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Abstract: In the literature of information theory and fuzzy set doctrine, there exist various prominent
measures of divergence; each possesses its own merits, demerits, and disciplines of applications.
Divergence measure is a tool to compute the discrimination between two objects. Particularly, the
idea of divergence measure for fuzzy sets is significant since it has applications in several areas viz.,
process control, decision making, image segmentation, and pattern recognition. In this paper, some
new fuzzy divergence measures, which are generalizations of probabilistic divergence measures are
introduced. Next, we review two different generalizations of the following measures. Firstly, directed
divergence (Kullback–Leibler or Jeffrey invariant) and secondly, Jensen difference divergence, based
on these measures, we develop a class of unified divergence measures for fuzzy sets (FSs). Then, a
method based on divergence measure for fuzzy sets (FSs) is proposed to evaluate the multi-criteria
decision-making (MCDM) problems under the fuzzy atmosphere. Lastly, an illustrative example of
the recycling job selection problem of sustainable planning of the e-waste is presented to demonstrate
the reasonableness and usefulness of the developed method.

Keywords: divergence measure; entropy; fuzzy set; multi-criteria decision making; recycling job
selection; e-waste

1. Introduction

The doctrine of fuzzy sets (FSs) and fuzzy logic pioneered by Zadeh [1], has been employed to form
uncertainty, lack of information, and ambiguity arises in the decision making, logical programming,
image processing, process control, pattern recognition, medical diagnosis, etc. Zadeh [2] defined the
concept of fuzzy entropy as an essential tool for quantifying the fuzzy information. Corresponding to
Shannon’s entropy, De Luca and Termini [3] established the measure of entropy and originated the

Symmetry 2020, 12, 90; doi:10.3390/sym12010090 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9949-5813
https://orcid.org/0000-0003-1010-3655
https://orcid.org/0000-0002-3911-2152
http://dx.doi.org/10.3390/sym12010090
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/90?type=check_update&version=2


Symmetry 2020, 12, 90 2 of 22

essential axioms, which the fuzzy entropy should fulfill. Afterward, Pal and Pal [4] introduced the
exponential fuzzy entropy. Moreover, fuzzy divergence measure as a prominent tool to evaluate the
degree of discrimination for FSs has received much concentration in the last decades. Next, divergence
measure construction is not easy work. First, Bhandari and Pal [5] defined the measure of directed
divergence in terms of axioms for FSs based on a directed divergence of [6]. Shang and Jiang [7]
provided an altered form of Bhandari and Pal [5] measured based on [8]. Next, Montes, et al. [9]
improved the axiomatic definition of a divergence measure for FSs with various properties. They
mentioned that very well-known functions described in the literature to compute the discrimination
for FSs are, indeed, divergences. Conversely, it is also an amount of dissimilarity, and it persuades a
set of desirable properties, which are constructive for evaluating discrimination for FSs.

In the literature, various information measures have been proposed such that each definition
enjoys some definite axiomatic or heuristic postulates, which lead to their extensive applications in
different disciplines. A conventional categorization to distinguish these measures is as: parametric,
non-parametric, and entropy-type measures of information [10]. Parametric measures determine the
amount of information delivered by the object regarding an unknown parameter α and are functions
of α. The renowned measures of this type are Fisher [11] measures of information. Non-parametric
measures quantify the amount of information delivered by the object for discriminating the object P
against the object Q, or for determining the distance or similarity between P and Q. The Kullback–Leibler
(K–L) [6], Bhandari and Pal [5] and Fan and Xie [12] measures are the prominent non-parametric
measures. Entropy measures assess the amount of information enclosed in distribution, that is, the
degree of fuzziness related to the objectives. The renowned measures are De Luca and Termini [3] and
Pal and Pal [4] measure and others [13–16].

In recent years, several of the previously published papers highlighted the importance of decision
making methods in different application areas [17–20]. Though, in general, the criteria concerned
in the multi-criteria decision-making (MCDM) dispute with each other, and therefore, it is difficult
to find a solution gratifying all criteria at the same time. The general illustration is an association
between the development prospect and environment protection. An effective solution needs to be
capable of maximizing both objectives, although, in most circumstances, such an option is not feasible.
The Pareto efficient solution was the first that showed such circumstances, holding the condition that
the enhancement of one criterion will cause worsening of at least one other criterion [21]. Consistent
with the compromise programming [22], a large number of approaches have been developed in the
literature for the purpose of handling the MCDM-related problems [18], for instance, the methods such
as TOPSIS, ELECTRE, PROMETHEE, VIKOR, etc.

Motivation and Novelty

The problem of e-waste requires to be solved effectively and immediately based on the sustainability
principles with the aim of achieving the circular economy objectives, as mentioned earlier [23]. Existing
literature has been comprehensively reviewed, and numerous experts in the field have been interviewed
in order to find out the way e-waste is managed currently across the world [24–28]. In general, the
e-waste management can be classified into improper or proper [13]. The improper e-waste management
refers to the utilization of several recycling technologies, which lead in turn to social and environmental
degradations, hence bringing about negative sustainability implications. On the other hand, proper
e-waste management is often implemented only in developed countries since they have access to
necessary infrastructure. The aim of the paper is understanding the reason why a number of firms and
organizations have not adopted the policy measures pertaining to the e-waste management, especially
with taking into account the fact that the electronics industry is playing one of the most significant
roles in economy, and that there are lots of public health problems accompanied with the inappropriate
removal of e-waste.

Sustainable planning of e-waste issues has received much attention in waste management, but
there have been very few studies for the practice of recycling partner job selection [29,30]. Due to
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multiple criteria, the recycling job selection is considered as an MCDM problem concerning both
qualitative and quantitative uncertain information. In order to handle the recycling partner job selection
problem in e-waste management, we present a new MCDM approach under fuzzy environment.
The objectives of the present study are listed in the following points:

• Some new divergence measures are introduced for FSs based on probabilistic divergence measures.
• Based on directed divergence measures and Jensen’s difference divergence measures, a class of

unified divergence measures is developed for FSs.
• Based on proposed measures, an MCDM technique is presented to solve the MCDM problems

over FSs.
• A decision-making problem of e-waste recycling partner selection is solved to illustrate the

applicability and usefulness of the proposed method.
• A comparison with existing methods is discussed to reveal the validity of the developed method.

The structure of this paper is organized in the following sections. Section 2 provided the
fundamental outset of FSs and fuzzy information measures of the proposed method. Section 3
proposed a novel method based on a new divergence measure for FSs. Section 4 presented the analysis
of the proposed method for e-waste recycling job selection. Section 5 presented the results of the
proposed method and comparison of the proposed method with other existing methods. Section 6
discussed the conclusion, limitations, and recommendations for further work.

2. Preliminaries

This section firstly reminds various entropy and divergence measures for the probability
distribution. We also discuss the outset of FSs and fuzzy information measures.

