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Abstract: Reliability-Centred Maintenance (RCM) is a strategic process to improve the maintenance
planning of companies which contributes to sustainable production. This method has been applied by
numerous industries to achieve an efficient maintenance process, but many have not fully completed
their goals. The reason for this failure is that RCM implementation is complex, and organisations
need to have adequate preparations before they implement it. In the pre-implementation phase, it is
necessary to know the number of Critical Success Factors (CSFs) as a critical measure for implementing
the RCM method successfully. Therefore, it is important for practitioners to apply a symmetric
mechanism involving fuzzy systems to achieve the desired RCM implementation. There are a limited
number of studies that have observed these factors regarding the characteristics of oil and gas
companies, especially in the pre-implementation phase. Addressing RCM pre-implementation issues
is of high importance from the economic perspective of sustainability for oil and gas organisations.
The objective of this study is to investigate significant items in RCM pre-implementation through a
combination of quantitative and qualitative analyses. The Nominal Group Technique (NGT) method
is applied by gaining the opinion of experts to determine the factors and prioritising them using
mathematical modelling. A group of related experts from the oil and gas industry were initially
interviewed and surveyed to determine the critical success factors. These identified factors were
then analysed using quantitative analysis to identify the important degrees and scored using Fuzzy
Analytic Network Process (FANP). Fifteen major factors affecting the criticality of successful RCM
implementation have been identified and prioritised, based on their weights. The model proposed in
this study could be used as a guideline for assessing CSFs in other countries. To apply the proposed
model in different contexts, it needs to be modified according to the needs, policies, and perspectives
of each country.

Keywords: reliability centred maintenance (RCM); critical success factors (CSFs); nominal group
technique (NGT); fuzzy analytic network process (FANP); oil and gas industry

1. Introduction

Managers are now looking for various maintenance disciplines to rationalise the achievement
of their business in the face of ongoing challenges to improve plant reliability at a lower cost [1].
In this regard, Reliability Centred Maintenance (RCM) is defined as a systematic methodology for
the optimisation and development of the maintenance requirements of a physical resource [2]. It has
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been recently found to be the most efficient strategy in comparison with the existing supervision
of maintenance strategies [2]. This method has been successfully applied for more than 30 y in
several industries, such as aircraft, military forces, nuclear power, and oil and gas companies [3].
Research has confirmed that the RCM method is imperative to reduce maintenance costs and improve
the effectiveness of the maintenance systems [4]. It enables the organisation to minimise maintenance
duration and create a safe environment, which has been an issue of concern to manufacturers [5].
An application of the RCM method is imperative for organisations to optimise their maintenance
activities and to develop a cost-effective method for managing their maintenance procedures [6].
Wang et al. [7] concluded that the system operates under a performance-based contract. RCM helps
service providers to increase profits and improve system performance at lower costs. Similar to them,
Ma et al. [8] confirmed the maintenance cost is minimised via RCM implementation in their case study,
namely, a warm standby cooling system.

Especially in the oil and gas industry, there is an ongoing emphasis on cost management,
where prices are very flexible and vulnerable to changes in supply and demand [9]. Oil and gas plants
produce a wide range of products used as chemicals and fuels, so, maintenance activities within them
remarkably affect their productivity. The use of RCM can help organisations develop a systematic
maintenance program, meeting these requirements in a cost-effective manner [9].

The RCM methods have a close link to sustainability [10]. An organisation that
strives towards effective sustainability requires effective RCM practices and technologies [11].
However, the organisation still faces difficulty and even failure during the RCM implementation.
Plucknette [12] stated that based on the survey of more than 250 companies, over 85% of the RCM
analysis had not been completely implemented. While the fundamental notion of the RCM method is
simple, its implementation is tremendously complicated [13].

An organisation should have effective preparations before they transform their conventional
maintenance systems towards RCM [14]. One of the essential processes in the pre-implementation
phase is considering several Critical Success Factors (CSFs), used as an important measure to implement
the RCM methods successfully. Practitioners often ignore this preparation phase. This problem also
emerged in Iranian manufacturing organisations. Numbers of companies in Iran have considered the
vital role of the RCM to enhance the effectivity and efficiency of the equipment and machinery [15].
This approach has not been applied effectively in Iranian oil industries as it needs proper preparation for
planning [16]. RCM implementation is complex, and organisations need to have adequate preparations
before they implement the RCM methods. In the pre-implementation phase, the number of CSFs, as a
key measure to implement the RCM methods successfully, is necessary. The practitioners often skip
this pre-implementation phase. As a result, the majority of the manufacturing companies face many
problems during the implementation process since they do not have a sufficient preparation plan.

There are a small number of RCM researches that aimed to identify and prioritise the critical factors
for implementing RCM regarding the characteristics of oil and gas organisations [16]. The majority
of them focused on the implementation process without considering the important processes in
the pre-implementation phase. To fill this gap, this study is conducted to identify the CSFs which
are imperative to be addressed by oil and gas organisations using symmetric mechanism involving
fuzzy systems to achieve the desired RCM implementation. It is done using the Nominal Group
Technique (NGT) and Fuzzy Analytic Network Process (FANP). The Analytic Network Process
(ANP) is generally used to rank the decisions without creating assumptions about the unidirectional
hierarchy relationship between decision levels. As ANP lacks a comprehensive consideration of human
intelligence in modelling, fuzzy models have been applied as they have better compatibility with
linguistic explanations and are often ambiguous for making long-term predictions and for making
real-world decisions [17]. Fuzzy logic has been widely applied in numerous fields such as optimisation,
systems engineering, and image processing [18].

