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Abstract: In this paper, Lie symmetry analysis is presented for the (3 + 1)-dimensional
BKP-Boussinesq equation, which seriously affects the dispersion relation and the phase shift. To
start with, we derive the Lie point symmetry and construct the optimal system of one-dimensional
subalgebras. Moreover, according to the optimal system, similarity reductions are investigated and
we obtain exact solutions of reduced equations by means of the Tanh method. In the end, we establish
conservation laws using Ibragimov’s approach.

Keywords: (3 + 1)-dimensional BKP-Boussinesq equation; symmetry analysis; Tanh method;
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1. Introduction

In the past few years, nonlinear evolution equations have been used to explore physical
phenomena, such as marine engineering, plasma physics, fluid dynamics, etc. In order to understand
many complex physical phenomena better, we need to research explicit solutions of nonlinear evolution
equations. Wazwaz [1] proposed the (3 + 1)-dimensional generalized BKP equation

− uxxxy + uty + 3uxz − 3(uxuy)x = 0, (1)

which explains evolution of quasi-one dimensional shallow water waves when the effects of viscosity
and surface tension are taken to be negligible [2]. Recently, a host of exact solutions of Equation (1),
including grammian-type determinant solutions [3], periodic wave solutions [4], lump solutions [5]
and multiple wave solutions [6], have been discussed. Moreover, adding an extra term utt, Wazwaz
and El-Tantawy got an expansion of Equation (1), that is a new form of the (3 + 1)-dimensional
BKP-Boussinesq Equation [7]

uty − uxxxy − 3(uxuy)x + utt + 3uxz = 0, (2)

where u(x, y, t, z) is an unknown function and subscripts denote the partial derivatives. This equation
possesses the properties of both the Boussinesq and the BKP equations, which can be used to describe
the propagation of long waves in shallow water [8]. By using analysis of the Painlevé property, the
integrability properties of Equation (2) have been proved [2]. One and two soliton solutions were
derived by utilizing the simplified Hirota’s method in [7]. It was reported that coefficients of spatial
variables were left as free parameters. Based on the Bäcklund transformation, the rational solutions
and exponential wave solutions of Equation (2) were obtained in [8].

Quite a few methods have been researched to find crucially exact solutions for nonlinear partial
differential equations (PDEs). Some of the most remarkable methods are the Hirota bilinear method [9],
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the homogeneous balance method [10], the Sine–Gordon expansion method [11], the Darboux
transformation [12], the (G′/G)-expansion method [13,14], Lie symmetry analysis [15–18], the inverse
scattering method [19], etc. Lie symmetry analysis, a very powerful method among those listed above,
plays a significant role in obtaining exact solutions of PDEs. The basic idea of this method is to keep
the solution set of the partial differential equations invariant under infinitesimal transformation. Using
the symmetry method, we construct the optimal system of Equation (2), from which some interesting
exact solutions are obtained by using the classical Tanh method [20,21]. Another important aspect
is conservation laws of PDEs which have important influence on finding solutions of PDEs [22,23].
We will construct the conservation laws of Equation (2) by applying Ibragimov’s approach [24].

Eventually, the framework of this paper is as follows. In Section 2, we derive the Lie point
symmetry of the (3 + 1)-dimensional BKP-Boussinesq equation. In Section 3, the optimal system of
Equation (2) is constructed. We handle similarity reductions and obtain the reduced equations in
Section 4. In Section 5, exact solutions of the reduced equations are presented by means of the Tanh
method. Based on lbragimov’s method, we build the conservation laws in Section 6. The last section is
made up of some brief statements.

2. Lie Point Symmetry

In this section, carrying out the Lie symmetry analysis method for Equation (2), we consider a
one-parameter Lie group transformation

x → x + ε ξ1(x, y, t, z, u),

y→ y + ε ξ2(x, y, t, z, u),

t→ t + ε ξ3(x, y, t, z, u),

z→ z + ε ξ4(x, y, t, z, u),

u→ u + ε η1(x, y, t, z, u),

with a small parameter ε� 1. The infinitesimal generator linked with the above group transformation
is given as

X = ξ1(x, y, t, z, u)
∂

∂x
+ ξ2(x, y, t, z, u)

∂

∂y
+ ξ3(x, y, t, z, u)

∂

∂t
+ ξ4(x, y, t, z, u)

∂

∂z

+η1(x, y, t, z, u)
∂

∂u
.

and its fourth-order prolongation is

pr(4)X = X + η1
x

∂

∂ux
+ η1

y
∂

∂uy
+ η1

ty
∂

∂uty
+ η1

xx
∂

∂uxx
+ η1

yx
∂

∂uyx
+ η1

tt
∂

∂utt

+η1
xz

∂

∂uxz
+ η1

xxxy
∂

∂uxxxy
,
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where

η1
x = Dx(η

1)− uxDx(ξ
1)− uyDx(ξ

2)− utDx(ξ
3)− uzDx(ξ

4),

η1
y = Dy(η

1)− uxDy(ξ
1)− uyDy(ξ

2)− utDy(ξ
3)− uzDy(ξ

4),

η1
ty = DtDy(η

1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxty + ξ2uyty + ξ3utty + ξ4uzty,

η1
xx = D2

x(η
1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxxx + ξ2uyxx + ξ3utxx + ξ4uzxx,

η1
yx = DyDx(η

1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxyx + ξ2uyyx + ξ3utyx + ξ4uzyx,

η1
tt = D2

t (η
1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxtt + ξ2uytt + ξ3uttt + ξ4uztt,

η1
xz = DxDz(η

1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxxz + ξ2uyxz + ξ3utxz + ξ4uzxz,