For any probability distribution S = (s1, s2, . . . , sn) ∈ ∆n, [31] pioneered the entropy as follows:

H(S) = −
r∑

i=1

si ln si. (1)

Rényi [32] is given by

HRenyi(S) =
1

α− 1
ln

 r∑
i=1

sαi

, (2)

where α > 0, α , 1.
Pal and Pal [4] pioneered entropy on exponential function as

HPal(S) =
r∑

i=1

sie(1−si) − 1. (3)

Next, Kullback and Leibler [6] proposed the divergence measure from a probability distribution S
to probability distribution T, which measures the degree of discrimination, is defined as

CKL(S||T) =
r∑

i=1

si ln
si
ti

. (4)

The ln represents the logarithmic used throughout this correspondence unless otherwise stated. It
is well known that CKL(S||T) is nonnegative, additive but not symmetric [33]. To obtain an asymmetric
measure, one can define its symmetric version, i.e., Jeffrey’s invariant is mentioned as [34]

Dm(S||T) = CKL(S||T) + CKL(T||S). (5)

Clearly, Equations (4) and (5) divergences share most of their properties.
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Renyi divergence is associated with Rényi [32] entropy as Kullback–Leibler divergence is associated
with Shannon’s entropy, and comes up in many settings.

CR(S||T) =
1

α− 1
ln

r∑
i=1

sαi t1−α
i , (6)

where α > 0, α , 1.
Lin [8] initiated the Jensen–Shannon divergence for the distributions P and Q is given by

CJS(S||T) = H
(S + T

2

)
−

H(S) + H(T)
2

, (7)

where H(.) is the Shannon entropy shown in (1).
For simplicity, we write

R(S||T) =
1
2

[
CJS

(
S
∣∣∣∣∣∣∣∣∣∣S + T

2

)
+ CJS

(
S
∣∣∣∣∣∣∣∣∣∣S + T

2

)]
. (8)

Definition 1 (Zadeh [1]). Let X = {x1, x2, . . . , xn} be the finite discourse set. An FS K defined on X is
given as

K =
{
(xi,µK(xi)) : µK(xi) ∈ [0, 1]; ∀xi ∈ X

}
, (9)

where the function µK(xi)(0 ≤ µK(xi) ≤ 1) is the membership degree of xi to K in X.

Throughout this paper, R = [0, ∞ ], let FSs(X) be the set of all FSs on a X and P (X) be the set
of all crisp sets on discourse set X. µK(xi) is the membership function of K ∈ FS(X), [a] is the FSs of
X for which µ [a](xi) = a, ∀ xi ∈ X (a ∈ [0, 1]). For FSs K, we use Kc to articulate the complement of
K, i.e., µKc(xi) = 1−µK(xi), ∀ xi ∈ X. For FSs K and L, K∪L is given as µK∪L(xi) = max

{
µK(xi), µL(xi)

}
,

K ∩ L is defined as µK∩L(xi) = min
{
µK(xi), µL(xi)

}
and K ⊆ L iff µK(xi) ≤ µL(xi).

Definition 2 (Montes, Couso, Gil and Bertoluzza [9]). Let K =
{
(xi, µK(xi)) : xi ∈ X

}
and L ={

(xi, µL(xi)) : xi ∈ X
}

be two FSs in the finite discourse set X. Then, the function Dm : FS(X) × FS(X)→ R
is called the divergence measure for FSs if it holds the following axioms:

(P1). Dm(K||L) = Dm(L||K),
(P2). Dm(K||L) = 0 if K = L,
(P3). Dm(K ∩ T

∣∣∣∣∣∣L∩ T) ≤ Dm(K
∣∣∣∣∣∣L) for every T ∈ FS(X),

(P4). Dm(K ∪ T
∣∣∣∣∣∣L∪ T) ≤ Dm(K

∣∣∣∣∣∣L) for every T ∈ FS(X).

Firstly, Bhandari and Pal [5] pioneered divergence measure for FSs based on KL-divergence
measure as follows:

CEB(K||L) =
r∑

i=1

[
µK(xi) ln

µK(xi)

µL(xi)
+ (1− µK(xi)) ln

(1− µK(xi))

(1− µK(xi))

]
, (10)

and symmetric form is given by

DmB(K||L) = CEB(K||L) + CEB(L||K). (11)

Fan and Xie [12] developed exponential divergence as follows:

CEF(K||L) =
r∑

i=1

(
1− (1− µK(xi))e(µK(xi)−µL(xi)) −µK(xi) e(µL(xi)−µK(xi))

)
. (12)
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Bajaj and Hooda [35] proposed a divergence measure based on Rényi [32] divergence measure
as follows:

CEH(K||L) =
1

α− 1
ln

 r∑
i=1

[
µαK(xi)µ

1−α
L (xi) +(1− µK(xi))

α(1− µL(xi))
1−α

])
, (13)

where α > 0, α , 1.
The aim of this review is to give different two parametric generalizations of measures (4), (5), and

(7) for FSs and to study their properties and application. These generalizations are put in the form of
unified expression for FSs. We will also develop some new extension of divergence measures for FSs
and apply these measures to information theory, image processing, statistics, and engineering.

3. Proposed Method

From the available literature, it was examined that all the existing measures did not incorporate
the plan of decision expert (DE) preferences into the measure. Moreover, the above-mentioned
measures are in a linear order; therefore, they do not provide the precise nature of the options. In order
to take the flexibility and efficiency of the criteria of fuzzy sets, the new generalized parametric
divergence measures were presented to enumerate the degree of fuzziness of a set. For this, novel
divergence measures for FSs have been developed, which composes the DEs more consistent and
flexible for the diverse values of the parameters. After that, these measures have been originated by
intriguing the convex linear combinations of the degree of membership between two FSs. Based on the
above-mentioned works, some enviable properties of developed measures have been studied. Here,
the purpose was to endeavor with the parametric and non-parametric extension of symmetric and
non-symmetric divergences. A similar variety of work of the divergence measures with their parametric
generalization for probability distributions can be done in [36]. It is worth mentioning that developing
a generalized divergence by initiating a real parameter permits to unite various existing divergence
measures considered separately and acquiesces several new divergences. It offers a vast horizon of
divergence measures for authors to select that deems finest for their research disciplines. Next, we
developed divergence measures based method to construct the criterion weights. Criterion, which has
less amount of entropy and larger the cross-entropy, needs to be carefully taken into consideration.
To reinforce the weight-evaluating approaches and overall performance values of alternatives, some
new divergence measures were initiated, which extend the existing ones.

3.1. New Divergence for FSs

Corresponding to Kumar and Chhina [10] divergence measure, we proposed the divergence
measure for FSs as follows:

Dm1(K||L) =
r∑

i=1

[
(µK(xi)+µL(xi))(µK(xi)−µL(xi))

2

µK(xi)µL(xi)
ln

(
(µK(xi)+µL(xi))

2
√
µK(xi)µL(xi)

)
+

(2−µK(xi)−µL(xi))(µK(xi)−µL(xi))
2

(1−µK(xi))(1−µL(xi))
ln

(
(2−µK(xi)−µL(xi))

2
√
(1−µK(xi))(1−µL(xi))

)]
.