The structure of this paper is organised as follows. Section 2 provides an analysis of related
studies, which culminates with the identification of the knowledge gap. Section 3 explains the research
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process of the present study. Section 4 presents the data analysis and discussion of the research findings.
Section 5 concludes the study and recommends the numbers of potential research directions.

2. Literature Review

A concept that has changed in the Prognostics and Health Management (PHM) implementation
from seeking the remaining useful life to determining extendable useful life [19]. Research in RCM
area has been rapidly growing these years because of increasing challenges and expectations of
maintenance [14]. The topic in the RCM area includes RCM implementation, optimisation of the
method, integration between the RCM with other techniques, risk reduction, and evaluation of the
RCM failures [2]. This study categorised the topics into three phases: RCM pre-implementation,
implementation and post-implementation, as shown in Figure 1.

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 15 

2. Literature Review  

A concept that has changed in the Prognostics and Health Management (PHM) implementation 
from seeking the remaining useful life to determining extendable useful life [19]. Research in RCM 
area has been rapidly growing these years because of increasing challenges and expectations of 
maintenance [14]. The topic in the RCM area includes RCM implementation, optimisation of the 
method, integration between the RCM with other techniques, risk reduction, and evaluation of the 
RCM failures [2]. This study categorised the topics into three phases: RCM pre-implementation, 
implementation and post-implementation, as shown in Figure 1.  

 
 
 
 
 

 

Figure 1. Reliability Centred Maintenance (RCM) implementation phases. 

Tang et al. [14] mentioned that the screening phase is one of the critical steps of the RCM 
implementation, which is named as the pre-implementation phase, as provided in Figure 1. This phase 
of RCM focuses on assessing and providing the necessary preparations before RCM implementation. 
There is rarely a systematic operation method to identify the CSFs of RCM pre-implementation. In their 
research, Tang et al. [14] presented a framework for the identification of the maintenance of significant 
items through a mixture of quantitative and qualitative analysis.  

In the power system industry, Afzali et al. [20] presented new weighted importance (WI) 
reliability index model. They proposed an applicable method to rank the components of the RCM 
distribution system for RCM at two different levels. First, the sample feeder substation feeder is 
ranked for the RCM action. The sample feeder component is then rated for the RCM action. In another 
study, Alvarez-Alvarado and Jayaweer [21] found RCM as a popular method in that industry. They 
proposed an innovative smart maintenance model through three main concepts, namely Markov 
chains to describe the reliability of component, Fuzzy logic to determine the operational risk of 
component, and maintenance exertion degree to define the impact of maintenance over the 
component failure rate. In electric power distribution systems, Piasson et al. [22] proposed a model 
to optimise the RCM implementation by reducing the maintenance costs and increasing the index of 
systems reliability. They evaluated the reliability indices of the components using a fuzzy inference 
system and proposed a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) algorithm to resolve 
multi-objective models that provide an optimised Pareto frontier. Yssaad and Abene [23] optimised 
the application of RCM using reliability, availability, and maintainability studies to advance the 
power distribution systems.  

Zakikhani et al. [13] developed a framework for maintenance scheduling for the external 
corrosion of gas transmission pipelines using the RCM planning technique. This framework is 
designed based on the pipeline reliability outline obtained from the Monte Carlo simulation. They 
discovered that the maintenance method developed only relied on the consideration of reliability, 
cost, and condition levels as the criteria for maintenance decisions and discounted the significance of 
continues action and accessibility. 

Rahmati et al. [15] proposed a new stochastic RCM procedure in a new multi-objective joint 
maintenance and production planning problem. They used four multi-objective simulation-based 
optimisation algorithms to resolve the issues as they belong to the Non-deterministic Polynomial-
time Hardness (NP-Hard) class of optimisation problems. These four multi-objective simulations are 
the multi-objective biogeography based optimisation algorithm, the Pareto envelope-based selection 
algorithm, a new version of the Non-Dominated Sorting Genetic Algorithm (NSGAIII), and multi-
objective evolutionary algorithm based on decomposition. A new combined visualisation method 
using the Gant chart is also projected to discuss the entire RCM scheme in a systematic manner. 

Pre-implementation 

Phase 

Post-implementation 

Phase 

Implementation 

Phase 

Figure 1. Reliability Centred Maintenance (RCM) implementation phases.

Tang et al. [14] mentioned that the screening phase is one of the critical steps of the RCM
implementation, which is named as the pre-implementation phase, as provided in Figure 1. This phase
of RCM focuses on assessing and providing the necessary preparations before RCM implementation.
There is rarely a systematic operation method to identify the CSFs of RCM pre-implementation. In their
research, Tang et al. [14] presented a framework for the identification of the maintenance of significant
items through a mixture of quantitative and qualitative analysis.

