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Abstract: Resource Description Framework (RDF) can seen as a solution in today’s landscape of
knowledge representation research. An RDF language has symmetrical features because subjects
and objects in triples can be interchangeably used. Moreover, the regularity and symmetry of the
RDF language allow knowledge representation that is easily processed by machines, and because its
structure is similar to natural languages, it is reasonably readable for people. RDF provides some
useful features for generalized knowledge representation. Its distributed nature, due to its identifier
grounding in IRIs, naturally scales to the size of the Web. However, its use is often hidden from view
and is, therefore, one of the less well-known of the knowledge representation frameworks. Therefore,
we summarise RDF v1.0 and v1.1 to broaden its audience within the knowledge representation
community. This article reviews current approaches, tools, and applications for mapping from
relational databases to RDF and from XML to RDF. We discuss RDF serializations, including formats
with support for multiple graphs and we analyze RDF compression proposals. Finally, we present
a summarized formal definition of RDF 1.1 that provides additional insights into the modeling of
reification, blank nodes, and entailments.

Keywords: RDF; RDFS; Semantic Web; Linked Data; data model; blank node; reification; complexity;
entailment; compression; binary RDF; data integration

1. Introduction

The Resource Description Framework (RDF) version 1.1 is a modern and complete knowledge
representation framework that is seemingly under-represented within the traditional knowledge
representation research community. We seek to clarify some differences between the way RDF
1.1 was defined in World Wide Web Consortium (W3C) specifications and the ways in which it
is reinterpreted during implementation. Firstly, we need to discuss how RDF relates to the broader
field of knowledge representation.

Knowledge representation can be seen as the way in which knowledge is presented in a language.
More precisely it was clarified by Sowa [1], who presents five characteristics of knowledge representation:

1. It is most fundamentally a surrogate.
2. It is a collection of ontological commitments.
3. It is a fragmental intelligent reasoning theory.
4. It is a pragmatically efficient computation medium.
5. It is a human expression medium.

Natural language can be defined as one of the methods of knowledge representation.
The fundamental unit of knowledge in such languages is often a sentence that consists of a set
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of words arranged according to grammatical rules. In spite of the existence of grammatical rules
that encode expectations of word order, irregularities and exceptions to the rules make it difficult for
machines to process natural languages.

The RDF data model was a response to this problem for knowledge representation on the World
Wide Web. This language and the concepts from which it originates have enabled free data exchange,
formalization, and unification of stored knowledge. RDF was developed iteratively over nearly two
decades to address knowledge representation problems at Apple Computer, Netscape Communications
Corporation, and the Semantic Web and Linked Data projects at the World Wide Web Consortium.

An assumption in RDF [2] is to define resources by means of the statement consisting of three
elements (the so-called RDF triple): subject, predicate, and object. RDF borrows strongly from natural
languages. An RDF triple may then be seen as an expression with subject corresponding to the subject
of a sentence, predicate corresponding to its verb and object corresponding to its object [3]. So the RDF
language may be categorized into the same syntactic criteria as natural languages. According to these
premises, RDF belongs to the group of Subject Verb Object languages (SVO) [4]. The consistency and
symmetry of the RDF language allows knowledge representation that is easily processed by machines,
and because its structure is similar to that of natural languages, it is reasonably readable for people.

On the other hand, following Lenzerini [5], data integration is the issue of joining data stored at
disparate sources, and providing the user with an integrated perspective of these data. Much of the
data on the Web is stored in relational databases. A similar amount of data exists in hierarchical files
such as XML documents. Integration of all of this data would provide huge profits to the organizations,
enterprises, and governments that own the data.

Interoperability is the capability of two or more (different) software systems or their components
to interchange information and to use the information that has been shared [6]. In the context of
the Web, interoperability is concerned with the support of applications that exchange and share
information across the boundaries of existing data sources. The RDF world is a satisfying method for
organizing information from different information sources. In particular, RDF can be seen as a general
proposition language for the Web, which consolidates data from heterogeneous sources. It can provide
interoperability between applications that exchange the data.

Knowledge representation and data integration in the context of RDF is relevant for several
reasons, including: Promotes data exchange and interoperability; facilitates the reuse of available
systems and tools; enables a fair comparison of Web systems by using benchmarks. In particular,
this article shows how the RDF data model can be related to other models.

The RDF language enables large portions of existing data to be processed and analyzed.
This produces the need to develop the foundations of this language. This article addresses this
challenge by developing an abstract model that is suitable to formalize and explain properties about
the RDF data. We study the RDF data model, minimal and maximal representations, and show
complexity bounds for the main problems.

1.1. Contributions

When we examine the state of the RDF data model, we see evidence of trade-offs that occurred as
various constituencies took part in the design process. Many of these trade-offs were never completely
summarized in the RDF standards. Our article reviews a final state of RDF, and to identify areas where
this data model is poorly understood. Our contributions are:

1. To compare the RDF reification approaches.
2. To analyze the RDF 1.1 interpretations, entailments and their complexity.
3. To study the RDF blank nodes and their complexity.
4. To compare the various RDF data integration approaches.
5. To compare the RDF 1.1 serialization formats, including multiple graph syntaxes.
6. To compare the RDF binary and compression formats.
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In addition, one of our main aims is to isolate a core fragment of RDF, which is the point of a formal
analysis. We discuss a formalization of a RDF syntax and semantics, which is beneficial, for example,
to help identify relationships among the constructors, to assist in optimization and validations of
software implementations, and to identify redundant notions.