(14)

Measure (14) describes as symmetric Chi-square, arithmetic, and geometric mean divergence
measure for FSs. Consider the function

f (x) =
r∑

i=1

 (x + 1)(x− 1)2

x
ln

(
(x + 1)

2
√

x

). (15)

where x ∈ [0, 1]. It may be noted that f (x) fulfills f (x) > 0, ∀ x ∈ [0, 1], and f (1) = 0. Thus
Dm1(K

∣∣∣∣∣∣L) = 0 if K = L. The convexity of f (x) ensures that Dm1(K||L) is non-negative and
Dm1(K||L) = Dm1(L||K).
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Corresponding to Triangular divergence measure [37] for the probability distribution, we define
the following divergence measure for FSs as

Dm2(K||L) =
r∑

i=1

 (µK(xi) − µL(xi))
2

µK(xi) + µL(xi)
+

(µL(xi) − µK(xi))
2

2− µK(xi) − µL(xi)

 . (16)

Next, we obtained divergence inequality presenting the bounds for Dm1(K||L) in terms of Dm2(K||L).

Theorem 1. The measures Dm1(K||L) and Dm2(K||L), are defined as (14) and (16), hold the inequality

Dm1(K||L) ≤ 4
∑ (µK(xi) − µL(xi))

2√
µK(xi)µL(xi)

+
(µL(xi) − µK(xi))

2√
(1− µK(xi))(1− µL(xi))

− 2 Dm2(K||L). (17)

Proof. Let α, β ∈ [0, 1]. Consider arithmetic mean (AM), geometric mean (GM) and harmonic mean
(HM), then they hold inequality, i.e., HM ≤ GM ≤ AM. Now, HM ≤ AM.

Or,
2αβ
α+ β

≤
α+ β

2
.

Or,

ln

 α+ β

2
√
αβ

 ≥ ln

2
√
αβ

α+ β

. (18)

Multiplying both sides of (α+ β)(α− β)2/αβ, we obtained

(α+ β)(α− β)2

αβ
ln

 α+ β

2
√
αβ

 ≥ (α+ β)(α− β)2

αβ
ln

2
√
αβ

α+ β

. (19)

From HM ≤ GM, we have 2
√
αβ/α+ β ≤ 1, and thus

ln

2
√
αβ

α+ β

 = ln

1 +

2
√
αβ

α+ β
− 1

 ≈ 4
√
αβ

α+ β
−

2αβ

(α+ β)2 −
3
2

. (20)

Now, from (18) and (19), we obtained

(α+ β)(α− β)2

αβ
ln

 α+ β

2
√
αβ

 ≤ 4(α− β)2√
αβ

−
2(α− β)2

(α+ β)
.

Therefore,

r∑
i=1

[
(µK(xi)+µL(xi))(µK(xi)−µL(xi))

2

µK(xi)µL(xi)
ln

(
(µK(xi)+µL(xi))

2
√
µK(xi)µL(xi)

)
+

(2−µK(xi)−µL(xi))(µL(xi)−µK(xi))
2

(1−µK(xi))(1−µL(xi))
ln

(
(2−µK(xi)−µL(xi))

2
√
(1−µK(xi))(1−µL(xi))

)]
≤ 4

∑(
(µK(xi)−µL(xi))

2
√
µK(xi)µL(xi)

+
(µL(xi)−µK(xi))

2
√
(1−µK(xi))(1−µL(xi))

)
− 2

r∑
i=1

[
(µK(xi)−µL(xi))

2

µK(xi)+µL(xi)
+

(µL(xi)−µK(xi))
2

2−µK(xi)−µL(xi)

]
.

(21)

Hence

Dm1(K||L) ≤ 4
∑ (µK(xi) − µL(xi))

2√
µK(xi)µL(xi)

+
(µL(xi) − µK(xi))

2√
(1− µK(xi))(1− µL(xi))

− 2 Dm2(K||L). (22)
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Based on Parkash [38] divergence measure, we introduce divergence measure for FSs as follows:

DmR(K||L) = 1
(α− 1

2 )

r∑
i=1

µK(xi)
(
α+ 1

2

)ln (
µK(xi)
µL(xi)

)
+(1− µK(xi))

(
α+ 1

2

)ln (
(1−µK(xi))
(1−µL(xi))

)
− 1

; α > 0, α , 1
2 . (23)

However, it has been pointed out that (23) has a drawback, i.e., when µL(xi) approaches 0 or 1, its
value will tend toward infinity. Therefore, the modified version is

DmR1(K||L) = 1
(α− 1

2 )

r∑
i=1

µK(xi)
(
α+ 1

2

)ln (
µK(xi)

(1/2) (µK(xi)+µL(xi))
)
+(1− µK(xi))

(
α+ 1

2

)ln (
(1−µK(xi))

1− (1/2)(µK(xi)+µL(xi))
)
− 1

;
α > 0, α , 1

2 .
(24)

Measures (23) and (24) are not symmetric. Therefore the symmetric version is given as follows:

Dm3(K||L) = DmR(K||L)) + DmR(L||K). (25)

�

Remark 1. It is noted that if α→ 1/2, then (23) and (24) reduce to the Bhandari and Pal [5] and Shang and
Jiang [7] divergence measures for FSs.

Inspired by [39] information radius measure, the divergence measure for FSs is as

Dm4(K||L) =



1
α−1

r∑
i=1

[(
µαK(xi)+µ

α
L(xi)

2

)(
µK(xi)+µL(xi)

2

)1−α

+
(
(1−µK(xi))

α+(1−µL(xi))
α

2

)(
2−µK(xi)−µL(xi)

2

)1−α
− 1

]
, α(> 0) , 1,

r∑
i=1

[(
µK(xi) lnµK(xi)+µL(xi) lnµL(xi)

2

)
−

(
µK(xi)+µL(xi)

2

)
ln

(
µK(xi)+µL(xi)

2

)
+

(
(1−µK(xi)) ln(1−µK(xi))+(1−µL(xi)) ln(1−µL(xi))

2

)
−

(
2−µK(xi)−µL(xi)

2

)
ln

(
2−µK(xi)−µL(xi)

2

) ]
, α = 1.

(26)

Theorem 2. Let K, L, T ∈ FSs(X), then the proposed measure Dmγ(K||L)(γ = 1, 2, 3, 4) satisfies the following
properties, which are given as follows:

(J1). Dmγ(K||L) = Dmγ(L||K) and 0 ≤ Dmγ(K||L) ≤ 1,
(J2). Dmγ(K||L) = 0 if K = L,
(J3). Dmγ(K ∩ T||L∩ T) ≤ Dmγ(K||L) for every T ∈ FS(X),
(J4). Dmγ(K ∪ T||L∪ T) ≤ Dmγ(K||L) for every T ∈ FS(X),
(J5). Dmγ(K||L) = Dmγ(Kc

||Lc),
(J6). Dmγ(K||Lc) = Dmγ(Kc

∣∣∣∣∣∣L),
(J7). Dmγ(K

∣∣∣∣∣∣Kc) = 1, if K is crisp set,
(J8). Dmγ(K||K ∪ L) = Dmγ(K ∩ L||L) ≤ Dmγ(K||L) for K ⊆ L and L ⊆ K,
(J9). Dmγ(K ∪ L||K ∩ L) = Dmγ(K||L),
(J10). Dmγ(K||L) ≤ Dmγ(K||T) and Dmγ(L||T) ≤ Dmγ(K||T) for K ⊆ L ⊆ T.