In the power system industry, Afzali et al. [20] presented new weighted importance (WI) reliability
index model. They proposed an applicable method to rank the components of the RCM distribution
system for RCM at two different levels. First, the sample feeder substation feeder is ranked for the
RCM action. The sample feeder component is then rated for the RCM action. In another study,
Alvarez-Alvarado and Jayaweer [21] found RCM as a popular method in that industry. They proposed
an innovative smart maintenance model through three main concepts, namely Markov chains to
describe the reliability of component, Fuzzy logic to determine the operational risk of component,
and maintenance exertion degree to define the impact of maintenance over the component failure
rate. In electric power distribution systems, Piasson et al. [22] proposed a model to optimise the RCM
implementation by reducing the maintenance costs and increasing the index of systems reliability.
They evaluated the reliability indices of the components using a fuzzy inference system and proposed
a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) algorithm to resolve multi-objective models
that provide an optimised Pareto frontier. Yssaad and Abene [23] optimised the application of RCM
using reliability, availability, and maintainability studies to advance the power distribution systems.

Zakikhani et al. [13] developed a framework for maintenance scheduling for the external corrosion
of gas transmission pipelines using the RCM planning technique. This framework is designed based
on the pipeline reliability outline obtained from the Monte Carlo simulation. They discovered that
the maintenance method developed only relied on the consideration of reliability, cost, and condition
levels as the criteria for maintenance decisions and discounted the significance of continues action
and accessibility.

Rahmati et al. [15] proposed a new stochastic RCM procedure in a new multi-objective joint
maintenance and production planning problem. They used four multi-objective simulation-based
optimisation algorithms to resolve the issues as they belong to the Non-deterministic Polynomial-time
Hardness (NP-Hard) class of optimisation problems. These four multi-objective simulations
are the multi-objective biogeography based optimisation algorithm, the Pareto envelope-based
selection algorithm, a new version of the Non-Dominated Sorting Genetic Algorithm (NSGAIII),



Symmetry 2020, 12, 1585 4 of 14

and multi-objective evolutionary algorithm based on decomposition. A new combined visualisation
method using the Gant chart is also projected to discuss the entire RCM scheme in a systematic manner.

Piechnicki et al. [24] designed a conceptual framework that adapts tacit and explicit information
from maintenance functions. Their study generates a new knowledge base that is used to analyse
and improve decisions on implementing customised RCM models. They used multi-criteria decision
making analysis techniques to support decisions in the RCM implementation stage. Data-driven
prognostic approaches are also studied for equipment maintenance [25].

Tang et al. [14] developed a framework to identify the critical maintenance items in RCM
using qualitative and quantitative analysis to advance the effectiveness and efficiency of the
maintenance policy. They used the multiple risk matrix, Failure Mode and Effects Analysis
(FMEA), Analytic Hierarchy Process (AHP), and Fuzzy Borda Count methods to do their research.
Reliability-based maintenance modelling was also employed to enhance the rolling stock objectives
of manufacturers [26]. Similarly, Yavuz [27] confirmed the effectiveness of the RCM approach in the
food industry.

Regarding the characteristics of oil and gas organisations, there are few scientific maintenance
studies which are explicitly conducted to improve the reliability of the refinery unit [28].
Petrochemical industries are classified as high-risk companies, and the application of suitable
maintenance strategies is imperative to reduce costs, to improve quality, minimise equipment
downtime, and increase productivity [29]. The components of refinery equipment are explosive,
flammable, and toxic, so it is necessary to carry out an effective maintenance plan to ensure safety
and reliability [28]. The oil and gas industry has still an essential role in the economic growth of
most developing countries [30], and the success or failure of maintenance programs may depend on
adequate identification and consideration of CSFs.

The literature review confirmed that, when paired with RCM policy, maintenance tasks in the
oil and gas industry will perform in an efficient, reliable, cost-effective, and safe manner [9]. There is
a variety of research in the RCM subject [31]; however, there are fewer studies that concern the
preliminary implementation of the RCM, such as the determination of important factors of success,
particularly in oil and gas companies. These factors are the core elements of a maintenance plan that
it views as the most important task before the RCM implementation. Practitioners in organisations
need to evaluate these factors to accomplish successful RCM implementation and reduce failure risks.
This knowledge gap motivates the present study to identify numbers of CSFs as a key measure to
achieve successful implementation of the RCM. The identification uses the Fuzzy Analytic Network
Process (FANP) to address the uncertainty and imprecision in the prioritisation process.

3. Materials and Methods

A Nominal Group Technique (NGT), which involves qualitative and quantitative analysis [32],
is applied to collect and analyse the data. This technique is chosen because it is a structured technique
for group brainstorming, that encourages contributions from everyone and facilitates quick agreement
on the relative importance of issues [33]. The experts should make their decision using the votes and
opinions of everyone.

There are two main phases of our research methodology: (i) Determining the success factors of
the RCM implementation, and, (ii) Prioritising them. A schematic overview of the research method in
this study is provided in Figure 2. A nominal group technique is adopted to refine the factors and
make pairwise comparisons, and the fuzzy ANP method is used to evaluate the relative importance
and prioritise the identified success factors.
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Figure 2. Research flow of the study

As shown in Figure 2, a preliminary list of success factors, consisting of 20 items, was identified
based on a review of the literature and surveys. These success factors are then introduced to the
RCM team, which includes ten experts and managers from technical and engineering departments,
the strategic planning and development deputy, the support and logistics deputy, and the human
resources, deputy. This team has been selected at the discretion of the managers of Persian Gulf Star
Oil Company. It involves people who have been responsible for the maintenance of company and
repair program.