η1
xxxy = D3

xDy(η
1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz) + ξ1uxxxxy + ξ2uyxxxy + ξ3utxxxy + ξ4uzxxxy,

and Dx, Dy, Dt, Dz, respectively, represent the total derivatives concerning x, y, t and z. Then, the
determining equations generated by the invariance conditions can be written as

pr(4)X(∆)|∆=0 = 0,

where ∆ = uty − uxxxy − 3(uxuy)x + utt + 3uxz. Furthermore, we obtain the following system of
overdetermined equations

ξ1
t = −3

2
ξ3

z , ξ1
u = ξ1

y = 0, ξ1
x =

1
5

ξ4
z ,

ξ2
t = ξ2

u = ξ2
x = 0, ξ2

y =
3
5

ξ4
z ,

ξ3
t =

3
5

ξ4
z , ξ3

u = ξ3
x = ξ3

y = 0,

η4
t = ξ4

u = ξ4
x = ξ4

y = ξ4
zz = 0,

η1
u = −1

5
η4

z , η1
x =

1
2

ξ3
z − ξ2

z , η1
y = −η1

z , ξ1
tt = −3ξ3

zz + 3ξ2
zz.

Solving this system, we can get

ξ1 =
1
3

c1x− 3
2

t(F1)z + F3(z), ξ2 = c1y + F2(z), ξ3 = c1t + F1(z), ξ4 =
5
3

c1z + c2,

η1 = −3
2

t(t− y)(F1)zz −
1
3

c1u +
1
2

x(F1)z − x(F2)z + F4(z)t− y(F3)z +
3
2

t2(F2)zz + F5(z),

where c1, c2 are arbitrary constants and F1(z), F2(z), F3(z), F4(z) and F5(z) are arbitrary functions. To
obtain physically crucial solutions, we take F1(z) = c3, F2(z) = c4, F3(z) = c5, F4(z) = c6, F5(z) = c7,
then substituting the above and obtaining

ξ1 =
1
3

c1x + c5, ξ2 = c1y + c4, ξ3 = c1t + c3, ξ4 =
5
3

c1z + c2, η1 = −1
3

c1u + c6t + c7,
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where c1, c2, c3, c4, c5, c6 and c7 are arbitrary constants. Thus seven-dimensional Lie algebra made up
of infinitesimal symmetries is spanned by the following generators

X1 =
1
3

x
∂

∂x
+ y

∂

∂y
+ t

∂

∂t
+

5
3

z
∂

∂z
− 1

3
u

∂

∂u
,

X2 =
∂

∂z
,

X3 =
∂

∂t
,

X4 =
∂

∂y
,

X5 =
∂

∂x
,

X6 = t
∂

∂u
,

X7 =
∂

∂u
. (3)

After getting the infinitesimal generators, the following group transformations, which are formed
by the Xi for i = 1, 2, 3, 4, 5, 6, 7 can be given as

G1 : (x, y, t, z, u)→ (xe
1
3 ε, yeε, teε, ze

5
3 ε, ue−

1
3 ε),

G2 : (x, y, t, z, u)→ (x, y, t, z + ε, u),

G3 : (x, y, t, z, u)→ (x, y, t + ε, z, u),

G4 : (x, y, t, z, u)→ (x, y + ε, t, z, u),

G5 : (x, y, t, z, u)→ (x + ε, y, t, z, u),

G6 : (x, y, t, z, u)→ (x, y, t, z, tε + u),

G7 : (x, y, t, z, u)→ (x, y, t, z, u + ε),

where ε is any real number. We discover that G1 is a scalar transformation, G2 is a z -translation, G3 is
a t -translation, G4 is a y -translation, G5 is an x -translation, G6 and G7 are Galilean transformations.

Therefore, if u(x, y, t, z) is a solution of Equation (2), the following solutions are equivalent to the
solutions of Equation (2)

G1(ε) · u(x, y, t, z) = e
1
3 εu(e−

1
3 εx, e−εy, e−εt, e−

5
3 εz),

G2(ε) · u(x, y, t, z) = u(x, y, t, z− ε),

G3(ε) · u(x, y, t, z) = u(x, y, t− ε, z),

G4(ε) · u(x, y, t, z) = u(x, y− ε, t, z),

G5(ε) · u(x, y, t, z) = u(x− ε, y, t, z),

G6(ε) · u(x, y, t, z) = u(x, y, t, z)− tε,

G7(ε) · u(x, y, t, z) = u(x, y, t, z)− ε,

where ε is any real number.

3. The Optimal System of One-Dimensional Subalgebras

It is impractical for us to list all possible group-invariant solutions. Consequently, we need an
effective and systematic way to classify these solutions; after doing this we form an optimal system
of group-invariant solutions. Ibragimov et al. introduced a succinct method that relies only on the
commutator table [25] to obtain the optimal system of one-dimensional subalgebras. The commutation
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relations about Lie algebra determined by X1, X2, X3, X4, X5, X6, X7 are given in Table 1. Evidently,
{X1, X2, X3, X4, X5, X6, X7} is closed under the Lie bracket.

Table 1. Table of Lie brackets.

[Xi, Xj] X1 X2 X3 X4 X5 X6 X7

X1 0 − 5
3 X2 −X3 −X4 − 1

3 X5
4
3 X6

1
3 X7

X2
5
3 X2 0 0 0 0 0 0

X3 X3 0 0 0 0 X7 0
X4 X4 0 0 0 0 0 0
X5

1
3 X5 0 0 0 0 0 0

X6 − 4
3 X6 0 −X7 0 0 0 0

X7 − 1
3 X7 0 0 0 0 0 0

An arbitrary operator X ∈ L7 is expressed as

X = l1X1 + l2X2 + l3X3 + l4X4 + l5X5 + l6X6 + l7X7.