3.2. Unified (α, β)− Divergence Measure for FSs

Bajaj and Hooda [35] defined the following divergence for FSs based on Sharma and Mittal [40]:
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Cβα(K||L) =
1

1− β


 r∑

i=1

{
µαK(xi)µ

1−α
L (xi) + (1− µK(xi))

α(1− µL(xi))
1−α

}) β−1
α−1
− 1

 . (27)

In particular, when α = β, we obtained

Cββ(K||L) =
1

β− 1

 r∑
i=1

{
µ
β
K(xi)µ

1−β
L (xi) + (1− µK(xi))

β(1− µL(xi))
1−β

}
− 1

. (28)

The measure Cββ(K||L) has also been studied extensively in various ways. For a brief review, the
following limiting cases are as follows:

lim
α→1

Cβα(K||L) = Cβ1(K||L);limβ→1
Cβα(K||L) = C1

α(K||L);

lim
α→1

C1
α(K||L) = lim

β→1
Cβ1(K||L) = lim

β→1
Cββ(K||L) = C(K||L);

where

Cβ1(K||L) =
1

β− 1

exp

(β− 1)
r∑

i=1

(
µK(xi) ln

µK(xi)

µL(xi)
+(1− µK(xi)) ln

(1− µK(xi))

(1− µL(xi))

)}
− 1

]
, (29)

is an exponential-type divergence measure for FSs.
Instead of studying these measures separately, we can study them jointly for FSs based on [36] for

the probability distribution. The unification is given as follows:

Sβα(K||L) =


Cβα(K||L), α , 1, β , 1,
Cβ1(K||L), α = 1, β , 1,
C1
α(K||L), α , 1, β = 1,

C(K||L), α = 1, β = 1,

(30)

For all K, L ∈ FSs, α ∈ [0, ∞], and β ∈ [−∞, ∞]. Here, the measure Cββ(K||L) does not appear in

the unified Expression (30), it is a particular case of Cβα(K||L). Hence it is already contained in it. The
unified expression Sβα(K||L) is called the unified (α, β)− directed divergence.

3.2.1. First Generalization of the Unified Expression

Next, D and R-divergence have been given by (5) and (8), respectively, depending on the divergence
measure C(K||L). Based on unified expression Sβα(K||L) and the Equations (5) and (8), we extended the
D and R-divergences. Here, an alternative system to generalize the D and R-divergence was discussed.

1Vβ
α(K||L) =

1
2

[
Sβα

(
K
∣∣∣∣∣∣∣∣∣∣K + L

2

)
+ Sβα

(
L
∣∣∣∣∣∣∣∣∣∣K + L

2

)]
. (31)

and
1Wβ

α(K||L) = Sβα(K||L) + Sβα(L||K), (32)

For all K, L ∈ FSs, α ∈ [0, ∞] and β ∈ [−∞, ∞].
The generalized Jensen difference divergence measures according to the (31) are given by the

following unified expression:
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1Vβ
α(K||L) =


1Rβα(K||L), α , 1, β , 1,
1Rβ1(K||L), α = 1, β , 1,
1R1

α(K||L), α , 1, β = 1,
R(K||L), α = 1, β = 1,

(33)

where

1Rβα(K||L) =
2

(β−1)


{

r∑
i=1

µαK(xi)
(
µK(xi)+µL(xi)

2

)1−α

+(1− µK(xi))
α
(

2−µK(xi)−µL(xi)
2

)1−α
} β−1
α−1

+

{
r∑

i=1
µαL(xi)

(
µK(xi)+µL(xi)

2

)1−α

+(1− µL(xi))
α
(

2−µK(xi)−µL(xi)
2

)1−α
} β−1
α−1

− 2

, α , 1, α , β,

1Rβ1(K||L) =
2

(β−1)

exp


(β− 1)

r∑
i=1

(
µK(xi) ln

(
2µK(xi)

µK(xi)+µL(xi)

)
+(1− µK(xi)) ln

(
2(1−µK(xi))

2−µK(xi)−µL(xi)

))
exp


(β− 1)

r∑
i=1

(
µL(xi) ln

(
2µL(xi)

µK(xi)+µL(xi)

)
+(1− µL(xi)) ln

(
2(1−µL(xi))

2−µK(xi)−µL(xi)

))
− 2

, β , 1,

and

1R1
α(K||L) =

2
α−1


ln



r∑
i=1


µαK(xi)

(
µK(xi)+µL(xi)

2

)1−α

+(1− µK(xi))
α
(

2−µK(xi)−µL(xi)
2

)1−α
}

r∑
i=1


µαL(xi)

(
µK(xi)+µL(xi)

2

)1−α

+(1− µL(xi))
α
(

2−µK(xi)−µL(xi)
2

)1−α
}




, α , 1,

(34)

for all K, L ∈ FSs, α ∈ [0, ∞], and β ∈ [−∞, ∞].
The generalized D-divergence measures, according to (32) are given by the following expression:

1Wβ
α(K||L) =


1Dm

β
α(K||L), α , 1, β , 1,

1Dm
β
1(K||L), α = 1, β , 1,

1Dm
1
α(K||L), α , 1, β = 1,

Dm(K||L), α = 1, β = 1,

(35)
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where

1Dm
β
α(K||L) =

2
(β−1)


{

r∑
i=1

µαK(xi)µ
1−α
L (xi)

+(1− µK(xi))
α(1− µL(xi))

1−α
} β−1
α−1

+

{
r∑

i=1
µαL(xi)µ

1−α
K (xi)

+(1− µL(xi))
α(1− µK(xi))

1−α
} β−1
α−1
− 2

, α , 1, α , β,

1Dm
β
1(K||L) =

1
(β−1)

exp


(β− 1)

r∑
i=1

(
µK(xi) ln

(
µK(xi)
µL(xi)

)
+(1− µK(xi)) ln

(
(1−µK(xi))

1−µL(xi)

))
+ exp


(β− 1)

r∑
i=1

(
µL(xi) ln

(
µL(xi)
µK(xi)

)
+(1− µL(xi)) ln

(
(1−µL(xi))

(1−µK(xi))

))
− 2

, β , 1,

and

1Dm
1
α(K||L) =

1
α−1

ln


r∑
i=1

 µαK(xi)µ
1−α
L (xi)

+(1− µK(xi))
α(1− µL(xi))

1−α
}

r∑
i=1

 µαL(xi)µ
1−α
K (xi)

+(1− µL(xi))
α(1− µK(xi))

1−α
}



 , α , 1,

(36)

For all K, L ∈ FSs, α ∈ [0, ∞] and β ∈ [−∞, ∞].
In particular, when α = β, we obtained

1Rββ(K||L) = Rββ(K||L)

= 1
(β−1)


r∑

i=1

{(
µαK(xi)+µ

α
L(xi)

2

)(
µK(xi)+µL(xi)

2

)1−α

+
(
(1−µK(xi))

α+(1−µL(xi))
α

2

)(
2−µK(xi)−µL(xi)

2

)1−α
}
− 1

 , β > 0, β , 1,
(37)

and
1Dm

β
β
(M||N) = Dm

β
β
(M||N)

= 2
(β−1)



r∑
i=1

({
µ
β
K(xi)µ

1−β
L (xi)

+(1− µK(xi))
β(1− µL(xi))

1−β
}

+
{
µ
β
L(xi)µ

1−β
K (xi)

+(1− µL(xi))
β(1− µK(xi))

1−β
})
− 2


, β , 1, β > 0.