The initial factors were validated, modified and scored by team members through discussion and
voting, which resulted in 15 CSFs. These CSFs were then prioritised using fuzzy ANP, as shown in
phase 2. The Analytic Network Process (ANP) is an extension of the analytical hierarchy process which
allows analysis of complex systems. As there are limitations in the determination of success factors,
to make better decisions in this process, the weights of factors are determined by using fuzzy ANP.
In FANP, the importance weights of criteria can be evaluated using linguistic values represented by
fuzzy numbers. This technique enables one to overcome uncertainties and inaccuracies in the priority
setting process.



Symmetry 2020, 12, 1585 6 of 14

In phase 2, a questionnaire for paired comparisons is developed. The RCM team members filled in
the surveys and the aggregated pairwise comparison matrices are calculated based on their responses.
To obtain the final priorities in a system that is affected by internal dependence, local priority vectors are
entered in proportion to the columns of the matrix, which is known as the supermatrix. Based on this
matrix, the weights of factors were calculated, through four steps and the critical factors influencing
the success of RCM pre-implementation are prioritised.

4. Results

According to Figure 2, this study was completed in two main phases, namely, determination of
the CSFs and prioritising them through the formation of the supermatrix and calculation of the weight
of factors using FANP. The calculations are made, and the results obtained from the various stages of
the research are presented in this section.

4.1. Determination of the Critical Success Factors

The determination of the CSFs was done via discussions with a group of experts through the NGT.
The descriptive statistics related to the identified factors are summarised in Table 1. These values were
calculated based on the analysis of the data gathered by the questionnaires.

Table 1. The descriptive statistics

Symbol Sum Mean Mode Max Min Standard Error Variance Skewness Kurtosis

F1 78 7.8 7 9 7 0.75 0.56 0.41 −1.07
F2 43 4.3 4 6 3 0.90 0.81 0.23 −0.35
F3 81 8.1 8 9 7 0.70 0.49 −0.17 −0.73
F4 79 7.9 7 10 7 1.04 1.09 0.86 −0.52
F5 65 6.5 6 8 5 0.81 0.65 0.00 0.11
F6 81 8.1 8 10 7 0.94 0.89 0.61 −0.16
F7 61 6.1 7 7 5 0.83 0.69 −0.22 −1.73
F8 59 5.9 6 8 5 0.94 0.89 1.08 0.91
F9 43 4.3 4 5 3 0.64 0.41 −0.43 −0.28

F10 77 7.7 7 10 6 1.10 1.21 0.73 0.51
F11 71 7.1 7 8 6 0.70 0.49 −0.17 −0.73
F12 83 8.3 9 10 7 1.00 1.01 −0.04 −1.24
F13 47 4.7 5 6 3 0.90 0.81 −0.23 −0.35
F14 55 5.5 6 7 3 1.20 1.45 −0.82 0.25
F15 61 6.1 5 8 5 1.04 1.09 0.39 −1.24
F16 63 6.3 5 8 5 1.19 1.41 0.14 −1.77
F17 37 3.7 2 7 2 1.79 3.21 1.16 0.17
F18 52 5.2 5 6 4 0.60 0.36 −0.13 0.18
F19 39 3.9 2 9 1 2.62 6.89 0.92 −0.67
F20 69 6.9 7 10 5 1.58 2.49 0.56 −0.04

Sum: Summation function; Mean: The average of the numbers; Mode: The number that appears most frequently in
a data set; Max: Maximum function; Min: Minimum function.

The symbols, F1 to F10, are related to the “Items”, introduced in Table 2. Small values of skewness
and kurtosis indicate that in most cases, the data have a normal distribution [34]. The items were
scored using linguistic values represented by fuzzy numbers. The linguistic scales and their fuzzy
levels in this study are developed in the following Table 3.
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Table 2. The scored items for successful implementation of RCM.

No. Status of Item Score Items Symbol

1 Accepted 78 Skilled human resources F1

2 Rejected 43 Needs assessment for CMMS (Computerized
Maintenance Management System) F2

3 Accepted 81 Sufficient budget F3

4 Accepted 79 Awareness of the need for improved
maintenance programs in the organisation F4

5 Accepted 65 Technical knowledge and using the best way
to select critical equipment for RCM analysis F5

6 Accepted 81 Sufficient time F6
7 Accepted 61 Training F7
8 Accepted 59 RCM knowledge among managers F8
9 Rejected 43 Shortage of the main parts of the equipment F9

10 Accepted 77 Understand the need to establish an RCM
strategy F10

11 Accepted 71 Paying attention to maintenance strategies to
reduce costs F11

12 Accepted 83 Motivation among staff F12
13 Rejected 47 Economic sanctions F13
14 Accepted 55 Teamwork F14
15 Accepted 61 RCM knowledge among staffs F15
16 Accepted 63 Accessibility to machinery information F16
17 Rejected 37 Safety and environmental issues F17
18 Accepted 52 Capability to change the design of equipment F18
19 Rejected 39 Responsiveness of the top management F19
20 Accepted 69 Staffs’ commitment F20

Table 3. The linguistic scales for relative importance.