In order to find the linear transformations about the vector l = (l1, l2, l3, l4, l5, l6, l7), we have the
following generator

Ei = ck
ijlj

∂

∂lk
, i = 1, 2, 3, 4, 5, 6, 7, (4)

where ck
ij is given as the formula [Xi, Xj] = ck

ijXk. Based on Equation (4) and Table 1, E1, E2, E3, E4,
E5, E6, E7 are written as

E1 = −5
3

l2
∂

∂l2
− l3

∂

∂l3
− l4

∂

∂l4
− 1

3
l5

∂

∂l5
+

4
3

l6
∂

∂l6
+

1
3

l7
∂

∂l7
,

E2 =
5
3

l1
∂

∂l2
,

E3 = l1
∂

∂l3
+ l6

∂

∂l7
,

E4 = l1
∂

∂l4
,

E5 =
1
3

l1
∂

∂l5
,

E6 = −4
3

l1
∂

∂l6
− l3

∂

∂l7
,

E7 = −1
3

l1
∂

∂l7
.
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With regard to the generators E1, E2, E3, E4, E5, E6 and E7, the Lie equations that have
parameters a1, a2, a3, a4, a5, a6 and a7 with the initial condition l̃|ai=0 = l, i = 1...7 can be given as

dl̃1
da1

= 0,
dl̃2
da1

= −5
3

l̃2,
dl̃3
da1

= −l̃3,
dl̃4
da1

= −l̃4,
dl̃5
da1

= −1
3

l̃5,
dl̃6
da1

=
4
3

l̃6,
dl̃7
da1

=
1
3

l̃7,

dl̃1
da2

= 0,
dl̃2
da2

=
5
3

l̃1,
dl̃3
da2

= 0,
dl̃4
da2

= 0,
dl̃5
da2

= 0,
dl̃6
da2

= 0,
dl̃7
da2

= 0,

dl̃1
da3

= 0,
dl̃2
da3

= 0,
dl̃3
da3

= l̃1,
dl̃4
da3

= 0,
dl̃5
da3

= 0,
dl̃6
da3

= 0,
dl̃7
da3

= l̃6

dl̃1
da4

= 0,
dl̃2
da4

= 0,
dl̃3
da4

= 0,
dl̃4
da4

= l̃1,
dl̃5
da4

= 0,
dl̃6
da4

= 0,
dl̃7
da4

= 0

dl̃1
da5

= 0,
dl̃2
da5

= 0,
dl̃3
da5

= 0,
dl̃4
da5

= 0,
dl̃5
da5

=
1
3

l̃1,
dl̃6
da5

= 0,
dl̃7
da5

= 0,

dl̃1
da6

= 0,
dl̃2
da6

= 0,
dl̃3
da6

= 0,
dl̃4
da6

= 0,
dl̃5
da6

= 0,
dl̃6
da6

= −4
3

l̃1,
dl̃7
da6

= −l̃3,

dl̃1
da7

= 0,
dl̃2
da7

= 0,
dl̃3
da7

= 0,
dl̃4
da7

= 0,
dl̃5
da7

= 0,
dl̃6
da7

= 0,
dl̃7
da5

= −1
3

l̃1.

Then, we present the following transformations of the solutions of these equations

T1 : l̃1 = l1, l̃2 = e−
5
3 a1 l2, l̃3 = e−a1 l3, l̃4 = e−a1 l4, l̃5 = e−

1
3 a1 l5, l̃6 = e

4
3 a1 l6, l̃7 = e

1
3 a1 l7,

T2 : l̃1 = l1, l̃2 =
5
3

a2l1 + l2, l̃3 = l3, l̃4 = l4, l̃5 = l5, l̃6 = l6, l̃7 = l7,

T3 : l̃1 = l1, l̃2 = l2, l̃3 = a3l1 + l3, l̃4 = l4, l̃5 = l5, l̃6 = l6, l̃7 = a3l6 + l7,

T4 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = a4l1 + l4, l̃5 = l5, l̃6 = l6, l̃7 = l7,

T5 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 =
1
3

a5l1 + l5, l̃6 = l6, l̃7 = l7,

T6 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5, l̃6 = −4
3

a6l1 + l6, l̃7 = −l3a6 + l7,

T7 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5, l̃6 = l6, l̃7 = −1
3

l1a7 + l7.

The structure of the optimal system demands simplification of the vector

l = (l1, l2, l3, l4, l5, l6, l7), (5)

via the transformations T1 − T7. We are absorbed in seeking the simplest representative of each class
of the similar vectors of Equation (5). The structure is classified into two cases.

Case 3.1 l1 6= 0

We take a2 = − 3l2
5l1

in the transformation T2, causing l̃2 = 0. As a result, Vector (5) is simplified as
follows

l = (l1, 0, l3, l4, l5, l6, l7). (6)

Moreover, taking a3 = − l3
l1

in the transformation T3, a4 = − l4
l1

in the transformation T4, a5 = − 3l5
l1

in

the transformation T5, a6 = 3l6
4l1

in the transformation T6, and a7 = 3l7
l1

in the transformation T7, we
reduce Vector (6) to the form

l = (l1, 0, 0, 0, 0, 0, 0).
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In consequence, considering all the possible combinations, we derive the following representative

X1. (7)

Case 3.2 l1 = 0

We consider Vector (5) of the form

l = (0, l2, l3, l4, l5, l6, l7). (8)

3.2.1 l6 6= 0

We take a3 = − l7
l6

in the transformation T3, causing l̃7 = 0. Therefore, Vector (8) is simplified as
follows

l = (0, l2, l3, l4, l5, l6, 0).

Taking all the possible combinations, we derive the following representatives

X6, X6 ± X2, X6 ± X3, X6 ± X4, X6 ± X5, X6 ± X2 ± X3, X6 ± X2 ± X4, X6 ± X2 ± X5,

X6 ± X3 ± X4, X6 ± X3 ± X5, X6 ± X4 ± X5, X6 ± X2 ± X3 ± X4, X6 ± X2 ± X3 ± X5, (9)

X6 ± X2 ± X4 ± X5, X6 ± X3 ± X4 ± X5, X6 ± X2 ± X3 ± X4 ± X5.

