x1,2

−32
√

3− 13
√

6− 19
36

x1,3 −
4
√

3 +
√

6− 6
√

2 + 1
12

x2,2

−8
√

3 + 11
√

6− 18
√

2− 13
36

x2,3 −
2
√

3 + 2
√

6− 3
√

2− 4
12

x2,4

−4
√

3 + 7
√

6− 23
36

x3,3 −
4
√

3 + 4
√

6− 3
√

15− 5
18

x3,4. (9)

Let

θ =
8
√

3−
√

6− 7
12

x1,2 +
32
√

3− 13
√

6− 19
36

x1,3 +
4
√

3 +
√

6− 6
√

2 + 1
12

x2,2

+
8
√

3 + 11
√

6− 18
√

2− 13
36

x2,3 +
2
√

3 + 2
√

6− 3
√

2− 4
12

x2,4

+
4
√

3 + 7
√

6− 23
36

x3,3 +
4
√

3 + 4
√

6− 3
√

15− 5
18

x3,4. (10)

Then Equation (9) can be rewritten as

(ABC− R)(G) =
4
√

3 +
√

6− 5
12

n +
4
√

3− 5
√

6 + 1
12

− θ. (11)

since

θ ≈ 0.367243x1,2 + 0.127285x1,3 + 0.157701x2,2 + 0.0651375x2,3

+0.0100367x2,4 + 0.0298509x3,3 + 0.00595623x3,4. (12)

From Equation (12) we have θ ≥ 0. Moreover Equation (11) implies that a chemical tree which
gives the minimum value of θ will produce the maximum of (ABC− R).

Theorem 1 ([24]). Consider the set of all n-vertex chemical trees.

(1) Suppose that n ≡ 0 (mod 3).

(1.1) For n ≥ 9, the maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
3 + 2

√
2− 3

√
6

4
,

which is uniquely attained by those trees that contain a unique vertex of degree 2 and no vertex of
degree 3, that is, n2 = 1 and n3 = 0, such that the unique vertex of degree 2 is adjacent to two
vertices of degree 4, that is, x1,2 = 0 and x2,4 = 2.
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(1.2) For n ≥ 21, the second maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
4
√

15− 7
√

6− 4
√

3 + 7
4

,

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices
of degree 3, that is, n2 = 0 and n3 = 2, such that each vertex of degree 3 is adjacent to three
vertices of degree 4, that is, x1,3 = x3,3 = 0 and x3,4 = 6.

(1.3) For n ≥ 21, the third maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
4
√

15− 4
√

3− 9
√

6 + 11
6

,

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices
of degree 3, which are adjacent, that is, n2 = 0, n3 = 2, and x3,3 = 1 such that each vertex of
degree 3 is adjacent to exactly two vertices of degree 4, that is, x1,3 = 0 and x3,4 = 4.

(2) Suppose that n ≡ 1 (mod 3).

(2.1) For n ≥ 13, the maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
11 + 6

√
15− 4

√
3− 13

√
6

12
,

and the equality holds if and only if n2 = 0 and n3 = 1 such that x1,3 = 0 and x3,4 = 3.
(2.2) For n ≥ 13, the second maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
12
√

2− 13
√

6− 4
√

3 + 17
12

,

which is uniquely attained by those trees that contain exactly two vertices of degree 2 and no
vertex of degree 3, that is, n2 = 2 and n3 = 0, such that either vertex of degree 2 is adjacent to
two vertices of degree 4, that is, x1,2 = x2,2 = 0 and x2,4 = 4.

(2.3) For n ≥ 25, the third maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
12
√

15− 6
√

2− 25
√

6− 16
√

3 + 29
12

,

which is uniquely attained by those trees that contain a unique vertex of degree 2 and exactly two
vertices of degree 3, that is, n2 = 1 and n3 = 2, such that each vertex of degree 2 and 3 is adjacent
to only vertices of degree 4, that is, x1,2 = x1,3 = x2,3 = x3,3 = 0, x2,4 = 2, and x3,4 = 6.

(3) Suppose that n ≡ 2 (mod 3).