(38)

3.2.2. Second Generalization of Unified Expression

The expressions emerging in (37) and (38) are employed to generate an alternative method for
generalizing the R and D-divergence, respectively.

The generalization of Jensen divergence measure is based on an expression (37) are given by

2Vβ
α(K||L) =


2Rβα(K||L), α , 1, β , 1,
2Rβ1(K||L), α = 1, β , 1,
2R1

α(K||L), α , 1, β = 1,
R(K||L), α = 1, β = 1,

(39)
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where

2Rβα(K||L) =
1

(β−1)


{

r∑
i=1

(
µαK(xi)+µ

α
L(xi)

2

)(
µK(xi)+µL(xi)

2

)1−α

+
(
(1−µK(xi))

α+(1−µL(xi))
α

2

)(
2−µK(xi)−µL(xi)

2

)1−α
} β−1
α−1

− 1

 ,α , 1, α , β,

2Rβ1(K||L) =
1

(β−1) [exp
{
(β− 1)R(K||L)

}
− 1] , β , 1, and

2R1
α(K||L) =

1
α−1

ln


r∑
i=1


(
µαK(xi)+µ

α
L(xi)

2

)(
µK(xi)+µL(xi)

2

)1−α

+
(
(1−µK(xi))

α+(1−µL(xi))
α

2

)(
2−µK(xi)−µL(xi)

2

)1−α
}


 , α , 1,

(40)

for all K, L ∈ FSs, α ∈ [0, ∞], and β ∈ [−∞, ∞].
The second generalization of D-divergence is based on an expression emerging in (38) as follows:

2Wβ
α(K||L) =


2Dm

β
α(K||L), α , 1, β , 1,

2Dm
β
1(K||L), α = 1, β , 1,

2Dm
1
α(K||L), α , 1, β = 1,

Dm(K||L), α = 1, β = 1,

(41)

where

1Dm
β
α(K||L) =

2
(β−1)


(

r∑
i=1

1
2

{
µαK(xi)µ

1−α
L (xi)

+(1− µK(xi))
α(1− µL(xi))

1−α

+µαL(xi)µ
1−α
K (xi)

+ (1− µL(xi))
α(1− µK(xi))

1−α
}) β−1

α−1
− 2

, α , 1, α , β,

2Dm
β
1(K||L) =

2
(β−1)

[
exp

{( β−1
2

)
Dm(K||L)

}
− 1

]
, β , 1,

2Dm
1
α(M||N) = 1

α−1


ln



(
r∑

i=1

1
2

{
µαK(xi)µ

1−α
L (xi)

+(1− µK(xi))
α(1− µL(xi))

1−α

+µαL(xi)µ
1−α
K (xi)

+ (1− µL(xi))
α(1− µK(xi))

1−α
})




, α , 1,

(42)

for all K, L ∈ FSs, α ∈ [0, ∞] and β ∈ [−∞, ∞].
In particular, when α = β, we obtained

1Vβ
α(K||L) =

2Vβ
α(K||L) and 1Wβ

α(K||L) =
2Wβ

α(K||L).

The measures γVβ
α(K||L)

{
γ = 1, 2

}
are called the unified (α, β)−Jensen difference divergence

measures and the measures γWβ
α(K||L)

{
γ = 1, 2

}
are called the unified (α, β)−D divergence (Jeffreys)

invariant measures.

4. Fuzzy MCDM Method for E-Waste Recycling Job Selection

The evolution of the fuzzy MCDM method is according to the conception of the degree of
optimality rooted in an option where multiple criteria distinguish the concept of the desirable option.
This perception has been applied extensively by the MCDM approach known technique for order
preference by similarity to the ideal solution. As considered by the notion, the most desirable option
should not only have the shortest distance from the ideal option but also have the longest distance
from the anti-ideal option.

Based on the concept, the overall preference value of an option is computed by its divergences
to the ideal solution and the anti-ideal solution. This divergence is thus interrelated with the criteria
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weights and should be incorporated in the divergence measure. To handle the issue, the fuzzy MCDM
method developed uses the optimal criteria weights and the optimal dimension weights, as shown in
Figure 1 and discussed in Section 4, to weight the divergence between the option and the ideal/anti-ideal
option. The proposed method was implemented to evaluate the recycling job selection problem of
sustainable planning of the e-waste as follows:

Definition 3. A triangular fuzzy number (TFN) ζ is given by triplet ( f , g, h). The membership function µζ(x)
is defined as follows:

µζ(x) =


0, x ≤ f

x− f
g− f , f ≤ x ≤ g
x−h
g−h , g ≤ x ≤ h
0, x ≤ h.

(43)

The linguistic variable refers to those expressed in form of linguistic ratings. The philosophy of
linguistic variables is highly constructive in handling with circumstances of a high complexity level
or imprecision to be logically expressed in the form of traditional quantitative phenomenon. Such
linguistic values are characterized by fuzzy numbers (FNs). Table 1 demonstrates linguistic values for
weights and ratings.

Table 1. Linguistic values for evaluating sustainability assessment of e-waste products.

Linguistic Terms Fuzzy Score

Very Strong (VS) (0.7, 0.9, 1.0)
Fairly Strong (FS) (0.5, 0.7, 0.9)

Equal (E) (0.3, 0.5, 0.7)
Fairly Weak (FW) (0.1, 0.3, 0.5)
Very Weak (VW) (0.0, 0.1, 0.3)

Now, to develop a fuzzy MCDM approach, the canonical demonstration of operation on TFN is
implemented, which is associated with the graded mean integration representation model [41].

Definition 4 (Chou [41]). For TFNζi j =
(

fi j, gi j, hi j
)

the graded mean integration representation of TFN ζi j is
defined by

P
(
ζi j

)
=

fi j + 4gi j + hi j

6
. (44)

Next, linear normalization is applied to the transformation of different criteria scale into a similar
scale since it has simple calculations instead of vector normalization. As a result, here is constructed
the normalized triangular fuzzy matrix represented by =

(
ζi j

)
m ×n

, where

ζ =

 fi j

h◦j
,

gi j

h◦j
,

hi j

h◦j

, j ∈ vb; (45)

and

ζ =

 f ∗j
fi j

,
f ∗j
gi j

,
f ∗j
hi j

, j ∈ vn; (46)

such that
h◦j = max

i
hi j i f j ∈ vb and f ∗j = min

i
fi j i f j ∈ vn. (47)

where vb and vn stand for the set of criteria in terms of beneficial and non-beneficial, respectively.
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Generally, an MCDM problem can be sketchily demonstrated as

Z1 Z2 · · · Zs

F =

Y1

Y2
...

Yr


ξ11 ξ11 · · · ξ1

ξ21 ξ22 · · · ξ2s
...

...
. . .

...
ξr1 ξr2 · · · ξrs


(48)

where Y = {Y1, Y2, . . . , Yr} and Z = {Z1, Z2, . . . , Zs} are the sets of alternatives and criteria, respectively,
and ζi j =

(
fi j, gi j, hi j

)
; i = 1(1)r, j = 1(1)s present the fuzzy numbers.