1.2. Review Organization

The remainder of this article is as follows: Section 2 presents related work and formalized concepts
for RDF. In Section 3 we discuss RDF blank nodes and their complexity. Section 4 analyzes semantics for
the RDF and outlines a set of different entailment regimes. Section 5 overviews and compares various
proposals for RDF data integration. Section 6 briefly introduces and compares various serialization
formats for RDF 1.1. In Section 7 we overview and compare various proposals for RDF compression.
Finally, Section 8 provides concluding remarks.

2. Literature Review

In this Section, we present chronologically related works, and show a formalized syntax and
concept for RDF.

The pre-version of RDF was published in 1999 [7]. In this document RDF did not have many
features known from current versions, e.g., there were no explicit blank nodes. One of the first papers
was published in 2000 [8], which presented RDF and RDFS. In 2001 Champin [9] focused on the RDF
model and XML syntax of RDF. In [10] Carroll provided a formal analysis of comparing RDF graphs.
The author proved that isomorphism of a RDF graph could be reduced to known graph isomorphism
problems. In [11], the authors focused on delineating RDFS(FA) semantics for RDF Schema (RDFS),
which could interoperate with common first-order languages. Grau [12] continued the RDF(FA)
approach and proposed a possible simplification of the Semantic Web architecture. Yang et al. [13]
proposed semantics for anonymous resources and statements in F-logic [14]. Another overview was
presented in [15] by Berners-Lee and in [16] by Marin.

The RDF 1.0 recommendation [17] has been reviewed by several analyses. In 2004 Gutierrez et al. [18]
formalized RDF and investigated the computational aspects of testing entailment and redundancy. In 2005,
in [19,20], the authors proposed a logical reconstruction of the RDF family languages. Feigenbaum [21]
briefly described RDF with an emphasis on the Semantic Web. In [22,23], the authors discussed
fragments of RDF and systematized them. These papers also outlined the complexity bound for ground
entailment in the proposed fragment. Yet another approach was provided in [24], which presented
the domain-restricted RDF (dRDF). In 2011 and 2012 more descriptions were shown in [25,26], which
presented Semantic Web technologies. In 2014 Curé et al. [27] briefly introduced RDF 1.0 and RDFS 1.0.
There were also a lot of papers that extended to RDF annotations [28–30] e.g., for fuzzy metrics [31],
temporal metrics [32], spatial metrics [33] and trust metrics [34]. There is a separate group of
publications on data integration in the context of RDF [35–38]. Furthermore, the term relational
database to RDF mapping has been used in [36]. In [35,38] the authors proposed direct mappings,
and in [37] indirect mappings are presented.

In order for machines to exchange machine-readable data, they need to agree upon a universal
data model under which to structure, represent and store content. This data model should be general
enough to provide representation for arbitrary data content regardless of its structure. The data model
should also enable the processing of this content. The core data model selected, for use on the Semantic
Web and Web of Data digital ecosystems is RDF.

RDF constitutes a common method of the conceptual description or information modeling
accessible in Web resources. It provides the crucial foundation and framework to support the
description and management of data. Especially, RDF is a general data model for resources and
relationship descriptions between them.

The RDF data model rests on the concept of creating web-resource statements in the form of
subject-predicate-object expressions, which in the RDF terminology, are referred to as triples.
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An RDF triple consists of a subject, a predicate, and an object. In [39], the meaning of subject,
predicate and object is clarified. The subject expresses a resource, the object fills the value of the relation,
the predicate refers to the features or aspects of resource and expresses a subject-object relationship.
The predicate indicates a binary relation, also known as a property.

Following [39], we provide definitions of RDF triples below.

Definition 1 (RDF triple). Assume that I is the set of all Internationalized Resource Identifiers (IRIs), B
(an infinite) set of blank nodes, and L the set of literals. An RDF triple is defined as a triple t = 〈s, p, o〉 where
s ∈ I ∪ B is called the subject, p ∈ I is called the predicate and o ∈ I ∪ B ∪ L is called the object.

Example 1. The example presents an RDF triple consisting of subject, predicate and object.

<http://example.com/me#john> foaf:firstName "John" .

The primitive constituents of the RDF data model are terms that can be utilized in reference to
resources: anything with identity. The set of the terms is divided into three disjoint subsets:

• IRIs;
• literals;
• blank nodes.

Definition 2 (IRIs). IRIs are a set of Unicode names in registered namespaces and addresses referring to
registered protocols or namespaces used to identify a resource. For example, <http: // dbpedia. org/
resource/ House > is used to identify the house in DBpedia [40].

Note that in RDF 1.0 identifiers were RDF URI (Uniform Resource Identifier) References.
Identifiers in RDF 1.1 are now IRIs, which are URIs generalization, which allows a wider range
of Unicode codes. Please notice that each absolute URL (and URI) is an Internationalized Resource
Identifier, but not every IRI is a URI. When one is implemented in operations that are exclusively
specified for URI, it should first be transformed.

IRIs can be shortened. RDF syntaxes use two similar ways: CURIE (compact URI expressions) [41]
and QNames (qualified names) [42]. Both are comprised of two components: An optional prefix and a
reference. The prefix is separated from the reference by a colon. The syntax of QNames is restrictive
and does not allow all possible IRIs to be represented, i.e., issn:15700844 is a valid CURIE but an
invalid QName. Syntactically, QNames are a subset of CURIEs.

Definition 3 (Literals). Literals are a set of lexical forms and datatype IRIs. A lexical form is a
Unicode string, and a datatype IRI identifies an attribute of data that defines how the user intends to
use the data. RDF borrows many of the datatypes defined in XML Schema 1.1 [43]. For example,
"1"ˆˆhttp://www.w3.org/2001/XMLSchema#unsignedInt, where 1 is a lexical form and should be treated
as unsigned integer number.