(3.1) For n ≥ 5, the maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
4
√

3− 5
√

6 + 1
12

,

which is uniquely attained by those trees that contain no vertex of degree 2 or 3, that is, n2 =

n3 = 0.
(3.2) For n ≥ 17, the second maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
6
√

15 + 6
√

2− 17
√

6− 8
√

3 + 19
12

,

which is uniquely attained by those trees that contain a unique vertex of degree 2 and a unique
vertex of degree 3, that is, n2 = n3 = 1, such that each vertex of degree 2 and 3 is adjacent to only
vertices of degree 4, that is, x1,2 = x1,3 = x2,3 = 0, x2,4 = 2, and x3,4 = 3.
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(3.3) For n ≥ 29, the third maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
18
√

15− 29
√

6− 20
√

3 + 31
12

,

which is uniquely attained by those trees that contain no vertex of degree 2 and exactly three
vertices of degree 3, that is, n2 = 0 and n3 = 3, such that each vertex of degree 3 is adjacent to
three vertices of degree 4, that is, x1,3 = x3,3 = 0, and x3,4 = 9.

3. Maximum ABC − R Index for Chemical Trees

In this section, we present a main result which deals with the maximal chemical trees for
ABC− R index.

Theorem 2. Consider the set of all n-vertex chemical trees.

(1) Suppose that n ≡ 0 (mod 3).

(1.1) For n ≥ 21, the fourth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
18
√

15 + 36
√

2− 36
√

3− 63
√

6 + 81
36

,

and the equality holds if and only if n2 = 2 and n3 = 1 such that x1,2 = x1,3 = x2,2 = x2,3 = 0,
x2,4 = 4 and x3,4 = 3.

(1.2) For n ≥ 33, the fifth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
54
√

15 + 18
√

2− 72
√

3− 99
√

6 + 117
36

,

and the equality holds if and only if n2 = 1 and n3 = 3 such that x1,2 = x1,3 = x2,3 = x3,3 = 0,
x2,4 = 2 and x3,4 = 9.

(1.3) For n ≥ 33, the sixth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
24
√

2− 12
√

3− 21
√

6 + 33
12

,

and the equality holds if and only if n2 = 4, n3 = 0 such that x1,2 = x2,2 = 0 and x2,4 = 8.

(2) Suppose that n ≡ 1 (mod 3).

(2.1) For n ≥ 37, the fourth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
72
√

15− 84
√

3− 111
√

6 + 123
36

,

and the equality holds if and only if n2 = 0 and n3 = 4 such that x1,3 = x3,3 = 0 and x3,4 = 12.
(2.2) For n ≥ 37, the fifth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
24
√

15 + 18
√

2− 36
√

3− 66
√

6 + 90
36

,

and the equality holds if and only if n2 = 1, n3 = 2 such that x3,3 = 1, x1,2 = x1,3 = x2,3 = 0,
x2,4 = 2, and x3,4 = 4.

(2.3) For n ≥ 37, the sixth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
18
√

15 + 54
√

2− 48
√

3− 75
√

6 + 105
36

,
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and the equality holds if and only if n2 = 3 and n3 = 1 such that x1,2 = x1,3 = x2,2 = x2,3 = 0,
x2,4 = 6, and x3,4 = 3.

(3) Suppose that n ≡ 2 (mod 3).

(3.1) For n ≥ 29, the fourth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
18
√

2− 8
√

3− 17
√

6 + 25
12

,

and the equality holds if and only if n2 = 3 and n3 = 0 such that x1,2 = x2,2 = 0 and x2,4 = 6.
(3.2) For n ≥ 29, the fifth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
42
√

15− 78
√

6− 48
√

3 + 96
36

,

and the equality holds if and only if n2 = 0 and n3 = 3 such that x1,3 = 0, x3,3 = 1 and x3,4 = 7.
(3.3) For n ≥ 29, the sixth maximum ABC− R value is

4
√

3 +
√

6− 5
12

n +
36
√

15 + 36
√

2− 60
√

3− 87
√

6 + 111
36

,

and the equality holds if and only if n2 = 2 and n3 = 2 such that x1,2 = x1,3 = x2,2 = x2,3 =

x3,3 = 0, x2,4 = 4 and x3,4 = 6.

Proof. First, we claim that θ > 0.080294 when x1,2 + x1,3 + x2,2 ≥ 1 or x2,3 ≥ 2. More precisely, from
Equation (12),

• when x1,2 ≥ 1,

θ ≥ 8
√

3−
√

6− 7
12

≈ 0.367243 > 0.080294,

• when x1,3 ≥ 1,

θ ≥ 32
√

3− 13
√

6− 19
36

≈ 0.127285 > 0.080294,

• when x2,2 ≥ 1,

θ ≥ 4
√

3 +
√

6− 6
√

2 + 1
12

≈ 0.157701 > 0.080294,

• when x2,3 ≥ 2,

θ ≥ 2 · 8
√

3 + 11
√

6− 18
√

2− 13
36

≈ 0.130275 > 0.080294.