Code Linguistic Scale Triangular Fuzzy Scale

1 Complete equal importance (1,1,1)
2 Nearly equal importance (0.5,1,1.5)
3 Low importance (1,1.5,2)
4 High importance (1.5,2,2.5)
5 Very high importance (2,2.5,3)
6 Completely high importance (2.5,3,3.5)

The calculated values of the scores related to all 20 factors are given in Table 2. Those that scored
less than 50 points were eliminated, while the items receiving more than 50 points are considered as
the CSFs.

As provided in Table 2, fifteen success factors scored more than 50, and five factors had a score of
less than 50. The final fifteen CFSs for pre-implementation of RCM are listed as follows:

1. Skilled human resources
2. Sufficient budget
3. Awareness of the need for improved maintenance programs in the organisation
4. Technical knowledge and using the best way to select critical equipment for RCM analysis
5. Sufficient time
6. Training
7. RCM knowledge among managers
8. Understand the need to establish an RCM strategy
9. Paying attention to maintenance strategies to reduce costs
10. Motivation among staffs
11. Teamwork
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12. RCM knowledge among staff

13. Accessibility to machinery information
14. Capability to change the design of equipment
15. Staffs’ commitment

4.2. Prioritising the CSFs through Fuzzy ANP

A questionnaire with paired comparison questions was designed, validated, and distributed
among the experts to rank the identified CSFs. The pairwise comparisons matrix based on the collected
data was formed. A summary of the supermatrix analysis for obtaining the weights of factors was
derived, based on the work of Gogus and Boucher [35]. Each of the local priority vectors was entered
as a part of the matrix column, known as supermatrix. This partitioned matrix represents the effect of
the element to the left of the matrix on the element at the top of the matrix. The supermatrix serves as
a unifying framework [36]. Its general form is shown in Figure 3.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 15 

As provided in Table 2, fifteen success factors scored more than 50, and five factors had a score 
of less than 50. The final fifteen CFSs for pre-implementation of RCM are listed as follows:  
1. Skilled human resources 
2. Sufficient budget 
3. Awareness of the need for improved maintenance programs in the organisation 
4. Technical knowledge and using the best way to select critical equipment for RCM analysis 
5. Sufficient time 
6. Training 
7. RCM knowledge among managers 
8. Understand the need to establish an RCM strategy 
9. Paying attention to maintenance strategies to reduce costs 
10. Motivation among staffs 
11. Teamwork 
12. RCM knowledge among staff 
13. Accessibility to machinery information 
14. Capability to change the design of equipment 
15. Staffs’ commitment 

4.2. Prioritising the CSFs through Fuzzy ANP 

A questionnaire with paired comparison questions was designed, validated, and distributed 
among the experts to rank the identified CSFs. The pairwise comparisons matrix based on the 
collected data was formed. A summary of the supermatrix analysis for obtaining the weights of 
factors was derived, based on the work of Gogus and Boucher [35]. Each of the local priority vectors 
was entered as a part of the matrix column, known as supermatrix. This partitioned matrix represents 
the effect of the element to the left of the matrix on the element at the top of the matrix. The 
supermatrix serves as a unifying framework [36]. Its general form is shown in Figure 3.  



































=

nnnkn

knkkk

nk

nm

n

n

km

k

k

m

n

k

nmnnkmkkm

nk

www

www

www

e

e
e

e

e
e

e

e
e

C

C

C

W

eeeeeeeee
CCC

k

k




























11

1

1111

2

1

2

1

1

12

11

1

212111211

1

1

1

 
Figure 3. A generalised supermatrix (adopted from Asan et al. [36]). Figure 3. A generalised supermatrix (adopted from Asan et al. [36]).

In Figure 3, Cm means the mth cluster with nm elements symbolised as em1, em2, ..., emn, where emn

represents the nth element in the mth cluster. Wij is a block matrix consisting of principal eigenvectors
representing the influence of the elements in the ith cluster on the elements in the jth cluster.

4.2.1. Calculation of the Geometric Means

The geometric means of the paired wise comparisons are presented in Table 4. They were obtained
via calculation of the square root of multiplying of the high and low limits of triangular numbers,
namely, Ag =

√ai ju.ai jl.
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The weight vectors of each matrix should be calculated using wm = [wm
i ] and wg = [wg

i ] by
considering the Equations (1) and (2), which are developed in this study.

wm
i =

1
n

n∑
j=1

ai jm
n∑

i=1
ai jm

(1)

wg
i =

1
n

n∑
j=1

√ai ju.ai jl
n∑

i=1

√ai ju.ai jl

(2)

For this matrix, the Consistency Ratios (CR) obtained were 0.037 and 0.096, which are less than
0.1, meaning the matrix is compatible.