Note that in RDF 1.0 literals with a language tag do not support a datatype URI. In RDF 1.1 literals
with language tags have the datatype IRI rdf:langString. In current version of RDF all literals have
datatypes. Implementations might choose to support syntax for literals that have lexical form only,
but it should be treated as synonyms for xsd:string literals. Moreover, RDF 1.1 may support the
new datatype rdf:HTML. Both rdf:HTML and rdf:XMLLiteral depend on DOM4 (Document Object
Model level 4) (DOM4 is an interface that treats an XML or HTML elements as objects, see http:
//www.w3.org/TR/dom/).

Definition 4 (Blank nodes). Blank nodes are defined as elements of an infinite set disjoint from IRIs and literals.

http://dbpedia.org/resource/House
http://dbpedia.org/resource/House
http://www.w3.org/TR/dom/
http://www.w3.org/TR/dom/
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In RDF 1.1 blank node identifiers are local identifiers adapted in particular RDF serializations or
implementations of an RDF store.

A set of RDF triples represents a labeled directed multigraph. The nodes are the subjects and
objects of their triples. RDF is also related to as being graph structured data where each 〈s, p, o〉 triple

can be interpreted as an edge s
p−→ o.

Definition 5 (RDF graph). Let O = I ∪ B ∪ L and S = I ∪ B. G ⊂ S × I ×O is a finite subset of RDF
triples and called a RDF graph.

Example 2. The example in Figure 1 presents a RDF graph of a FOAF [44] profile. This graph includes four
RDF triples:

<#js> rdf:type foaf:Person .
<#js> foaf:name "John Smith" .
<#js> foaf:workplaceHomepage <http://univ.com/> .
<http://univ.com/> rdfs:label "University" .

<#js>

”John Smith”

<http://univ.com/>

Universityfoaf:Person

rdf:type

foaf:name

foaf:workplaceHomepage

rdf:label

Figure 1. A Resource Description Framework (RDF) graph with four triples.

The RDF syntax and semantics can be widened to named graphs [45]. The named graph data
model is a variation of the RDF data model. The basic concept of the model consists of proposing a
graph naming mechanism.

Definition 6 (Named graph). A named graph NG is a pair 〈u, G〉, where u ∈ I ∪ B is a graph name and G
is a RDF graph.

Example 3. The example in Figure 2 presents a named graph of a FOAF profile. This graph has the name
http: // example. com/ #people and includes three RDF triples:

<#people> {
<#js> rdf:type foaf:Person .
<#js> foaf:name "John Smith" .
<#js> foaf:workplaceHomepage <http://univ.com/> .
}

RDF 1.1 describes the idea of RDF datasets, a collection of a distinguished RDF graph and zero
or more graphs with context.Whereas RDF graphs have a formal semantics that establishes what
arrangements of the universe make an RDF graph true, no agreed model-theoretic semantics exists for
RDF datasets. For more about the above characteristics, we refer the interested reader to the RDF 1.1:
On Semantics of RDF Datasets [46] which specify several semantics in terms of model theory.

http://example.com/#people
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<#people>

<#js>

”John Smith”

<http://univ.com/>

foaf:Person

rdf:type
foaf:name

foaf:workplaceHomepage

Figure 2. A named graph identified by <#people> with three triples.

Definition 7 (RDF dataset). A RDF dataset DS includes one nameless RDF graph, called the default
graph and zero or more named graphs, where each is identified by IRI or blank node, DS =

{G, 〈u1, G1〉, 〈u2, G2〉, . . . , 〈ui, Gi〉}.

Example 4. This example presents a RDF dataset consisting of one unnamed (default) graph and two named graphs.

{ } # empty default graph
ex:g1 { ex:s ex:p ex:o }
ex:g2 { ex:x ex:y ex:z }

In addition, the RDF Schema Recommendation [47] provides a collection of built-in vocabulary
terms under a core RDF namespace that unifies popular RDF patterns, such as RDF collections,
containers, and RDF reification.

RDF is a provider of vocabularies for container description. Each container has a type, and their
members can be itemized with the use of a fixed set of container membership properties. In order
to provide a way to separate the members from one another, the properties must be indexed by
integers; however, these indexes can not be regarded as specifying an ordering of the RDF container
itself. The RDF containers are RDF graph entities that use the vocabulary in order to provide basic
information about the entities and give a description of the container members. Following [47],
RDF gives vocabularies for specifying three container classes:

• rdf:Bag is an unordered container and allows duplicates;
• rdf:Seq is an ordered container;
• rdf:Alt is considered to define a group of alternatives.

Example 5. This example presents an rdf:Bag container representing the group of resources.

<http://example.com/p> ex:teachers _:a .
_:a rdf:type rdf:Bag .
_:a rdf:_1 <http://example.com/p/js> .
_:a rdf:_2 <http://example.com/p/ak> .

Another feature of RDF is its vocabulary for describing RDF collections. Since the RDF data model
has no inherent ordering, collections can be used to determine an ordered and linear collection using
a linked list pattern. RDF collections are in the form of a linked list structure such that it comprises
of elements with a member and a pointer to the next element. Moreover, collections are closed lists
in contrast to containers, which allow the set of items in the group to be precisely determined by
applications. However cyclic or unterminated lists in RDF are possible.
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Example 6. This example presents a collection representing the group of resources. In the graphs, each member of
the collection is the object of the rdf:first predicate whose subject is a blank node representing a list, that links
by the rdf:rest predicate. The rdf:rest predicate, with the rdf:nil resource as its object, indicates the end
of the list.

<http://example.com/p> ex:teachers _:x .
_:x rdf:first <http://example.com/p/js> .
_:x rdf:rest _:y .
_:y rdf:first <http://example.com/p/ak> .
_:y rdf:rest rdf:nil .