So we may assume that x1,2 = x1,3 = x2,2 = 0, and x2,3 = 0 or 1. It follows from Equations (5)
and (6) that

x2,4 = 2n2 − x2,3 (13)

and
2x3,3 + x3,4 = 3n3 − x2,3. (14)

Case 1. x2,3 = 1.

Observe that n2 ≥ 1, n3 ≥ 1, and thus x2,4 ≥ 1 from Equation (13).
If x2,4 ≥ 2, then by the Equation (12),

θ ≥ 8
√

3 + 11
√

6− 18
√

2− 13
36

+ 2 · 2
√

3 + 2
√

6− 3
√

2− 4
12

≈ 0.0852109 > 0.080294.
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Suppose now that x2,4 = 1. If x3,3 = 0, then by Equation (14), x3,4 ≥ 2, together with Equation (12),
it leads to

θ ≥ 8
√

3 + 11
√

6− 18
√

2− 13
36

+
2
√

3 + 2
√

6− 3
√

2− 4
12

+2 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.08708666 > 0.080294. (15)

If x3,3 ≥ 1, then by Equation (12),

θ ≥ 8
√

3 + 11
√

6− 18
√

2− 13
36

+
2
√

3 + 2
√

6− 3
√

2− 4
12

+
4
√

3 + 7
√

6− 23
36

≈ 0.1050251 > 0.080294. (16)

Case 2. x2,3 = 0.

From Equations (13) and (14), it follows that

x2,4 = 2n2 (17)

and
2x3,3 + x3,4 = 3n3. (18)

If x3,3 ≥ 3, then by Equation (12),

θ ≥ 3 · 4
√

3 + 7
√

6− 23
36

≈ 0.0895526 > 0.0802936.

If x3,3 = 2, then n3 ≥ 3, and x3,4 ≥ 5 from Equation (14), and thus by Equation (12),

θ ≥ 2 · 4
√

3 + 7
√

6− 23
36

+ 5 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0894829 > 0.0802936.

Now, we consider the two cases: x3,3 = 1 and x3,3 = 0.

Subcase 2.1. x3,3 = 1.

Clearly, n3 ≥ 2. The proofs will be partitioned into several parts according to the value of n3:
n3 = 2, n3 = 3, n3 ≥ 4.

Firstly suppose that n3 = 2, then, x3,4 = 4 from Equation (14). Note that the case n2 = 0 is known
to belong to one of the first three minimum θ values, see Theorem 1-(1.3). If n2 = 1, then n ≡ 1 (mod 3)
from Equation (8), x2,4 = 2 from Equation (17), and by Equation (12),

θ = 2 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+
4
√

3 + 7
√

6− 23
36

+ 4 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0737492.

If n2 ≥ 2, then, x2,4 ≥ 4 from Equation (17), and by Equation (12),

θ ≥ 4 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+
4
√

3 + 7
√

6− 23
36

+ 4 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.09382262 > 0.0802936.
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Next, suppose that n3 = 3, then x3,4 = 7 from Equation (14). If n2 = 0, then n ≡ 2 (mod 3) from
Equation (8), x2,4 = 0 from Equation (17), and by Equation (12),

θ =
4
√

3 + 7
√

6− 23
36

+ 7 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0715445.

If n2 ≥ 1, then x2,4 ≥ 2 from Equation (17), and by Equation (12),

θ ≥ 2 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+
4
√

3 + 7
√

6− 23
36

+ 7 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0916179 > 0.0802936.

Finally, if n3 ≥ 4, then x3,4 ≥ 10 from Equation (16), and by Equation (12),

θ ≥ 4
√

3 + 7
√

6− 23
36

+ 10 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0894132 > 0.0802936.

Subcase 2.2. x3,3 = 0.

In this case, x3,4 = 3n3 from Equation (18). This time, we partition the proofs according to the
value of n2: n2 = 0, n2 = 1, n2 = 2, n2 = 3, n2 = 4, n2 ≥ 5.

Firstly suppose that n2 = 0, that is, x2,4 = 0 from Equation (17). Note that the cases n3 = 0, 1, 2, 3
were known to belong to the first three minimum θ value, see Theorem 1. If n3 = 4, then n ≡ 1 (mod 3)
from Equation (8), x3,4 = 12, and by Equation (12),

θ = 12 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0714748.