4.2.2. Calculation of the Eigenvectors

The Eigenvectors were calculated using the logarithmic method of the least squares, which is
shown in Equation (3).

ws
k =

 n∏
j=1

as
k j


1
n

n∑
i=1

 n∏
j=1

am
ij


1
n

, s ∈ {l, m, u} (3)

w̃k = (wl
k, wm

k , wu
k ) k = 1, 2, 3, . . . , n

The values of Eigenvectors are presented in the last row of Table 3.

4.2.3. Forming of the Matrices of Eigenvectors

Based on the Eigenvectors values, the Principal Eigenvectors matrix is calculated in this study
and presented in Table 5.

Table 4 contains Eigenvectors that show internal dependencies between factors. If there is no
relationship between the two elements, the value of (0,0,0) is considered.

4.2.4. Calculation of the Final Weights

For calculating the final weight of items for each surface (Wi
*), the following formulas were applied.

W∗i = Wii ×Wi(i−1) ×W∗i−1 (4)

W∗i = I ×Wi(i−1) ×W∗i−1 (5)

According to Equations (4) and (5), the final weights were calculated, and the results are shown in
Table 6.



Symmetry 2020, 12, 1585 10 of 14

Table 4. The geometric means of pairwise comparisons and Eigenvectors

F1 F3 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F18 F20 Eigenvector

F1 (1,1,1) (0.5,0.667,1) (0.4,0.5,0.667) (0.4,0.5,0.667) (1,1.5,2) (0.5,1,1.5) (1,1.5,2) (0.5,1,1.5) (0.5,1,1.5) (1,1.5,2) (1.5,2,2.5) (1,1.5,2) (0.5,1,1.5) (1.5,2,2.5) (0.5,1,1.5) (0.046,0.07,0.096)

F3 (1,1.5,2) (1,1,1) (0.5,0.667,1) (0.5,0.667,1) (1.5,2,2.5) (0.5,1,1.5) (0.5,1,1.5) (0.5,1,1.5) (1,1.5,2) (1.5,2,2.5) (0.5,1,1.5) (0.5,1,1.5) (0.5,1,1.5) (1,1.5,2) (0.5,1,1.5) (0.045,0.073,0.102)

F4 (1.5,2,2.5) (1,1.5,2) (1,1,1) (1,1.5,2) (1.5,2,2.5) (1.5,2,2.5) (1,1.5,2) (1,1.5,2) (1.5,2,2.5) (2,2.5,3) (1,1.5,2) (0.5,1,1.5) (1,1.5,2) (2,2.5,3) (0.5,1,1.5) (0.072,0.104,0.134)

F5 (1.5,2,2.5) (1,1.5,2) (0.5,0.667,1) (1,1,1) (0.5,1,1.5) (1,1.5,2) (1.5,2,2.5) (1.5,2,2.5) (1.5,2,2.5) (2,2.5,3) (1,1.5,2) (1,1.5,2) (0.5,1,1.5) (2,2.5,3) (1,1.5,2) (0.069,0.098,0.128)

F6 (0.5,0.667,1) (0.4,0.5,0.667) (0.4,0.5,0.667) (0.667,1,2) (1,1,1) (0.4,0.5,0.667) (1,1.5,2) (0.5,0.667,1) (0.5,0.667,1) (0.667,1,2) (1,1.5,2) (0.4,0.5,0.667) (0.333,0.4,0.5) (2,2.5,3) (0.667,1,2) (0.04,0.053,0.075)

F7 (0.667,1,2) (0.667,1,2) (0.4,0.5,0.667) (0.5,0.667,1) (1.5,2,2.5) (1,1,1) (0.5,1,1.5) (0.5,1,1.5) (0.5,0.667,1) (1,1.5,2) (1.5,2,2.5) (1.5,2,2.5) (1,1.5,2) (2,2.5,3) (1,1.5,2) (0.055,0.078,0.109)

F8 (0.5,0.667,1) (0.667,1,2) (0.5,0.667,1) (0.4,0.5,0.667) (0.5,0.667,1) (0.667,1,2) (1,1,1) (0.4,0.5,0.667) (0.667,1,2) (0.5,0.667,1) (1,1.5,2) (0.667,1,2) (0.5,1,1.5) (0.5,1,1.5) (0.5,1,1.5) (0.037,0.055,0.084)

F10 (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (0.4,0.5,0.667) (1,1.5,2) (0.667,1,2) (1.5,2,2.5) (1,1,1) (1,1.5,2) (0.5,1,1.5) (0.5,1,1.5) (0.5,0.667,1) (0.5,1,1.5) (0.5,1,1.5) (0.5,0.667,1) (0.042,0.063,0.094)

F11 (0.667,1,2) (0.5,0.667,1) (0.4,0.5,0.667) (0.4,0.5,0.667) (1,1.5,2) (1,1.5,2) (0.5,1,1.5) (0.5,0.667,1) (1,1,1) (0.5,1,1.5) (0.5,0.667,1) (0.5,0.667,1) (1,1.5,2) (0.5,1,1.5) (0.5,0.667,1) (0.039,0.056,0.08)

F12 (0.5,0.667,1) (0.4,0.5,0.667) (0.333,0.4,0.5) (0.333,0.4,0.5) (0.5,1,1.5) (0.5,0.667,1) (1,1.5,2) (0.667,1,2) (0.667,1,2) (1,1,1) (1,1.5,2) (1,1.5,2) (1,1.5,2) (1,1.5,2) (1.5,2,2.5) (0.045,0.062,0.087)