Another RDF feature is reification (denoted sr in Table 1), which provides an approach to talk about
individual RDF triples themselves within RDF. The method allows for constructing a new resource
that refers to a triple, and then for adding supplementary information about that RDF statement.

Example 7. This example presents a standard RDF reification.

ex:t rdf:type rdf:Statement .
ex:t rdf:subject <#js> .
ex:t rdf:predicate foaf:name .
ex:t rdf:object "John Smith" .
ex:t ex2:certainty 0.5 .

An extension of the previous method is N-ary Relations [48] (denoted nr in Table 1). This approach
is not strictly designed for reification, but focuses on additional arguments in the relation to provide
extra information about the relation instance itself.

Example 8. This example presents an N-ary Relations.

<#js> foaf:name "John Smith" .
<#js> ex2:certainty _:r .
_:r ex2:certainty-value 0.5 .

There are other proposals [49,50] of RDF reification. The first proposal called RDF*/RDR
(Also known as Reification Done Right (RDR)) [49] (denoted rdr in Table 1) is an alternative approach
to represent statement-level metadata. It is based on the idea of using a triple in the subject or object
positions of other triples that represent metadata about the embedded statement. To reified RDF data
an additional file format based on Turtle has been introduced. Unfortunately, in RDF*/RDR several
reification statements of the same triple are translated into one standard reification part, so it is not
possible to distinguish grouped annotations.

Example 9. This example presents a RDF*/RDR.

<<<#js> foaf:name "John Smith">> ex2:certainty 0.5 .

The second proposal is called Singleton Property [50] (denoted sp in Table 1). It is for representing
statements about statements. It uses a unique predicate for every triple with associated metadata to
the statement, which can be linked to the high-level predicate. Authors propose the special predicate
singletonPropertyOf to link to the original predicate. Since the predicate resource uses the predicate
singletonPropertyOf, it is possible to use the RDFS entailment rules to infer the original statements.
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Example 10. This example presents a Singleton Property.

foaf:name#1 rdf:singletonPropertyOf foaf:name .
<#js> foaf:name#1 "John Smith" .
foaf:name#1 ex2:certainty 0.5 .

It is also possible to use named graphs directly (denoted ng in Table 1). A named graph concept
allows assigning an IRI for one or more triples as a graph name. In that scenario, the graph name is
used as a subject that can store the metadata about the associated triples. In [51] authors present a
model of nanopublications along with a named graph notation.

Example 11. This example presents a named graph with metadata.

<g1> { <#js> foaf:name "John Smith" }
<g1> ex2:certainty 0.5 .

In Table 1 we present features of the above-mentioned standardized serializations, namely:
Having W3C Recommendation, a special syntax that is an extension of RDF, and the number of extra
RDF statements required to represent a RDF triple (i.e., O(n)).

Table 1. RDF reifications. This table presents the features of reifications, namely: Having W3C
Recommendation (yes–2�, no–4), a RDF-compatible syntax (yes–2�, partial–2, no–4) and the number
of extra statements.

Feature sr nr rdr sp ng
Standard 2� 2�? 4 4 2�
RDF syntax only 2� 2� 4 4 2
Extra statements 4n 2n n?? 2n n???

? W3C Working Group Note
?? Counted as n-tripleX
??? Counted as n-quads

3. Modeling Blank Nodes

The standard semantics for blank nodes interprets them as existential variables. We provide an
alternative formulation for the blank nodes, and look at theoretic aspects of blank nodes.

Following [52], blank nodes give the capability to:

• Define the information to encapsulate the N-ary association;
• describe reification;
• offer protection of the inner data;
• describe multi-component structures (e.g., RDF containers);
• represent complex attributes without having to name explicitly the auxiliary node.

The complexity of the problem of deciding whether or not two RDF graphs with blank nodes are
isomorphic is GI-complete as noticed in [10]. Graph isomorphism complexity with a total absence of
blank nodes is PTIME [53].

There is a complication in the notion of RDF graphs, caused by blank nodes. Blank nodes are
proposed to be locally-scoped terms that can be seen as existential variables. Blank nodes are shared
by graphs only if they are derived from the ones described by documents or RDF datasets that provide
for the blank nodes sharing between different graphs. Performing a document download is not
synonymous with the blank nodes in a resulting graph being identical to the blank nodes coming from
the same source or other downloads of the same file. This makes a notion of isomorphism between
RDF graphs that are the same up to blank node relabeling: Isomorphic RDF graphs can be studied as
containing the same content.
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Definition 8 (Graph isomorphism). Two RDF graphs G1 and G2 are identical in form (are isomorphic,
denoted G1

∼= G2) if there is a bijective function M between the nodes sets of the two graphs, such that:

1. M : B → B;
2. M|L = idL, for all literals that are nodes of graph G1;
3. M|I = idI , for all RDF IRIs that are nodes of graph G1;
4. ∀s,p,o(〈s, p, o〉 ∈ G1 ⇔ 〈M(s), p, M(o)〉 ∈ G2).

Moreover, merging two or more RDF graphs is crucial to ensure that there are no conflicts in
blank node labels. A merging operation performs the union after forcing all of shared blank nodes that
are present in two or more graphs to be distinct in each RDF graph. The graph after this operation
is called the merge. The result of this operation on RDF graphs can produce more nodes than the
original graphs.

Definition 9 (RDF merge). Given two graphs, G1 and G2, an RDF merge of these two graphs, denoted by
G1 ] G2, is defined as the set union G′1 ∪ G′2, where G′1 and G′2 are isomorphic copies of G1 and G2 respectively
such that the copies do not share any blank nodes.

As in the RDF graphs we can compare RDF datasets.