If n3 ≥ 5, then x3,4 ≥ 15, and by Equation (12),

θ ≥ 15 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.08934345 > 0.0802936.

Next, suppose that n2 = 1, that is, x2,4 = 2 from Equation (17). Note that the cases n3 = 0, 1, 2
were known to belong to the first three minimum θ values, see Theorem 1. If n3 = 3, then n ≡ 0 (mod 3)
from Equation (8), x3,4 = 9, and by Equation (12),

θ = 2 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 9 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0736795.

If n3 ≥ 4, then x3,4 ≥ 12, and by Equation (12),

θ ≥ 2 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 12 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.091548 > 0.0802936.

Now, suppose that n2 = 2, that is, x2,4 = 4 from Equation (17). The case n3 = 0 was known to
belong to one of the first three minimum θ values, see Theorem 1-(2.2). If n3 = 1, then n ≡ 0 (mod 3)
from Equation (8), x3,4 = 3, and by Equation (12),

θ = 4 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 3 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0580155.
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If n3 = 2, then n ≡ 2 (mod 3) from Equation (8), x3,4 = 6, and by Equation (12),

θ = 4 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 6 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.07588419.

If n3 ≥ 3, then x3,4 ≥ 9, and by Equation (12),

θ ≥ 4 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 9 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.09375289 > 0.0802936.

Suppose that n2 = 3, that is, x2,4 = 6 from Equation (17). If n3 = 0, then n ≡ 2 (mod 3) from
Equation (8), x3,4 = 0, and by Equation (12),

θ = 6 · 2
√

3 + 2
√

6− 3
√

2− 4
12

≈ 0.0602202.

If n3 = 1, then n ≡ 1 (mod 3) from Equation (8), x3,4 = 3, and by Equation (12),

θ = 6 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 3 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0780889.

If n3 ≥ 2, then x3,4 ≥ 6, and by Equation (12),

θ ≥ 6 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 6 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0959576 > 0.0802936.

Suppose that n2 = 4, that is, x2,4 = 8 from Equation (17). If n3 = 0, then n ≡ 0 (mod 3) from
Equation (8), x3,4 = 0, and by Equation (12),

θ = 8 · 2
√

3 + 2
√

6− 3
√

2− 4
12

≈ 0.0802936.

If n3 ≥ 1, then x3,4 ≥ 3, and by Equation (12),

θ ≥ 8 · 2
√

3 + 2
√

6− 3
√

2− 4
12

+ 3 · 4
√

3 + 4
√

6− 3
√

15− 5
18

≈ 0.0981623 > 0.0802936.

Finally, if n2 ≥ 5, then x2,4 ≥ 10 from Equation (17), and by Equation (12),

θ ≥ 10 · 2
√

3 + 2
√

6− 3
√

2− 4
12

≈ 0.100367 > 0.0802936.

In conclusion, we obtain the following

(i) If n ≡ 0 (mod 3), then the fourth, fifth and sixth minimum θ values are 0.0580155, 0.0736795 and
0.0802936, respectively.

(ii) If n ≡ 1 (mod 3), then the fourth, fifth and sixth minimum θ values are 0.0714748, 0.0737492 and
0.0780889, respectively.

(iii) If n ≡ 2 (mod 3), then the fourth, fifth and sixth minimum θ values are 0.0602202, 0.0715445 and
0.07588419, respectively.

Now, the Equation (11) implies the fourth, fifth and sixth maximum ABC− R.

In Figures 1–3, the chemical trees with the smallest numbers of vertices in Theorem 2 are listed.



Symmetry 2020, 12, 1591 10 of 14

Figure 1. Chemical trees with the fourth (A), the fifth (B) and the sixth (C) maximum ABC− R values
in Theorem 2-(1).

Figure 2. Chemical trees with the fourth (D), the fifth (E) and the sixth (F) maximum ABC− R values
in Theorem 2-(2).
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Figure 3. Chemical trees with the fourth (G), the fifth (H) and the sixth (I) maximum ABC− R values
in Theorem 2-(3).

4. Upper Bound for ABC − R Index of Molecular Trees

In this section, we consider the class of molecular tress and investigated the sharp bound on
ABC− R for this class of graphs.

Let Tn,n1 be the set of molecular trees satisfying

x1,4 = n1,

x2,2 = n− 2n1 + 3− 1
3

x2,3,

and
x2,4 = n1 − 4− 2

3
x2,3.

Theorem 3 ([19]). Let T be a molecular tree with n vertices, n1 ≥ 5 of which are pendant vertices. Then

(ABC)(T) ≤
√

2
2

n +

√
3−
√

2
2

n1 −
√

2
2

with equality holds if and only if T ∈ Tn,n1 .