Let the MCDM problems consist of r alternatives Yi (i = 1(1)r) such that alternative is achieved
by means of S criteria Z j ( j = 1(1)s). ζi j is constructed by alternative Yi (i = 1(1)r) with respect to
criterion Z j ( j = 1(1)s), are fuzzy values (FVs). Let ω j be the weight of criterion with the condition

that ω j ≥ 0,
s∑

j=1
ω j = 1. Here, ω j = (ω1,ω2, . . . ,ωs)

T symbolizes the set of known information, this is

generated by decision experts in the form of linear constraints, concerning the criterion weights. It is
worth mentioning that the proposed method is appropriate for circumstances where the number of
decision experts is small such that they assess the criterion based on their experience and knowledge
and the alternatives could be of any type, then assessment of alternatives is constructed in the form
of FVs.

The developed approach is implemented to solve the MCDM problems with partially or completely
unknown criteria’s weights information. This method consists of the subsequent steps (see Figure 1):

Step 1: Construct the fuzzy decision matrix F =
(
ζi j

)
r×s

.

The decision experts furnish all the feasible assessments regarding the alternative Yi concerning
criterion Z j , mentioned by fuzzy numbers (FNs) ζi j =

(
fi j, gi j, hi j

)
; i = 1(1)r, j = 1(1)s which are

obtained based on Table 1 and Equations (43) and (44) and demonstrated in Equation (48).

Step 2: Compute ideal solution (IS) and anti-ideal solution (A-IS).

The optimal values (or IS) for diverse criterion are altered and pointed out as

ε+ =


max

i=1(1)r
ζi j for benefit criterion v j

min
i=1(1)s

ζi j for cos t criterion v j
, for j = 1(1)s. (49)

Similarly, the worst values (or A-IS) for diverse criterion is given by

ε− =


min

i=1(1)r
ζi j for benefit criterion v j

max
i=1(1)s

ζi j for cos t criterion v j
for j = 1(1)s. (50)

Step 3: Compute the criteria weights

In case the information about the criterion weight ω j is partially known, then the criterion weights
can be evaluated in advance. Based on the divergence measure analysis, we developed a nonlinear
programming model for the purpose of selecting the criterion weight vector ω j; it will maximize all of
the deviation values for the alternatives.
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According to (14), we evaluated Dm
+
i j

(
ζi j, ε+

)
and Dm

−

i j

(
ζi j, ε−

)
as follows:

Dm
+
i j

(
ζi j, ε+

)
=

n∑
i=1


(
µζi j (xi)+µε+ (xi)

)(
µζi j (xi)−µε+ (xi)

)2

µζi j (xi)µε+ (xi)
ln


(
µζi j (xi)+µε+ (xi)

)
2
√
µζi j (xi)µε+ (xi)


+

(
2−µζi j (xi)−µε+ (xi)

)(
µε+ (xi)−µζi j (xi)

)2

(
1−µζi j (xi)

)
(1−µε+ (xi))

ln


(
2−µζi j (xi)−µε+ (xi)

)
2

√(
1−µζi j (xi)

)
(1−µε+ (xi))


,

(51)

Dm
−

i j

(
ζi j, ε−

)
=

n∑
i=1


(
µζi j (xi)+µε− (xi)

)(
µζi j (xi)−µε− (xi)

)2

µζi j (xi)µε− (xi)
ln


(
µζi j (xi) +µε− (xi)

)
2
√
µζi j (xi)µε− (xi)


+

(
2−µζi j (xi)−µε− (xi)

)(
µε− (xi)−µζi j (xi)

)2

(
1−µζi j (xi)

)
(1−µε− (xi))

ln


(
2−µζi j (xi)−µε− (xi)

)
2

√(
1−µζi j (xi)

)
(1−µε− (xi))


.

(52)
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Next, the overall performance of the alternative ui computed by the given formula

J(Yi) =
n∑

j=1

ω j Dmij,

where

Dmij =
Dm

−

i j

Dm
−

i j + Dm
+
i j

. (53)

Apparently, the larger value of J(Yi) shows the superior option. Thus, all the alternatives are
measured as a whole to construct a combined weight vector. Thus, LP-model is demonstrated as below:

max J =
m∑

i=1
J(Yi) =

m∑
i=1

n∑
j=1

ω jDmij

s. t.


ω ∈W, ω j ≥ 0,

s∑
j=1

ω j = 1, j = 1(1)s.

(54)

Step 4: Compute the closeness degree of the alternative(s).

Based on (53), the closeness degree J(Yi) of each alternative Yi (i = 1(1)r) regarding the ideal
solution is evaluated.

Step 5: Rank the alternatives.

Choose the biggest value, which is signified by J(Yk), among the values J(Yi), i = 1(1)r. Thus, Yk
is the best option.

5. Investigating the Sustainable Planning of an E-Waste Recycling Job Selection

In the global climate change and global warming, the three entities of society, economy, and
environment are in an inseparable connection with each other [42,43]. Such interconnection has caused
human well-being to be closely dependent on the environment health condition [44,45]. In consequence,
we can see the aftermaths of such conditions in the form of complicated challenges that have already
occurred as sustainability challenges [46]. Clearly, the natural resources are being exhausted, but
simultaneously the demand of society is increasingly rising, which has placed a disparaging pressure
upon the environment, economy, and society [33]. One of the typical instances of sustainability
challenges is an electronic waste (e-waste) [47]; this is a problem of high complexity in its nature,
it does not seem to be solvable at all, and this is of a socio-ecological scale. E-waste emerges with
discarding the electronic products like cellular phones, computers, and other electronic appliances we
are using daily. As can be easily understood, the last few decades have witnessed a vast evolution of the
electrical and electronics industry [48]. There has been an extraordinary rise in consuming electronic
equipment, especially computers and mobile phones. This tremendous increase in consumption has
led to the accumulation of waste electrical and electrical equipment (WEEE) [49–51], which is normally
discussed under the title of E-waste [52]. Across the globe, electronic equipment usage has become
an indispensable part of daily life. Currently, there is a big pressure from academic communities,
interest groups, environmental watchdogs, etc. on electronic producers and local industries to bring
into action the effective management mechanisms in a way to make efficient response to the perceived
and potential e-waste problems.

To deal with the e-waste recycling planning issues pointed above, we proposed a novel sustainable
planning method for meeting the best sustainability interests of an e-recycling company. The method
utilizes a fuzzy MCDM approach and a series of optimal weighting approaches to find and choose
the option recycling activities for e-waste recycling jobs of an e-recycling company. It shows an
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innovative contribution to the procedural development of weighting the three dimensions of corporate
sustainability for planning decisions.

In this section, a case study of recycling partner selection in sustainable planning of e-waste was
presented, aiming at showing the viability of the proposed approach. The proposed method was utilized
to rank the given recycling associations in India. Let Y1, Y2, Y3, and Y4 are four selected associations
that conduct the recycling procedures for products that are end-of-life vehicles, scraped electronics,
scraped metals, scraped paper recycling, as well as dismasting operations. These four associations
were computed based on given inter-independent criterion set {Z1, Z2, Z3, Z4, Z5}. Out of these first,
second and fourth were benefit criteria, while third and fifth were cost criteria. In order to choose an
appropriate sustainable recycling partner, the proposed approach was applied and evaluated as follows:
after preliminary screening, four potential alternatives of this company were considered, which are
denoted as Yi(i = 1, 2, ..., 4) with most favorable performance assessment of the e-waste options on
qualitative sustainability criteria (given in Table 2). An expert group consisting of three decision-makers
(D1, D2, D3, and D4) was established for the purpose of doing the performance rating of each e-waste
option. The decision-makers’ weights were assumed as $1 = 0.25, $2 = 0.25, $3 = 0.25,$4 = 0.25,
since they had different levels of technical knowledge and expertise. The next step was to estimate the
best e-waste recycling partner selection through the proposed method. To estimate the best e-waste
recycling partner option, the decision experts (DEs) assumption was that each criterion is beneficial.
Table 3 depicts the estimation values in terms of linguistic values constructed by e-waste recycling
partner decision experts.