Definition 10 (Dataset isomorphism). Two RDF datasets DS1 and DS2 are dataset-isomorphic if there is a
function M : B → B between the triples, graphs and nodes in the two datasets, respectively, such that:

1. M is the identity map on RDF literals and IRIs, i.e., M|I∪L = idI∪L;
2. for every G ∈ DS1 such that G = {t1, t2, . . . , tn}, M(G) = {M(t1), M(t2), . . . , M(tn)} ∈ DS2,;
3. for every G ∈ DS1, ∀s,p,o〈s, p, o〉 ∈ G ⇔ 〈M(s), M(p), M(o)〉 ∈ M(G);
4. ∀u,G(〈u, G〉 ∈ NG1 ⇔ 〈M(u), M(G)〉 ∈ NG2).

Blank nodes identifiers cannot be found in the RDF abstract syntax. Giving a constant name to
the blank nodes can be helped by the skolemization mechanism [54]. In cases where more powerful
identification is needed, some or all of the blank nodes can be replaced with IRIs. Systems that wish
to do so ought to create a globally unique IRI (called a skolem IRI) for every blank node so replaced.
This conversion does not significantly change the graph meaning. It permits the possibility of other
RDF graphs by subsequent use the skolem IRIs that is impossible for blank nodes. Systems use a
well-known IRI [55] when they need skolem IRIs to be distinguishable outside of the system boundaries
with the registered name genid.

Definition 11 (Skolemization). Assume that G is a graph including blank nodes, ξ : B → Iskolem is a
skolemization injective function and Iskolem is a subset of skolem IRIs which is substituted for a blank node and
not occur in any other RDF graph.

From the above definition it follows that Iskolem ∩ IG = ∅, where IG is a set of IRIs that are used
in G.

On the other hand, in [53], authors propose two skolemization schemes: Centralized and
decentralized. The first one is very similar to what the URL-shortening service does. Formally,
there is a distinguished subset of the URIs. Whenever the service receives a request, it returns an
element that is in Skolem constants such that it has not been used before. The second proposal
resembles the first but with no central service. As a result, each publisher will generate its constants
locally. Another proposal [54] focuses on a scheme to produce canonical labels for blank nodes, which
maps them to globally canonical IRIs. It guarantees that two skolemized graphs will be equal if and
only if the two RDF graphs are isomorphic.
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NP-completeness originate from cyclic blank nodes. In [56], authors discuss a number of possible
alternatives for blank nodes, such as:

1. Disallow blank node;
2. ground semantics;
3. well-behaved RDF.

The first alternative disallows the use of blank nodes in RDF. However, blank nodes are a useful
convenience for publishers. The second alternative proposes to assign blank nodes a ground semantics,
such that they are interpreted in a similar fashion to IRIs. The third alternative is also presented
in [57]. The core motivation for this proposal is to allow implementers to develop tractable lightweight
methods that support the semantics of blank nodes for an acyclical case. Following [57], a well-behaved
RDF graph is a graph that conforms to the restrictions, which we present below.

Definition 12 (Well-behaved RDF graph). A well-behaved RDF graph is a RDF graph that conforms to the
following limitations:

1. It can be serialized as Turtle without the use of explicit blank node identifiers;
2. it uses no deprecated features of RDF.

Note that the first version of RDF published in 1999 did not have named blank nodes and thus
was per definition well-behaved.

Another important concept is leanness, which is checking if a RDF graph contains redundancy.

Definition 13 (Subgraph and lean graph). A subgraph is a subset of a graph G. Assume that a function
ν : I ∪ B ∪ L → I ∪ B ∪ L preserving IRIs and literals. A RDF graph G is lean if there is no function ν such
that ν(G) is a subgraph of G.

Please note that a subgraph can be a graph with fewer triples. The complexity of the problem
of verifying whether or not a RDF graph is lean is coNP-complete as noticed in [58]. Alongside the
notion of graphs being non-lean, we also naturally refer to blank nodes as being non-lean. Non-lean
blank nodes are the cause of excessive triples in non-lean graphs. A graph is non-lean if and only if it
contains one or more non-lean blank nodes.

Example 12. This example presents that the top graph in Figure 3 is lean, because there is no proper map into
itself. The bottom graph in Figure 3 is not lean.

x

y

a

b

p1

p1

p2

p3

x a

b

p1

p1

Figure 3. The top graph is lean and the bottom graph is non-lean.
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4. Entailments

An interpretation in RDF is a function from literals and IRIs into a set, together with restrictions
upon the mapping and the set. In this section we introduce different interpretation notions from the
RDF area, each corresponding to an entailment regime in a standard way.

Following [59], a simple interpretation I is a structure which we present below.

Definition 14 (Simple interpretation). A simple interpretation is I = 〈RI , PI , EXT I , INT I〉, where:

1. RI is a (nonempty) set of named resources (the universe of I),
2. PI is a set, called the set of properties of I,
3. EXT I is an extension function used to associate properties with their property extension, EXT I : PI →

2RI×RI
,

4. INT I is the interpretation function which assigns a resource or a property to every element of V such that
INT I is the identity for literals, INT I : V → RI ∪ PI .

The interpretation is a map from expressions i.e., triples, graphs and names to truth values and
universe elements. Following terminology, we say that I satisfies a RDF graph H when I(H) = true,
that H is satisfiable if it is a simple interpretation that satisfies it. Moreover, a RDF graph G entails a
graph H when every interpretation that satisfies G, will satisfy H as well. In this case, we shall write
G |= H. The graphs G and H are logically equivalent if each entails the other. Simple entailment can
be directly stated in terms of graph homomorphism as noticed in [59].

Ter Horst also proved the NP-completeness of simple entailment by reduction from the clique
problem [60]. If the RDF graph H lacks of blank nodes, this issue is in PTIME, because one should only
check that each triple in H is in G too.