3.2.2 l6 = 0

We consider Vector (8) of the form

l = (0, l2, l3, l4, l5, 0, l7).

Taking all the possible combinations, we derive the following representatives

X2, X3, X4, X5, X7, X2 ± X3, X2 ± X4, X2 ± X5, X2 ± X7, X3 ± X4, X3 ± X5,

X3 ± X7, X4 ± X5, X4 ± X7, X5 ± X7, X2 ± X3 ± X4, X2 ± X3 ± X5, X2 ± X3 ± X7,

X2 ± X4 ± X5, X2 ± X4 ± X7, X2 ± X5 ± X7, X3 ± X4 ± X5, X3 ± X4 ± X7,

X3 ± X5 ± X7, X4 ± X5 ± X7, X2 ± X3 ± X4 ± X5, X2 ± X3 ± X4 ± X7,

X2 ± X3 ± X5 ± X7, X2 ± X4 ± X5 ± X7, X3 ± X4 ± X5 ± X7,

X2 ± X3 ± X4 ± X5 ± X7. (10)

Ultimately, by collecting Operators (7), (9) and (10), we reach the following theorem:

Theorem 1. An optimal system of subalgebras of seven-dimensional Lie algebras of Equation (2) is offered in
the following operators:

X1, X2, X3, X4, X5, X6, X7, X6 ± X2, X6 ± X3, X6 ± X4, X6 ± X5, X6 ± X2 ± X3,

X6 ± X2 ± X4, X6 ± X2 ± X5, X6 ± X3 ± X4, X6 ± X3 ± X5, X6 ± X4 ± X5, X6 ± X2

±X3 ± X4, X6 ± X2 ± X3 ± X5, X6 ± X2 ± X4 ± X5, X6 ± X3 ± X4 ± X5, X6 ± X2 ± X3

±X4 ± X5, X2 ± X3, X2 ± X4, X2 ± X5, X2 ± X7, X3 ± X4, X3 ± X5, X3 ± X7,

X4 ± X5, X4 ± X7, X5 ± X7, X2 ± X3 ± X4, X2 ± X3 ± X5, X2 ± X3 ± X7, X2 ± X4

±X5, X2 ± X4 ± X7, X2 ± X5 ± X7, X3 ± X4 ± X5, X3 ± X4 ± X7, X3 ± X5 ± X7,

X4 ± X5 ± X7, X2 ± X3 ± X4 ± X5, X2 ± X3 ± X4 ± X7, X2 ± X3 ± X5 ± X7, X2 ± X4

±X5 ± X7, X3 ± X4 ± X5 ± X7, X2 ± X3 ± X4 ± X5 ± X7.
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4. Similarity Reductions of the BKP-Boussinesq Equation

In the preceding sections, we studied Lie symmetry analysis and constructed the optimal
system of Equation (2). Next, we cope with the similarity reductions and obtain the reduced equations.

Case 4.1

For the generator X2, we have similarity variables

x̃ = x, ỹ = y, t̃ = t,

and the group invariant solution is written as

u = f (x̃, ỹ, t̃). (11)

Substituting Equation (11) into Equation (2), we obtain the following reduced equation

f t̃ỹ − f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ fỹx̃ + f t̃t̃ = 0. (12)

Case 4.2

For generator X4 + X5 + X7, we have similarity variables u = f (ỹ, t̃, z̃) + x where ỹ = −x + y, z̃ =

z, t̃ = t. Substituting them into Equation (2) enables f to satisfy the following reduced equation

f t̃ỹ + fỹỹỹỹ − 3 fỹỹ fỹ − 3 fỹ fỹỹ + 3 fỹỹ + f t̃t̃ − 3 fỹz̃ = 0. (13)

Case 4.3

For generator X3 + X5 + X7, we have x̃ = −x + t, ỹ = y, z̃ = z, u = f (x̃, ỹ, z̃) + x. The reduced
equation is given as follows

4 f x̃ỹ + f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ f x̃ỹ + f x̃x̃ − 3 f x̃z̃ = 0. (14)

Case 4.4

For generator X3 + X4 + X7, we have x̃ = x, t̃ = −y + t, z̃ = z, u = f (x̃, z̃, t̃) + y. Substituting
them into Equation (2) enables f to satisfy the following reduced equation

f x̃x̃x̃t̃ + 3 f x̃x̃ f t̃ + 3 f x̃ f t̃x̃ − 3 f x̃x̃ + 3 f x̃z̃ = 0. (15)

Case 4.5

For generator X2 + X3, we have u = f (x̃, ỹ, z̃) in which x̃ = x, ỹ = y, z̃ = −t + z. Substituting
them into Equation (2) causes f to satisfy the following reduced equation

− fz̃ỹ − f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ f x̃ỹ + fz̃z̃ + 3 f x̃z̃ = 0. (16)

Case 4.6

For generator X2 + X7, we have x̃ = x, ỹ = y, t̃ = t, u = f (x̃, ỹ, t̃) + z. By substituting them into
Equation (2), we have the following reduced equation

f t̃ỹ − f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ fỹx̃ + f t̃t̃ = 0. (17)

Case 4.7
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For generator X2 + X3 + X4, we have u = f (x̃, ỹ, z̃) where x̃ = x, ỹ = −y + t, z̃ = −y + z.
By substituting them into Equation (2), the following reduced equation is expressed as follows

− fz̃ỹ + f x̃x̃x̃ỹ + f x̃x̃x̃z̃ + 3 f x̃x̃ fỹ + 3 f x̃x̃ fz̃ + 3 f x̃ f x̃ỹ + 3 f x̃ f x̃z̃ + 3 f x̃z̃ = 0. (18)

Case 4.8

For generator X3 + X5, we have x̃ = −x + t, ỹ = y, z̃ = z, u = f (x̃, ỹ, z̃). By substituting them into
Equation (2), we obtain the following reduced equation

f x̃ỹ + f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ f x̃ỹ + f x̃x̃ − 3 f x̃z̃ = 0. (19)