Here, evaluating the mean values of fuzzy scores of the estimation outcomes allocated by DEs,
we achieved the estimation matrix. Afterward, Equations (45)–(47) were implemented to construct a
triangular fuzzy normalized estimation matrix (see Table 4). Later on, the ratings were transformed
into crisp values on the basis of Definition 4. After that, the normalized F-DM was created according
to Equation (44), is presented in Table 5.

Table 2. The overall explanation of e-waste recycling job selection problem.

Sustainability Criteria under Each Dimension Firm’s E-Waste Products Alternatives of
the E-Waste

Recycling Job
Sustainability

Dimension
Sustainability

Criteria Description E-Waste
Product Description

Social (S)

Health and
safety
at the

workplace (Z1)

The number of
decreased
workers’

compensation
claimed

Computer

Personal computers, CRT
monitors, notebook

computers, PC keyboards,
LCD monitors, modem, cables

associated
with PC system, mouse, etc.

Y1

Public
acceptability

(Z2)

General attitudes/
public perceptions
regard to the firms’

e-recycling
services

Communication
equipment

Server, telephone handsets,
hub, rack mount cabinets,
routers, switch, assorted

network gear, PABX controller
units,

modems/print servers,
uninterruptible power

supplies, etc.

Economic (Ec)
Direct/Indirect

cost (Z3)

The expenditure is
given/The expenses

for exploring
business

opportunities

Battery

Lead acid batteries, lithium
ion, lithium batteries,

NiCad batteries
(vented/sealed), NiMH

batteries,
Alkaline batteries, etc.

Y2
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Table 2. Cont.

Sustainability Criteria under Each Dimension Firm’s E-Waste Products Alternatives of
the E-Waste

Recycling Job
Sustainability

Dimension
Sustainability

Criteria Description E-Waste
Product Description

Environmental
(En)

Green
technology

Innovation (Z4)

The new
technology

innovations Made
to decrease the

negative
environmental

Effects

Cell phone Cell phones, battery, charger,
accessories, etc. Y3

The problem
decreased the

volume of
trash/waste within

the landfill

Office electrical
equipment

Desktop printers, enterprise
printer, photocopy machines,

fax machines, desktop
scanners, desktop

multifunction
printers/scanners, etc.

Landfill
reduction (Z5)

Consumer
electrical

equipment

CRT televisions, LCD
televisions, plasma televisions,

VCR/DVD/set top box,
speaker devices, Hi-Fi stereo,
domestic vacuum cleaners,

microwave ovens,
cordless phones, digital still
cameras, video cameras, etc.

Y4

Here, there is a group of experts to make decisions on choosing the recycling partner. The decision
experts furnish all the feasible evaluations regarding the alternative Yi with respect to criterion Z j,
and construct aggregated decision matrix, which is given in Table 5 associated with Table 1 and
Equations (43) and (47). According to their knowledge and experience regarding the criterion set,
partial information of the weights is given by

W =
{(
ω j

)T
∣∣∣∣∣ 0.2 ≤ ω1 ≤ 0.35, 0.1 ≤ ω2 ≤ 0.27, 0.15 ≤ ω3 ≤ 0.25, ω1 ≤ 0.2ω4,

0.08 ≤ ω4 ≤ 0.15, 0.2 ≤ ω5 ≤ 0.4, ω2 − ω5 ≤ ω3}such that
s∑

j=1
ω j = 1.

Table 3. Evaluation of e-waste recycling job alternatives in linguistic values.

Z1 Z2 Z3 Z4 Z5

Y1 (E,VW,FW,VW) (VS,E,VS,VS) (FW,FW,VW,VW) (FW,VW,FW,VW) (FW,FW,E,VW)
Y2 (FW,FW,E,VW) (FW,FW,FW,VW) (VS,VS,VS,E) (VW,VW,VW,VW) (VS,VS,FS,FS)
Y3 (FS,VS,FS,FS) (VS,FS,FS,FS) (FS,FW,VW,VW) (FS,VW,FW,VW) (VW,VW,FW,E)
Y4 (E,FW,FW,VW) (FS,E,FW,FW) (FS,FW,E,VW) (VW,VW,VW,FW) (VS,FW,FW,VW)

Table 4. Triangular fuzzy evaluation matrix for e-waste recycling job selection problem.

Z1 Z2 Z3 Z4 Z5

Y1 (0.1,0.25,0.45) (0.6,0.8,0.93) (0.05,0.2,0.4) (0.05,0.2,0.35) (0.13,0.3,0.5)
Y2 (0.15,0.35,0.5) (0.08,0.25,0.45) (0.6,0.8,0.93) (0.0,0.1,0.3) (0.65,0.8,0.95)
Y3 (0.55,0.75,0.93) (0.5,0.75,0.9) (0.15,0.3,0.5) (0.1,0.3,0.5) (0.1,0.2,0.45)
Y4 (0.12,0.3,0.5) (0.25,0.45,0.65) (0.23,0.4,0.6) (0.03,0.15,0.35) (0.22,0.4,0.55)
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Table 5. Aggregated fuzzy decision matrix for e-waste recycling job selection problem.

Z1 Z2 Z3 Z4 Z5

Y1 0.2844 0.76 0.231 0.229 0.244
Y2 0.315 0.25 0.767 0.095 0.77
Y3 0.757 0.751 0.319 0.317 0.275
Y4 0.24 0.435 0.411 0.157 0.391

Step 1: Fuzzy IS and A-IS are calculated by using (49) and (50) are as follows:

ε+ = {0.757, 0.76, 0.231, 0.317, 0.244}, (55)

ε − = {0.24, 0.25, 0.767, 0.229, 0.77}. (56)

Step 2: Corresponding to (51) and (52), the divergence measure of ζi j form ε+ and ζi j form ε− are
evaluated as follows:

Dm
+
11 = 0.3021, Dm

+
12 = 0.0000, Dm

+
13 = 0.0000, Dm

+
14 = 0.0236, Dm

+
15 = 0.0000,

Dm
+
21 = 0.2211, Dm

+
22 = 0.3913, Dm

+
23 = 0.5253, Dm

+
24 = 0.0000, Dm

+
25 = 0.4674,

Dm
+
31 = 0.0000, Dm

+
32 = 0.0000, Dm

+
33 = 0.000566, Dm

+
34 = 0.1138, Dm

+
35 = 0.0000315,

Dm
+
41 = 0.4910, Dm

+
42 = 0.058, Dm

+
43 = 0.0089, Dm

+
44 = 0.0015, Dm

+
45 = 0.0053.