F14 (0.4,0.5,0.667) (0.667,1,2) (0.5,0.667,1) (0.5,0.667,1) (0.5,0.667,1) (0.4,0.5,0.667) (0.5,0.667,1) (0.667,1,2) (1,1.5,2) (0.5,0.667,1) (1,1,1) (0.5,1,1.5) (0.5,1,1.5) (0.5,0.667,1) (0.4,0.5,0.667) (0.035,0.049,0.073)

F15 (0.5,0.667,1) (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (1.5,2,2.5) (0.4,0.5,0.667) (0.5,1,1.5) (1,1.5,2) (1,1.5,2) (0.5,0.667,1) (0.667,1,2) (1,1,1) (1,1.5,2) (1,1.5,2) (0.5,1,1.5) (0.046,0.067,0.098)

F16 (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (0.667,1,2) (2,2.5,3) (0.5,0.667,1) (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (0.5,0.667,1) (0.667,1,2) (0.5,0.667,1) (1,1,1) (0.5,0.667,1) (0.4,0.5,0.667) (0.041,0.056,0.09)

F18 (0.4,0.5,0.667) (0.5,0.667,1) (0.333,0.4,0.5) (0.333,0.4,0.5) (0.333,0.4,0.5) (0.333,0.4,0.5) (0.667,1,2) (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (1,1.5,2) (0.5,0.667,1) (1,1.5,2) (1,1,1) (0.5,0.667,1) (0.035,0.046,0.066)

F20 (0.667,1,2) (0.667,1,2) (0.667,1,2) (0.5,0.667,1) (0.5,1,1.5) (0.5,0.667,1) (0.667,1,2) (1,1.5,2) (1,1.5,2) (0.4,0.5,0.667) (1.5,2,2.5) (0.667,1,2) (1.5,2,2.5) (1,1.5,2) (1,1,1) (0.049,0.07,0.106)

Table 5. The Principal Eigenvectors matrix

F1 F3 F4 F5 F6 F7 F8 F10 F11 F12 F14 F15 F16 F18 F20

F1 (0.5,0.5,0.5) (0,0,0) (0.102,0.124,0.163) (0.072,0.099,0.134) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F3 (0,0,0) (0.5,0.5,0.5) (0.129,0.163,0.205) (0.102,0.134,0.171) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F4 (0.245,0.3,0.346) (0.245,0.3,0.346) (0.5,0.5,0.5) (0.134,0.176,0.215) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F5 (0.173,0.2,0.245) (0.173,0.2,0.245) (0.163,0.213,0.258) (0.5,0.5,0.5) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F6 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0.245,0.3,0.346) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F7 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.5,0.5,0.5) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F8 (0,0,0) (0,0,0) (0,0,0) (0.073,0.092,0.13) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F10 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F11 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0.173,0.2,0.245) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F12 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.5,0.5,0.5) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F14 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

F15 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0) (0,0,0)

F16 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0) (0,0,0)

F18 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.173,0.2,0.245) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1) (0,0,0)

F20 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0.245,0.3,0.346) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,1,1)
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Table 6. The final sorted weights of the CSFs.

No. Symbol Final Fuzzy Weight The Final Weight of
Items

1 F4 (0.068,0.112,0.163) 0.113
2 F5 (0.062,0.1,0.147) 0.101
3 F20 (0.06,0.089,0.136) 0.092
4 F6 (0.053,0.076,0.113) 0.078
5 F11 (0.046,0.069,0.102) 0.07
6 F3 (0.039,0.067,0.1) 0.068
7 F15 (0.046,0.067,0.098) 0.068
8 F8 (0.042,0.064,0.101) 0.066
9 F10 (0.042,0.063,0.094) 0.065
10 F18 (0.044,0.062,0.093) 0.064
11 F1 (0.035,0.058,0.087) 0.059
12 F16 (0.041,0.056,0.09) 0.059
13 F14 (0.035,0.049,0.073) 0.051
14 F7 (0.027,0.039,0.054) 0.04
15 F12 (0.022,0.031,0.043) 0.032

According to Table 6, it can be concluded that the most important factors are formulated in
Figure 4. Most of these items are discussed in other improvement projects, such as the variation of
CSFs with different degrees of importance. The key to building a successful RCM project starts with a
pre-implementation phase. In this phase, some questions that need to be answered are: How much it
costs? Do we have the necessary resources? Who will be responsible for leading the effort? Do the
manager and staff have sufficient knowledge about RCM? How do you manage the implementation of
RCM tasks? Who will be involved? The spirit of employees’ cooperation before the implementation of
RCM also needs to be increased to support the success of RCM pre-implementation.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 15 

 
Figure 4. The prioritised CSFs of RCM in the pre-implementation phase. 