Case 4.9

For generator X3 + X4, we have x̃ = x, ỹ = −y + t, z̃ = z, u = f (x̃, ỹ, z̃). The form of the reduced
equation is

f x̃x̃x̃ỹ + 3 f x̃x̃ fỹ + 3 f x̃ f x̃ỹ + 3 f x̃z̃ = 0. (20)

Case 4.10

For generator X2 + X6, we obtain x̃ = x, ỹ = y, t̃ = t, u = f (x̃, ỹ, t̃) + tz. The corresponding
reduced equation is

f t̃ỹ − f x̃x̃x̃ỹ − 3 f x̃x̃ fỹ − 3 f x̃ f x̃ỹ + f t̃t̃ = 0. (21)

5. The Explicit Solutions of Reduced Equations

In the previous section, we have dealt with the similarity reductions and derived the
corresponding reduced equations. In this section, we perform the Tanh method on reduced equations
and obtain exact solutions of Equation (2). With the help of exact solutions, we can clearly understand
the properties and applications of the (3 + 1)-dimensional BKP-Boussinesq equation. Here, we consider
Equations (12)–(16); the others can be obtained in the same way.

5.1. Description of the Tanh Method

The main steps of the Tanh method [20,21] are expressed as follows:

1. Consider a general form of nonlinear partial differential equation

F(u, ux, uxx, ..., uy, ..., uz, ..., ut) = 0, (22)

where F is a polynomial of the u and its derivatives.

2. By using wave transformation

u(x, y, z, t) = Φ(ξ), ξ = lx + my + nz + ct, (23)

where l, m, n and c are unknown constants. Substituting Equation (23) into Equation (22), we
obtain the following nonlinear ordinary differential equation

F(Φ, lΦ′, l2Φ′′, ..., mΦ′, ..., nΦ′, ..., cΦ′) = 0. (24)

3. Next, we introduce an independent variable

Y = Tanh(ξ), (25)
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which has the following changes

dΦ
dξ

= (1−Y2)
dΦ
dY

,

d2Φ
dξ2 = (1−Y2)[−2Y

dΦ
dY

+ (1−Y2)
d2Φ
dY2 ],

d3Φ
dξ3 = (1−Y2)[(6Y2 − 2)

dΦ
dY
− 6Y(1−Y2)

d2Φ
dY2 + (1−Y2)2 d3Φ

dY3 ],

d4Φ
dξ4 = (1−Y2)[(16Y− 24Y3)

dΦ
dY

+ (36Y2 − 8)(1−Y2)
d2Φ
dY2 + (1−Y2)2(−12Y)

d3Φ
dY3

+ (1−Y2)3 d4Φ
dY4 ]. (26)

4. We assume that the solution of Equation (24) is written in the following form

Φ(Y) =
k

∑
i=0

aiYi, (27)

where k is an integer, which is determined by balancing the highest order derivative terms with
the nonlinear terms in the resulting equation. After determining k, putting Equations (26) and (27)
into Equation (24), we get a polynomial concerning Yi(i = 0, 1, 2, · · · ). Then we collect all terms
of Yi(i = 0, 1, 2, · · · ) and make each of them equal to zero, which obtaina the algebraic equations
containing unknown numbers ai(i = 0, 1, · · · ), l, m, n, and c. Solving these equations, we get the
values of unknowns. Finally, plugging these values into equations, we derive exact solutions of
equations.

5.2. Exact Solution of Equation (12)

For Equation (12), substituting Equation (23) into Equation (12), we obtain the following
ordinary differential equation

(mc + c2)Φ′′ − l3mΦ(4) − 6l2mΦ′Φ′′ = 0. (28)

Concerning Equation (28), balancing Φ(4) with Φ′Φ′′, we have

2× 4 + k− 4 = 2× 1 + k− 1 + 2× 2 + k− 2 =⇒ k = 1.

Hence, according to the Equation (27), the solution of Equation (12) is assumed as

Φ(Y) = a0 + a1Y. (29)

Then, substituting Equations (26) and (29) into Equation (28), we collect all terms of Yi and obtain
the algebraic equations including unknown numbers ai(i = 0, 1), l, m and c. By solving these equations,
we have the following solutions

l = l, c = c, m = − c2

c− 4l3 , a0 = a0, a1 = 2l. (30)

Putting Equation (30) into Equation (12), we obtain the exact solution of Equation (12) as follows

f (x̃, ỹ, t̃) = a0 + 2lTanh(lx̃− c2

c− 4l3 ỹ + ct̃),
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where c 6= 4l3, a0 and l are arbitrary constants. By using similarity variables x̃ = x, ỹ = y,̃t = t, and
the group invariant solution u = f (x̃, ỹ, t̃), we obtain the exact solution of Equation (2) as follows

u(x, y, z, t) = a0 + 2lTanh(lx− c2

c− 4l3 y + ct), (31)

where c 6= 4l3, a0 and l are arbitrary constants.
Figure 1 depicts the kink solution of Equation (2), which is obtained by taking a0 = 0, l = 1, c = 1

at y = 1.

Figure 1. u(x, t) for a0 = 0, l = 1, c = 1, at y = 1.

5.3. Exact Solution of Equation (13)

Similarly, substituting Equation (23) into Equation (13), we have the following ordinary
differential equation

(mc + 3m2 + c2 − 3mn)Φ′′ + m4Φ(4) − 6m3Φ′Φ′′ = 0. (32)

Then, balancing Φ(4) with Φ′Φ′′ for (32), we have k = 1.
Therefore, on the basis of Equation (27), the solution of Equation (13) can be assumed as

Φ(Y) = a0 + a1Y. (33)
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Next, substituting Equation (26) and Equation (33) into Equation (32), we make all coefficients
of Yi vanish and obtain the algebraic equations including unknown numbers ai(i = 0, 1), m, n, and c.
Solving these equations, we have the following solutions

c = c, m = m, n =
mc + c2 + 3m2 + 4m4

3m
, a0 = a0, a1 = −2m.