And

Dm
−

11 = 0.0000525, Dm
−

12 = 0.3913, Dm
−

13 = 0.5253, Dm
−

14 = 0.008647, Dm
−

15 = 0.4674,
Dm
−

21 = 0.0004378, Dm
−

22 = 0.0000, Dm
−

23 = 0.0000, Dm
−

24 = 0.1138, Dm
−

25 = 0.0000,
Dm
−

31 = 0.4583, Dm
−

32 = 0.3913, Dm
−

33 = 0.2478, Dm
−

34 = 0.0000, Dm
−

35 = 0.3250,
Dm
−

41 = 0.0000, Dm
−

42 = 0.0101, Dm
−

43 = 0.1009, Dm
−

44 = 0.0172, Dm
−

45 = 0.1081.

Next, the overall performances, by using (53), of alternative are calculated as follows:

Dm11 = 0.0001737, Dm12 = 1.0000, Dm13 = 1.0000, Dm14 = 0.2681, Dm15 = 1.0000,
Dm21 = 0.0020, Dm22 = 0.0000, Dm23 = 0.0000, Dm24 = 1.0000, Dm25 = 0.0000,
Dm31 = 1.0000, Dm32 = 1.0000, Dm33 = 0.9977, Dm34 = 0.0000, Dm35 = 0.9999,
Dm41 = 0.0000, Dm42 = 0.1483, Dm43 = 0.9189, Dm44 = 0.9198, Dm45 = 0.9533.

Step 3: To compute the weight vector, construct the model

max J = 1.0022ω1 + 2.1483ω2 + 2.9166ω3 + 2.1879ω4 + 2.9532ω5

s. t.



0.25 ≤ ω1 ≤ 0.4, 0.16 ≤ ω2 ≤ 0.27,
0.1 ≤ ω4 ≤ 0.18, 0.2 ≤ ω5 ≤ 0.35,
0.15 ≤ ω3 ≤ 0.25, ω1 ≥ 0.2ω4, ω5 − ω2 ≤ ω3

ω j = (ω1,ω2, . . . ,ωs)
T, ω j ≥ 0,

s∑
j=1

ω j = 1.

(57)

Using MATHEMATICA, model (57) is computed and the criteria’s weight vector is computed by(
ω j

)T
= (0.25, 0.16, 0.165, 0.1, 0.325)T.

Step 4: The calculated closeness degrees of the alternatives are given as

J(Y1) = 0.6769, J(Y2) = 0.1005, J(Y3) = 0.8996, J(Y4) = 0.5771.
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Step 5: Based on calculated closeness degrees of the alternatives, the ranking of the associations is
Y3 � Y1 � Y4 � Y2.

Hence, a suitable e-waste recycling job is Y3.

Comparison and Discussion for the Sustainable Planning of an E-Waste Recycling Job Selection

The grading of given associations is also acquired by the TOPSIS, F-TOPSIS, intuitionistic fuzzy
TOPSIS, and proposed methods, and is presented in Table 6.

Table 6. Comparison of grading order of alternatives from various methods.

Methods Benchmark Ranking Optimal Alternative

TOPSIS Tzeng and
Huang [53] method Crisp Sets Y3 � Y4 � Y1 � Y2 Y3

F-TOPSIS Chen [54]
method Fuzzy sets and distance measure Y3 � Y1 � Y4 � Y2 Y3

IF-TOPSIS Joshi and
Kumar [55] method

Intuitionistic fuzzy sets and
distance measure Y3 � Y1 � Y4 � Y2 Y3

IF-TOPSIS Mishra, et al.
[56] method

Intuitionistic fuzzy sets and
similarity measure Y3 � Y1 � Y4 � Y2 Y3

Proposed method
Fuzzy sets and divergence

measure based linear
programming model

Y3 � Y1 � Y4 � Y2 Y3

We observed that there was no discrepancy in the grading order of the e-waste recycling job
options by the TOPSIS method, F-TOPSIS method, IF-TOPSIS methods, and proposed method. Hence,
all the methods provided the unique optimal alternative Y3, i.e., desirable e-waste recycling job.
In general, the advantages of the extended approach over the existing methods are presented by

1. The portrayal of the relative significance of various criteria is made simple with the help of
linguistic evaluations enabling the attainment of the desirable stability between parameter
performance and desirable e-waste recycling job in various circumstances.

2. The aggregation of various criteria (e.g., health and safety at workplace, public acceptability, and
green technology innovation) is performed efficiently with the proposed method whereas, the
preference order abnormality problem is evaded with the help of objective utility functions.

3. The developed method utilizes a conventional concept of the synchronized satisfaction of the
given objectives that comprises the compromise doctrine of TOPSIS, that is, to be as closer as
likely to an IS and as farther as likely from an A-IS.

4. The aggregation of various criteria is made with FSR TOPSIS Chamodrakas, et al. [57], a proposed
method to evade possible inconsistency of the ranking outcomes. Furthermore, the utilization of
parameterized utility functions for evaluating the normalized decision matrix in FSR TOPSIS
reduces the order abnormality concern.

5. As the significance of DEs is considered, we have discussed a method based graded
mean integration representation (GMIR) of TFN, which provides more precise outcomes for
MCDM problems.

From the analyses presented above, the proposed method based on divergence measures of FSs
has the following advantages.

First, FSs used in this paper can express the evaluation information more flexibly. They can embed
several values in membership degrees and can retain the completeness of original data or the inherent
thoughts of decision-makers, which is the prerequisite of guaranteeing the accuracy of final outcomes.

Second, the proposed fuzzy divergence measures are different from the existing divergence
measures that always involve the extensions whose impact on the final solution may be considerable,
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because the proposed divergence measures can include the advantages of parametric generalization,
and overcome these shortcomings. This can avoid losing and distorting the preference information
provided, which makes the final results better correspond with real decision-making problems.

Finally, the proposed method can provide a useful and flexible way to efficiently facilitate the
decision-making process within the fuzzy environment. Moreover, the first method could handle some
special cases where the weight information is not always available and instead only partial knowledge
of criteria weights may be obtained as a group of linear constraints.

6. Conclusions

In the present study, we introduced some new divergence measures for FSs, which are
generalizations of probabilistic divergence measures and discussed some elegant properties, which
shows the strength of the proposed measures. Later on, we defined a family of unified divergence
measures for FSs based on various types of entropy function. Next, an approach, which is based on the
fuzzy divergence measure to determine the weights of criteria, was developed for MCDM problems
within the fuzzy atmosphere. The criteria with large cross-entropy and small entropy need to be well
taken into account. Finally, we implemented the proposed method with an example that demonstrated
its applicability and effectiveness in comparison to the results of the methods already proposed in
the literature.

The advantages of the proposed method were that they could be easily and conveniently evaluated
and they could efficiently reduce the loss of information estimation. The method proposed in this study
was proved both feasible and valid through the example illustration of recycling partner selection
of sustainable practices and comparison with existing methods. Thus, proposed method had vast
application potential for solving MCDM problems in FSs, where alternatives were constructed with
regard to the criterion set in terms of FVs, and the criterion weights were partially known. In the
future, we would enlarge our research to IF-divergence measures and interval-valued intuitionistic
fuzzy-divergence measures and implement various real-life applications.
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