Following [59], blank nodes are seen as simply indicating a thing’s existence, without handling
an IRI to identify any name of a resource. We need to describe a version of the simple interpretation
mapping that includes the collection of blank nodes as part of its domain.

Definition 15 (Semantic condition for blank nodes). Let G be a graph and I be a simple interpretation.
Let α : B → RI be a map from blank nodes to resources and let INTα denote an amended version of INT I

that includes B as part of its domain such that INT I(x) = α(x) for x ∈ B and INTα(x) = INT I(x) for
x ∈ I ∪ L. We say that I is a model of graph G if there exists a function α such that for each 〈s, p, o〉 ∈ G,
it holds that INT I(p) ∈ PI and (INTα(s), INTα(o)) ∈ EXT I(INT I(p)).

When two RDF graphs share a blank node, their meaning is not fully captured by treating them
in isolation. RDF graphs can be seen as conjunctions of simple atomic sentences in First-Order Logic
(FOL) [61], where blank nodes are free variables that are existential.

Further interpretations are depending on which IRIs are known as datatypes. Hayes and
Patel-Schneider [59] propose the use of a parameter D (the set of known datatypes) on simple
interpretations. The next considered interpretation is D-interpretation.

Definition 16 (D-interpretation). Let D be a set of IRIs describing datatypes. A D-interpretation is a simple
interpretation additionally satisfying the following conditions:

1. If rdf:langString ∈ D, then for every language-tagged string E with lexical form sl and language tag
tl , LI(E) = 〈sl , t′l〉, where t′l is tl transformed to lower case,

2. For every other IRI d ∈ D, I(d) is the datatype identified by d, and for every literal "sl"ˆˆd, LI("sl"ˆˆd) =
L2V(I(d))(sl), where L2V is a function from datatypes to their lexical-to-value mapping.

Note that in the RDF 1.0 specification, datatype D-entailment was described as a RDFS-entailment
semantic extension. In RDF 1.1 it is defined as a simple direct extension. Moreover, in RDF 1.1 datatype
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entailment formally refers to a set of recognized datatypes IRIs. RDF 1.0 used the concept of a datatype
map: in the new semantic description, this is the mapping from recognized IRIs to the datatypes
they identify.

A graph is satisfiable recognizing D (or simply D-satisfiable) if it has the true in some
D-interpretation, and G entails recognizing D (or D-entails) H when every D-interpretation satisfies
G, will satisfy satisfies H as well.

In [60] ter Horst proposes the D∗ semantics, which is a weaker variant of RDFS 1.0 D semantics.
This semantics generalizes the RDFS 1.0 semantics [62] to add reasoning with datatypes.

RDF interpretation imposes additional semantic conditions on part of the (infinite) set of IRIs
with the namespace prefix rdf: and xsd:string datatype. In RDF there are three key terms:

• rdf:Property (P)–the class of RDF properties;
• rdf:type (a)–the subject is an instance of a class;
• rdf:langString (ls)–the class of language-tagged string literal values.

Definition 17 (RDF interpretation). An RDF interpretation is a D-interpretation I where D has xsd:string
and rdf:langString, which satisfies the following conditions:

1. x ∈ PI ⇔ 〈x, I(P)〉 ∈ EXT I(a);
2. ∀d∈I(〈x, I(d)〉 ∈ EXT I(I(a))⇔ x ∈ VS(I(d))), where VS is a value space.

This RDF vocabulary is defined by the RDF Semantics [59] in terms of the RDF model theory.
A selection of the inference rules are presented in Table 2. As earlier G RDF entails H recognizing D
when RDF interpretation recognizing D that satisfies G, will satisfy H as well. When D is {xsd:string,
rdf:langString} then G RDF entails H.

Table 2. A selection of RDF rules. A rule of the form body⇒ head has predicates to the left of the⇒
symbol are the premise of the rule, and predicates to the right of the⇒ symbol are the consequent.

Rule ID Body Head
rdf1 ?s ?p "sl"ˆˆd . d ∈ D ⇒ ?s ?p _:n . _:n a d .
rdf2 ?s ?p ?o . ⇒ ?p a P .

RDF Schema [47] extends RDF to additional vocabulary with more complex semantics. RDFS
semantics introduces a class. It is a resource which constitutes a set of things that all have class
as a value of their rdf:type predicate (so-called property). They are outlined to be things of type
rdfs:Class. We introduce CI which is the set of all classes in an interpretation. Additionally, the
semantic conditions are stated in terms of a function CEXT I : CI → 2RI

. In RDFS there are ten
key terms:

• rdfs:Class (C)–the class of classes;
• rdfs:Literal (Lit)–the class of literal values;
• rdfs:Resource (Res)–the class resource, everything;
• rdfs:Datatype (Dt)–the class of RDF datatypes;
• rdfs:subPropertyOf (spo)–the property that allows for stating that all things related by a given

property x are also necessarily related by another property y;
• rdfs:subClassOf (sco)–the property that allows for stating that the extension of one class X is

necessarily contained within the extension of another class Y;
• rdfs:domain (dom)–the property that allows for stating that the subject of a relation with a given

property x is a member of a given class X;
• rdfs:range (rng)–the property that allows for stating that the object of a relation with a given

property x is a member of a given class X;
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• rdfs:ContainerMembershipProperty (Cmp)–the class of container membership properties,
rdf:_i;

• rdfs:member (m)–a member of the subject resource.