So, the exact solution of Equation (2) is

u(x, y, z, t) = a0 − 2mTanh[m(y− x) +
mc + c2 + 3m2 + 4m4

3m
z + ct] + x,

where m 6= 0, a0 and c are arbitrary constants.
When we take a0 = 0, m = 1, c = 1 at y = 1, x = 1, the value of u is as illustrated in Figure 2

below.

Figure 2. u(z, t) for a0 = 0, m = 1, c = 1 at x = 1, y = 1.

5.4. Exact Solution of Equation (14)

Equally, substituting Equation (23) into Equation (14), we get the following ordinary differential
equation

(4lm + l2 − 3ln)Φ′′ + l3mΦ(4) − 6l2mΦ′Φ′′ = 0. (34)

Furthermore, balancing Φ(4) with Φ′Φ′′ for (34), we have k = 1.
Therefore, based on Equation (27), the solution of Equation (14) can be assumed as

Φ(Y) = a0 + a1Y. (35)
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Next, substituting Equation (26) and Equation (35) into Equation (34), we make all coefficients
of Yi vanish and obtain the algebraic equations including unknown numbers ai(i = 0, 1), l, m, and n.
Solving these equations, we have the following solutions

l = −1
2

a1, m = m, n =
4
3

m +
1
3

a2
1m− 1

6
a1, a0 = a0, a1 = a1.

So, the exact solution of Equation (2) is

u(x, y, z, t) = a0 + a1Tanh[−1
2

a1(t− x) + my + (
4
3

m +
1
3

a2
1m− 1

6
a1)z] + x,

where a0, a1 and m are arbitrary constants.
Figure 3 portrays the solution of Equation (2), which is obtained by taking a0 = 0, a1 = 2, m = 1

at y = 1, z = 1.

Figure 3. u(x, t) for a0 = 0, a1 = 2, m = 1, at y = 1, z = 1.

5.5. Exact Solution of Equation (15)

In the same way, substituting Equation (23) into Equation (15), we have the following ordinary
differential equation

(3ln− 3l2)Φ′′ + l3cΦ(4) + 6cl2Φ′Φ′′ = 0. (36)

Then, balancing Φ(4) with Φ′Φ′′ for (36), we have k = 1.
Therefore, based on the Equation (27), the solution of Equation (15) can be assumed to be

Φ(Y) = a0 + a1Y. (37)
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Next, substituting Equations (26) and (37) into Equation (36), we make all coefficients of Yi vanish
and obtain the algebraic equations including unknown numbers ai(i = 0, 1), l, n, and c. Solving these
equations, we have the following solutions

c =
3(−n + 1)

4l2 , l = l, n = n, a0 = a0, a1 = 2l.

So, the exact solution of Equation (2) is

u(x, y, z, t) = a0 + 2lTanh[lx + nz +
3(−n + 1)

4l2 (t− y)] + y,

where l 6= 0, a0 and n are arbitrary constants.
When we take a0 = 0, l = −1, n = 2 at y = 1, z = 2, the value of u is illustrated in Figure 4 below.

Figure 4. u(x, t) for a0 = 0, l = −1, n = 2, at y = 1, z = 2.

5.6. Exact Solution of Equation (16)

Likewise, substituting Equation (23) into Equation (16), we get the following ordinary differential
equation

(−mn + n2 + 3ln)Φ′′ − l3mΦ(4) − 6l2mΦ′Φ′′ = 0. (38)

Then, balancing Φ(4) with Φ′Φ′′ for Equation (38), we have k = 1.
Therefore, based on Equation (27), the solution of Equation (16) can be assumed to be

Φ(Y) = a0 + a1Y. (39)
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Next, substituting Equations (26) and (39) into Equation (38), we make all coefficients of Yi vanish
and obtain the algebraic equations including unknown numbers ai(i = 0, 1), l, m, and n. Solving these
equations, we have the following solutions

l = l, m =
n(n + 3l)

n + 4l3 , n = n, a0 = a0, a1 = 2l.

So, exact solution of Equation (2) is

u(x, y, z, t) = a0 + 2lTanh[lx +
n(n + 3l)

n + 4l3 y + n(z− t)],

where n 6= −4l3, a0 and l are arbitrary constants.
Figure 5 depicts the kink solution of Equation (2), which is obtained by taking a0 = 0, l = 1, n = 2

at y = 1, z = 2.

Figure 5. u(x, t) for a0 = 0, l = 1, n = 2, at y = 1, z = 2.

6. Construction of Conservation Laws

In this section, we chiefly construct conservation laws of Equation (2) using Ibragimov’s
method [24,26]. First, we prove that Equation (2) is nonlinear self-adjoint.

6.1. Nonlinear Self-Adjointness of Equation (2)

With regard to Equation (2), the conservation law multiplier [27] has the following form

Λ = Λ(x, y, t, z, u).
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Moreover,

Eu[Λ(uty − uxxxy − 3(uxuy)x + utt + 3uxz)] = 0, (40)

where the Euler operator Eu is expressed as

Eu =
∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
+ D2

x
∂

∂uxx
· · · . (41)

Substituting Equation (41) into Equation (40), equating the coefficients of the various monomials
in the first, second, and the other order partial derivatives and various powers of u, we obtain a system
which only has an unknown variable Λ,

Λu = 0, Λx = 0, Λyt + Λtt + 3Λzx −Λyxx = 0.

Solving this system, we have Λ = F1(z, y) + F2(z, t − y), where F1(z, y) and F2(z, t − y) are
arbitrary functions.