Obviously, from Equation (1) we obtain

(ABC− R)(T) =

√
2− 1√

3
x1,3 +

√
3− 1
2

x1,4 +

√
2− 1
2

x2,2 +

√
3− 1√

6
x2,3 +

1√
8

x2,4 +
1
3

x3,3 +

√
5− 1√

12
x3,4 +

√
6− 1
4

x4,4 (19)
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Now let T ′n,n1
be the set of molecular trees satisfying

x1,4 = n1,

x2,2 = n− 2n1 + 3,

and
x2,4 = n1 − 4.

Theorem 4. Let T be a molecular tree of order n and n1 ≥ 5 pendant vertices, then

(ABC− R)(T) ≤
√

2− 1
2

n +
2− 3

√
2 + 2

√
3

4
n1 +

1√
2
− 3

2

with equality holds if and only if T ∈ T ′n,n1
.

Proof. Since T is a molecular tree, we have Equations (2)–(7). Suppose that

f1 = x1,2 + x1,3 + x1,4

f2 = x1,2 + x2,3

f3 = x1,3 + x2,3 + 2x3,3 + x3,4

f4 = x1,4 + x3,4 + 2x4,4,

that is,

f1 = n1

f2 = 2n2 − 2x2,2 − x2,4

f3 = 3n3

f4 = 4n4 − x2,4,

we have

4

∑
i=1

fi = 2(n− 1)− 2(x2,2 + x2,4)

4

∑
i=1

1
i

fi = n− (x2,2 +
3
4

x2,4),

implying that

x2,2 =
3
2

4

∑
i=1

fi − 4
4

∑
i=1

1
i

fi + n + 3

x2,4 = −2
4

∑
i=1

fi + 4
4

∑
i=1

1
i

fi − 4.

Thus we have

x1,4 = n1 − x1,2 − x1,3

x2,2 = n− 2n1 + 3− x1,2 −
1
3

x1,3 −
1
3

x2,3 +
1
3

x3,3 +
2
3

x3,4 + x4,4

x2,4 = n1 − 4 + x1,2 +
1
3

x1,3 −
2
3

x2,3 −
4
3

x3,3 −
5
3

x3,4 − 2x4,4.
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Substituting them back into Equation (19), we have

(ABC− R)(T) =

√
2− 1
2

n +
2− 3

√
2 + 2

√
3

4
n1 +

1√
2
− 3

2

+
4−
√

2− 2
√

3
4

x1,2 +
8−
√

2− 10
√

3 + 4
√

6
12

x1,3

+
1 +
√

2−
√

6
6

x2,3 +
1−
√

2
6

x3,3

+
2
√

15− 4−
√

2− 2
√

3
12

x3,4 +

√
6− 3
4

x4,4

≈
√

2− 1
2

n +
2− 3

√
2 + 2

√
3

4
n1 +

1√
2
− 3

2
−0.219579x1,2 − 0.078064x1,3 − 0.005879x2,3

−0.069036x3,3 − 0.094362x3,4 − 0.137628x4,4

with negative coefficients x1,2, x1,3, x2,3, x3,3, x3,4 and x4,4. Thus

(ABC− R)(T) ≤
√

2− 1
2

n +
2− 3

√
2 + 2

√
3

4
n1 +

1√
2
− 3

2

and equality in above holds if and only if x1,2 = x1,3 = x2,3 = x3,3 = x3,4 = x4,4 = 0, or equivalently,
x1,4 = n1, x2,2 = n− 2n1 + 3, x2,4 = n1 − 4, i.e., T ∈ T ′n,n1

.

5. Conclusions

In this paper, we considered more maximum values of the difference ABC− R, where ABC and R
are the atom-bond connectivity index and Randić index, respectively. In particular, we characterized the
fourth, the fifth and the sixth maximum chemical trees with respect to the invariant ABC− R, and thus
extended the result by Ali and Du [24] in 2017. It is very challenging to find more maximum values of
ABC− R invariant unless new efficient method is introduced. By using the technique from [19], we also
obtained a sharp upper bound for the ABC− R index of molecular (or chemical) trees with fixed number
of pendant vertices. The work on bounds for the ABC− R index of general graphs and trees is widely
open and one can consider many directions.
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4. Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [CrossRef]
5. Gutman, I.; Furtula, B. Recent results in the theory of Randić index. In Mathematical Chemistry Monograph. 6;
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