5. Conclusions 

A nominal group technique has been applied as a general methodology in this study. This 
method involves two main processes: (i) Determination of the CSFs using expert’s group discussion, 
and (ii) Prioritising the determining factors using Fuzzy ANP. As a result, fifteen success factors are 
important to be considered by organisations before they implement the RCM. Awareness of the need 
for improved maintenance programs in the organisation was classed as the highest priority, with a 
final weight of 0.113, followed by technical knowledge and using the best way to select critical 
equipment for RCM analysis, with a final weight of 0.101. The third priority is staffs’ commitment 
with a final weight of 0.092. The fourth priority is sufficient time, with a final weight of 0.078. The 
fifth priority is paying attention to maintenance strategies to reduce costs, with a final weight of 0.07. 
The sixth and seventh priorities are sequentially placed by RCM knowledge among staff and a 
sufficient budget, which received a similar final weight of 0.068. The eighth priority is RCM 
knowledge among managers, with a final weight of 0.066. The ninth priority is understanding the 
need to establish an RCM strategy, with a final weight of 0.065. The tenth priority is the capability to 
change the design of equipment, with a final weight of 0.064. The eleventh and twelfth priorities are 
consecutively represented by accessibility to machinery information and skilled human resources, 
with similar final weights of 0.059. The thirteenth priority is teamwork, with a final weight of 0.051. 
The fifteenth priority is training, with a final weight of 0.04. The lowest priority is the motivation 
among staff, with a final weight of 0.032. 

This study contributes to both theoretical development and practice. From an academic point of 
view, this study would advance the growth of RCM research by filling the knowledge gap in the 
related topic. The method used in this study, namely the nominal group approach, is still rarely 
applied for determining the CSFs. From a practical perspective, the identification of CSFs is useful 
for maintaining strategic planning efforts. They are important for organisations to avoid and mitigate 
unpredictable problems that emerge during RCM implementation. These CSFs would improve the 
strategic analysis and thinking required to implement RCM effectively. The framework proposed 
here can be applied as a decision support system for senior managers and practitioners involved in 
maintenance strategies. This paper contributes to existing knowledge as it provides an objective 
approach for practitioners to focus on the most critical factors and improve overall performance by 
progressively considering the identified CSFs. 

Figure 4. The prioritised CSFs of RCM in the pre-implementation phase.

5. Conclusions

A nominal group technique has been applied as a general methodology in this study. This method
involves two main processes: (i) Determination of the CSFs using expert’s group discussion, and (ii)
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Prioritising the determining factors using Fuzzy ANP. As a result, fifteen success factors are important
to be considered by organisations before they implement the RCM. Awareness of the need for improved
maintenance programs in the organisation was classed as the highest priority, with a final weight
of 0.113, followed by technical knowledge and using the best way to select critical equipment for
RCM analysis, with a final weight of 0.101. The third priority is staffs’ commitment with a final
weight of 0.092. The fourth priority is sufficient time, with a final weight of 0.078. The fifth priority is
paying attention to maintenance strategies to reduce costs, with a final weight of 0.07. The sixth and
seventh priorities are sequentially placed by RCM knowledge among staff and a sufficient budget,
which received a similar final weight of 0.068. The eighth priority is RCM knowledge among managers,
with a final weight of 0.066. The ninth priority is understanding the need to establish an RCM strategy,
with a final weight of 0.065. The tenth priority is the capability to change the design of equipment,
with a final weight of 0.064. The eleventh and twelfth priorities are consecutively represented by
accessibility to machinery information and skilled human resources, with similar final weights of 0.059.
The thirteenth priority is teamwork, with a final weight of 0.051. The fifteenth priority is training,
with a final weight of 0.04. The lowest priority is the motivation among staff, with a final weight
of 0.032.

This study contributes to both theoretical development and practice. From an academic point of
view, this study would advance the growth of RCM research by filling the knowledge gap in the related
topic. The method used in this study, namely the nominal group approach, is still rarely applied for
determining the CSFs. From a practical perspective, the identification of CSFs is useful for maintaining
strategic planning efforts. They are important for organisations to avoid and mitigate unpredictable
problems that emerge during RCM implementation. These CSFs would improve the strategic analysis
and thinking required to implement RCM effectively. The framework proposed here can be applied as
a decision support system for senior managers and practitioners involved in maintenance strategies.
This paper contributes to existing knowledge as it provides an objective approach for practitioners to
focus on the most critical factors and improve overall performance by progressively considering the
identified CSFs.

This study was carried out by considering the characteristics of oil and gas organisations,
which emphasises on improving the reliability of refineries. Petrochemical industries are classified as
high-risk companies with a dire need for cost management, where prices are very flexible and vulnerable
to changes in supply and demand. Their components are toxic, explosive, and flammable, so it is
necessary to have a systematic maintenance program to ensure safety and consistency cost-effectiveness.
This program can be further extended to other industries, such as manufacturing, through the
application of additional criteria. Customising, according to the circumstances of the situations,
the identified CSFs and the proposed framework, can be applied in other industries, particularly in
developing countries. The CSFs ranking is distinctive for each country and, therefore, the outcomes of
the present study cannot be directly applied to other countries. The CSF ranking also varies from one
country to another, even the priority o each CSF may change over time.

Further studies need to be done to advance the results of this study. A study proposing a
strategic planning process with the identified CSFs that culminate the development of an integrated
strategic planning framework for the implementation of RCM would be valuable for the manufacturing
organisations. It would provide some holistic strategic plans that describe the current status of
organisations, targets, goals for the future, and approaches for going forward.
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