Consider a PDE system of order m

R�(x, u, · · · , u(k)) = 0, α = 1, · · · , m, (42)

where x = (x1, x2, · · · , xn), u = (u1, u2, · · · , um) and u(1), u(2), · · · u(k) represent the set of all first,
second,. . . , kth-order derivatives of u in regards to x.

The adjoint equations of Equation (42) are written as

(R�)∗(x, u, v, · · · , u(k), v(k)) = 0, α = 1, · · · , m, v = v(x).

Besides,

(R�)∗(x, u, v, · · · , u(k), v(k)) =
δL
δuα

,

where L is a formal Lagrangian of the following form

L = vβR�(x, u, · · · , u(k)), β = 1, 2, ..., m,

and the Euler–Lagrange operator is expressed as

δ

δuα
=

∂

∂uα
+

∞

∑
j=1

(−1)jDi1 · · ·Dij

∂

∂uα
i1···ij

, α = 1, 2, · · · , m.

Definition 1 ([28]). System (42) is said to be nonlinearly self-adjoint if the adjoint system is satisfied for all the
solutions u of System (42) upon a substitution v = ϕ(x, u) such that ϕ(x, u) 6= 0. In particular, the system

(R�)∗(x, u, ϕ, · · · , u(k), ϕ(k)) = 0, α = 1, · · · , m,

is identical to the system

λ
β
αR�(x, u, u, · · · , u(k), u(k)) = 0, β = 1, · · · , m,

that is

(R�)∗|v=ϕ(x,u) = λ
β
αR�, β = 1, · · · , m,
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where λ
β
α is a certain function.

Theorem 2 ([29]). The determining system of the multiplier Λ(x, u) of System (42) is identical to the system
of nonlinearly self-adjoint substitution.

If the formal Lagrangian of Equation (2) is given as

L = ϕ(x, y, t, z, u)(uty − uxxxy − 3(uxuy)x + utt + 3uxz),

based on Theorem 2, we can get

ϕ(x, y, t, z, u) = Λ(x, y, t, z, u) = F1(z, y) + F2(z, t− y). (43)

Therefore, Equation (2) is nonlinearly self-adjoint with Equation (43).

6.2. Construction of Conservation Laws

Theorem 3 ([28]). The system of differential Equation (42) is nonlinearly self-adjoint, so every Lie point,
Lie-Bäcklund, nonlocal symmetry

X = ξ i(x, u, u(1), · · · )
∂

∂xi + ηα(x, u, u(1), · · · )
∂

∂uα
,

admitted by the system of Equation (42) gives rise to a conservation law, where the components C i of the
conserved vector C = (C1, · · · , Cn) are determined by

C i = Wα[
∂L
∂uα

i
− Dj(

∂L
∂uα

ij
)

+DjDk(
∂L

∂uα
ijk
)− · · · ] + Dj(Wα)[

∂L
∂uα

ij
− Dk(

∂L
∂uα

ijk
) + · · · ] + DjDk(Wα)[

∂L
∂uα

ijk
− · · · ],

and Wα = ηα − ξ juα
j . The formal Lagrangian L should be written in the symmetric form concerning all mixed

derivatives uα
ij, uα

ijk, · · · .

The Lagrangian L is given as follows

L = Λ(uty − uxxxy − 3(uxuy)x + utt + 3uxz).

For the generator X = ξ1 ∂
∂x + ξ2 ∂

∂y + ξ3 ∂
∂t + ξ4 ∂

∂z + η1 ∂
∂u , in line with the Theorem 3, we obtain

W = η1 − ξ1ux − ξ2uy − ξ3ut − ξ4uz, so the components of the conservation vector have the following
form

Cx = W[
∂L
∂ux
− Dy

∂L
∂uxy

− Dx
∂L

∂uxx
− Dz

∂L
∂uxz

− DxDxDy
∂L

∂uxxxy
] + Dy(W)

∂L
∂uxy

+ Dz(W)
∂L

∂uxz
+ Dx(W)[

∂L
∂uxx

− Dx
∂L

∂uxxx
+ DxDy

∂L
∂uxxxy

] + DxDx(W)[
∂L

∂uxxx

− Dy
∂L

∂uxxxy
] + DxDxDy(W)

∂L
∂uxxxy

,

Cy = W(
∂L
∂uy

),

C t = W(
∂L
∂ut
− Dt

∂L
∂utt
− Dy

∂L
∂uty

) + Dt(W)
∂L
∂utt

+ Dy(W)
∂L

∂uty
,

Cz = 0.
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By substituting the Lagrangian L into above components of the conservation vector, Cx, Cy, C t, Cz

are simplified as

Cx = W[−3uxyΛ− Dy(−3uxΛ)− Dx(−3uyΛ)− Dz(3Λ)− DxDxDy(−Λ)] + Dy(W)(−3uxΛ)

+ Dz(W)(3Λ) + Dx(W)[−3uyΛ + DxDy(−Λ)] + DxDx(W)Dy(Λ)− DxDxDy(W)Λ, (44)

Cy = W(−3uxxΛ), (45)

C t = W[−Dt(Λ)− Dy(Λ)] + Dt(W)Λ + Dy(W)Λ, (46)

Cz = 0. (47)

For generator X1 = 1
3 x ∂

∂x + y ∂
∂y + t ∂

∂t +
5
3 z ∂

∂z −
1
3 u ∂

∂u , we have W = − 1
3 u− 1

3 xux − yuy − tut − 5
3 zuz.