Definition 18 (RDFS interpretation). An RDFS interpretation is a RDF interpretation which additionally
satisfies the following conditions:

1. CEXT I(y) = {x : 〈x, y〉 ∈ EXT I(INT I(a))},
2. IC = CEXT I(INT I(C)),
3. LV = CEXT I(INT I(Lit)),
4. CEXT I(INT I(Res)) = RI ,
5. CEXT I(INT I(ls)) = {INT I(E) : E is a language-tagged string },
6. ∀d∈I\(Res∪ls)CEXT I(INT I(d)) = VS(INT I(d)), where VS is a value space,
7. ∀d∈I INT I(d) ∈ CEXT I(INT I(Dt))
8. 〈x, y〉 ∈ EXT I(INT I(dom)) ∧ 〈u, v〉 ∈ EXT I(x)⇒ u ∈ CEXT I(y),
9. 〈x, y〉 ∈ EXT I(INT I(rng)) ∧ 〈u, v〉 ∈ EXT I(x)⇒ v ∈ CEXT I(y),

10. ∀x,y,z∈PI (〈x, y〉 ∈ EXT I(INT I(spo)) ∧ 〈y, z〉 ∈ EXT I(INT I(spo))) ⇒ 〈x, z〉 ∈
EXT I(INT I(spo))) ∧ ∀x∈PI 〈x, x〉 ∈ EXT I(INT I(spo))

11. 〈x, y〉 ∈ EXT I(INT I(spo))⇒ x ∈ PI ∧ y ∈ PI ∧ CEXT I(x) ⊂ CEXT I(y),
12. x ∈ CI ⇒ 〈x, INT I(Res)〉 ∈ EXT I(INT I(sco))
13. ∀x,y,z∈PI (〈x, y〉 ∈ EXT I(INT I(sco)) ∧ 〈y, z〉 ∈ EXT I(INT I(sco))) ⇒ 〈x, z〉 ∈

EXT I(INT I(sco))) ∧ ∀x∈PI 〈x, x〉 ∈ EXT I(INT I(sco))
14. 〈x, y〉 ∈ EXT I(INT I(sco))⇒ x ∈ CI ∧ y ∈ CI ∧ CEXT I(x) ⊂ CEXT I(y),
15. x ∈ CEXT I(INT I(Cmp))⇒ 〈x, INT I(m)〉 ∈ EXT I(INT I(spo)),
16. x ∈ CEXT I(INT I(Dt))⇒ 〈x, INT I(Lit)〉 ∈ EXT I(INT I(sco)).

This RDFS vocabulary is defined by the RDF Semantics [59] in terms of the RDF model theory.
Selections of the RDFS inference rules are presented in Table 3.

As earlier G RDFS entails H recognizing D when every RDFS interpretation recognizing D which
satisfies G, will satisfy H as well.

Table 3. A selection of RDFS rules. A rule of the form body⇒ head has predicates to the left of the⇒
symbol are the premise of the rule, and predicates to the right of the⇒ symbol are the consequent.

Rule ID Body Head
rdfs1 any IRI ?p ∈ D ⇒ ?p a Dt .
rdfs2 ?p dom ?x . ?y ?p ?z . ⇒ ?y a ?x .
rdfs3 ?p rng ?x . ?y ?p ?z . ⇒ ?z a ?x .
rdfs4a ?x ?p ?y . ⇒ ?x a Res .
rdfs4b ?x ?p ?y . ⇒ ?y a Res .
rdfs5 ?x spo ?y . ?y spo ?z . ⇒ ?x spo ?z .
rdfs6 ?x a P . ⇒ ?x spo ?x .
rdfs7 ?p spo ?q . ?x ?p ?y . ⇒ ?x ?q ?y .
rdfs8 ?x a C ⇒ ?x sco Res .
rdfs9 ?x sco ?y . ?z a ?x . ⇒ ?z a ?y .
rdfs10 ?x a C . ⇒ ?x sco ?x .
rdfs11 ?x sco ?y . ?y sco ?z . ⇒ ?x sco ?z .
rdfs12 ?x a Cmp . ⇒ ?x spo m .
rdfs13 ?x a Dt . ⇒ ?x sco Lit .

Example 13. This example presents a RDFS interpretation for the vocabulary presented in Example 2.
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RI = {Υ, Φ, Ψ, Ω, α, β, γ, δ, ε}
PI = {Υ, Φ, Ψ, Ω}

EXT I = Υ 7→ {〈α, β〉}
Φ 7→ {〈α, δ〉}
Ψ 7→ {〈α, γ〉}
Ω 7→ {〈γ, ε〉}

INT I = rdf:type 7→ Υ
foaf:name 7→ Φ

foaf:workplaceHomepage 7→ Ψ
rdfs:label 7→ Ω

<#js> 7→ α

foaf:Person 7→ β

"John Smith" 7→ γ

<http://univ.com/> 7→ δ

"University" 7→ ε

In Table 4 we summarize results about complexity of entailment problems mentioned above.

Table 4. Computational complexity of entailments for RDF and RDF Schema (RDFS).

Entailment Current Semantics No Blank Nodes
simple NP-complete PTIME
D* NP-complete PTIME
RDF NP-complete PTIME
RDFS NP-complete PTIME

Example 14. This example presents that the top graph entails the bottom graph in Figure 4. When we blank the
node <#js> from the top, the bottom graph still has a node that represents a person and preserves semantics.
Similarly, when we delete the node "John Smith" from the top graph, the bottom graph still preserves the
graph’s semantics.

<#js> ”John Smith”

foaf:Person

”James Johnson”

foaf:Person

”James Johnson”

Figure 4. The top graph entails the bottom graph.

5. RDF Data Integration

The role of RDF as an integration system for data from different sources is one of the crucial
motivations for research efforts. It is important to provide integration methods to bridge the gap
between the RDF and other environments. Following [5], the definition of data integration systems is
provided below.
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Definition 19 (Data integration system). A data integration system is a tuple 〈G, S,M〉 where G is the
global schema, S is the source schema andM is the mapping between G and S, constituted by a set of assertions.