According to Equations (44)–(47), the components of the conserved vector of generator X1 have the
following form

Cx
1 = (−1

3
u− 1

3
xux − yuy − tut −

5
3

zuz)[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)

− 3((F1)z + (F2)z)] + (−4
3

uy −
1
3

xuxy − yuyy − tuty −
5
3

zuzy)(−3ux)(F1(z, y) + F2(z, t− y))

+ (−2uz −
1
3

xuxz − yuyz − tutz −
5
3

zuzz)(3F1(z, y) + 3F2(z, t− y)) + (−2
3

ux −
1
3

xuxx

− yuyx − tutx −
5
3

zuzx)(−3uy)(F1(z, y) + F2(z, t− y)) + (−2
3

uxx −
1
3

xuxxx − yuyxx

− tutxx −
5
3

zuzxx)((F1)y − (F2)y)− (−5
3

uyxx −
1
3

xuxxxy − yuyxxy − tutxxy −
5
3

zuzxxy)

(F1(z, y) + F2(z, t− y)),

Cy
1 = (−1

3
u− 1

3
xux − yuy − tut −

5
3

zuz)[−3uxx(F1(z, y) + F2(z, t− y))],

C t
1 = (−1

3
u− 1

3
xux − yuy − tut −

5
3

zuz)[−(F2)t − ((F1)y − (F2)y)] + (−4
3

ut −
1
3

xuxt − yuyt

− tutt −
5
3

zuzt)(F1(z, y) + F2(z, t− y)) + (−4
3

uy −
1
3

xuxy − yuyy − tuty −
5
3

zuzy)

(F1(z, y) + F2(z, t− y)),

Cz
1 = 0.

For generator X2 = ∂
∂z , we have W = −uz. According to Equations (44)–(47), the components of

the conserved vector of generator X2 can be expressed as follows

Cx
2 = (−uz)[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z)]

+ 3uxuzy(F1(z, y) + F2(z, t− y))− 3uzz(F1(z, y) + F2(z, t− y)) + 3uyuzx(F1(z, y)

+ F2(z, t− y))− uzxx((F1)y − (F2)y) + uzyxx(F1(z, y) + F2(z, t− y)),

Cy
2 = 3uzuxx(F1(z, y) + F2(z, t− y)),

C t
2 = (−uz)[−(F2)t − (F1)y + (F2)y]− uzt(F1(z, y) + F2(z, t− y))− uzy(F1(z, y) + F2(z, t− y)),

Cz
2 = 0.



Symmetry 2020, 12, 97 19 of 21

For generator X3 = ∂
∂t , we have W = −ut. According to Equations (44)–(47), the components of

the conserved vector of generator X3 can be written in the following form

Cx
3 = (−ut)[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z)]

+ 3uxuty(F1(z, y) + F2(z, t− y))− 3utz(F1(z, y) + F2(z, t− y)) + 3uyutx(F1(z, y)

+ F2(z, t− y))− utxx((F1)y − (F2)y)− utyxx(F1(z, y) + F2(z, t− y)),

Cy
3 = 3utuxx(F1(z, y) + F2(z, t− y)),

C t
3 = −ut[−(F2)t − ((F1)y − (F2)y)]− utt(F1(z, y) + F2(z, t− y))− uty(F1(z, y) + F2(z, t− y)),

Cz
3 = 0.

For generator X4 = ∂
∂y , we have W = −uy. According to Equations (44)–(47), the components of

the conserved vector of generator X4 are given as

Cx
4 = (−uy)[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z)]

+ 3uxuyy(F1(z, y) + F2(z, t− y))− 3uyz(F1(z, y) + F2(z, t− y)) + 3uyuyx(F1(z, y)

+ F2(z, t− y))− uyxx((F1)y − (F2)y)− uyyxx(F1(z, y) + F2(z, t− y)),

C t
4 = −uy[−(F2)t − ((F1)y − (F2)y)]− uyt(F1(z, y) + F2(z, t− y))− uyy(F1(z, y) + F2(z, t− y)),

Cz
4 = 0.

For generator X5 = ∂
∂x , we have W = −ux. According to Equations (44)–(47), the components of

the conserved vector of the generator X5 can be expressed as

Cx
5 = (−ux)[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z)]

+ 3uxuxy(F1(z, y) + F2(z, t− y))− 3uxz(F1(z, y) + F2(z, t− y)) + 3uyuxx(F1(z, y)

+ F2(z, t− y))− uxxx((F1)y − (F2)y)− uxyxx(F1(z, y) + F2(z, t− y)),

Cy
5 = 3uxuxx(F1(z, y) + F2(z, t− y)),

C t
5 = −ux[−(F2)t − ((F1)y − (F2)y)]− uxt(F1(z, y) + F2(z, t− y))− uxy(F1(z, y) + F2(z, t− y)),

Cz
5 = 0.

For generator X6 = t ∂
∂u , we have W = t. According to Equations (44)–(47), the components of the

conserved vector about the generator X6 can be written as

Cx
6 = t[(−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z)],

Cy
6 = t[−3uxx(F1(z, y) + F2(z, t− y))],

C t
6 = t[−(F2)t − ((F1)y − (F2)y)] + (F1(z, y) + F2(z, t− y)),

Cz
6 = 0.
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For generator X7 = ∂
∂u , we have W = 1. According to the formulas (44)–(47), the components of

the conserved vector concerning the generator X7 are written as

Cx
7 = (−3uyx)(F1(z, y) + F2(z, t− y)) + 3ux((F1)y − (F2)y)− 3((F1)z + (F2)z),

Cy
7 = −3uxx(F1(z, y) + F2(z, t− y)),

C t
7 = −(F2)t − ((F1)y − (F2)y),

Cz
7 = 0.

7. Conclusions

In this paper, the Lie symmetry analysis method is applied to the (3 + 1)-dimensional
BKP-Boussinesq equation. Based on this method, we construct the optimal system of one-dimensional
subalgebras. Furthermore, some similarity reductions are handled and exact solutions of the reduced
equations are obtained by means of the Tanh method. Finally, it is shown that Equation (2) is nonlinearly
self-adjoint. Meanwhile, using Ibragimov’s method, we derive the conservation laws widely used in
the field of mathematical physics. After obtaining the exact solutions of Equation (2), we can depict
the propagation of long waves in shallow water better and know more applications in the physical
field, such as the percolation of water in porous subsurfaces of a horizontal layer of material.
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