In this section the approaches of mapping of relational databases to RDF are discussed (Section 5.1)
as well as approaches of mapping XML to RDF (Section 5.2). However, there are also more general
approaches [63–69].

5.1. Bringing Relational Databases into the RDF

This subsection contains an overview and comparison of the approaches for mapping from a
relational database into RDF. Table 5 presents the key approaches from related work. It presents the
features of the below-mentioned proposals, namely: Mapping representation (SQL, RDF, XML, etc.),
schema representation (RDF, OWL [70] and F-Logic [14]) and level of automation.

At the beginning, we focus on solutions [71–73] based on SQL as mapping representation.
Triplify [71] is based on the mapping of HTTP requests onto database queries expressed in SQL
queries, which are used to match subsets of the store contents and map them to RDFS classes and
properties. It converts the resulting relations into RDF triples and subsequently publishes it in various
RDF syntaxes. That proposal includes an approach for publishing update logs in RDF which contain
all RDF resources in order to enable incremental crawling of data sources. An additional advantage
is that it can be certainly integrated and deployed with the numerous, installed applications on the
Web. The next approach is StdTrip [72], which proposes a structure-based framework using existing
ontology alignment software. The approach finds ontology mappings between simple vocabulary
that is generated from a database. The results of the vocabulary and ontology alignment algorithm
are presented as suggestions to the user, who matches the most appropriate ontology mapping.
RDOTE [73] also uses SQL for the specification of the data subset. In that proposal, the suitable SQL
query is stored in a file. That approach transforms data residing in the database into a RDF graph
dump using classes and properties.

Table 5. Relational databases mapping. This table presents the features of transformation approaches,
namely: Mapping representation, schema representation and level of automation (automatic–2�,
semi-automatic–2 and manual–4).

Approaches Mapping Schema Automatic
Represent. Represent.

[74,75] n/a RDFS, OWL, F-Logic 2
[71] SQL RDFS 4

[76,77] Constraint rules RDFS, OWL 2
[78] D2RQ RDFS 2�
[79] RDF, Rel.OWL RDFS, OWL 2�
[80] n/a RDFS, OWL 2
[81] FOL, Horn RDFS, OWL 2�
[82] SQL RDFS, OWL 4
[83] Logic rules RDFS, OWL 2
[84] n/a RDFS 2
[85] XML RDFS, OWL 4
[86] SPARQL RDFS 2�?

[87] R2O RDFS, OWL 2�
[88] RDF RDFS 4
[89] RDF, Rel.OWL RDFS, OWL 2�
[90] D2RQ RDFS, OWL 2
[91] XPath (XSLT) RDFS, OWL 4
[72] SQL RDFS, OWL 2
[92] n/a RDFS, OWL 2�
[93] n/a RDFS, F-Logic 2
[94] FOL RDFS, OWL 2�
[73] SQL RDFS, OWL 4
[95] RDF/XML RDFS, OWL 4
[96] RDF (Direct) RDFS 2�?

[97,98] XQuery n/a 2
? possible manual level.
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The next group of approaches [78,90] uses D2RQ as the mapping representation. D2RQ [78]
supports both automatic and manual operation modes. In the first mode, RDFS vocabulary is created,
in accordance with the reverse engineering methodologies, for the translation of foreign keys to
properties. In the second mode, the contents of the database are exported to a RDF in accordance with
mappings stored in RDF. It allows RDF applications to treat non-RDF stores as virtual RDF graphs.
One of the disadvantages of D2RQ is a read-only RDF view of the database. Another D2RQ-based
proposal is AuReLi [90], which uses several string similarity measures associating attribute names to
existing vocabulary entities in order to complete the automation of the transformation of databases.
It also tries to link database values with ontology individuals. RDF Views [86] has similar functionality
to D2RQ. It supports both automatic and manual operation modes. That solution uses the table of
RDFS class and column as a predicate and takes into account cases such as whether a column is part
of the unique key. The data is represented as virtual RDF graphs without the physical formation of
RDF datasets.

Another group of proposals [88,96] use RDF. The first approach is OntoAccess [88], which is a
vocabulary-based write access to data. That paper consists of the relational database to RDF mapping
language called R3M, which consists of a RDF format and algorithms for translating queries to
SQL. The next proposal is SquirrelRDF [96], which extracts data from a number of databases and
integrates that data into a business process. That proposal supports RDF views and allows for the
execution of queries against it. In that group we can also distinguish solutions [79,89] based on
Relational.OWL [99]. ROSEX [79] uses Relational.OWL to represent the relational schema of a database
as an OWL ontology. The created database schema annotation and documentation is mapped to
a domain-specific vocabulary, which is achieved automatically by reverse-engineering the schema.
An additional advantage is that it supports automatic query translation. DataMaster [89] also uses
Relational.OWL for the importing of schema structure and data from relational databases.

R2RML [100] is the best-known language based off RDF for expressing mappings from relational
databases to RDF datasets because it is a W3C recommendation and has a lot of implementations [101–103].
R2RML is a language for specifying mappings from relational to RDF data. A mapping takes as input
a logical table (logicalTable predicate), i.e., a database table, an SQL query, or a database view. In the
next step, a logical table is mapped to a triples map that is a set of triples. A triples map has two
main parts. The first part is a subject map (subjectMap predicate) that generates the subject of all
RDF triples that will be generated from a logical table row. The second part is a predicate-object map
(predicateObjectMap predicate) that specifies the target property and the generation of the object
via objectMap.

Yet other approaches are DartGrid [95] and MASTRO [85]. DartGrid [95] describes a database
integration architecture. It uses a visual mapping system to align the relational database to existing
vocabulary. Correspondences between components of the models which are defined via a graphical
user interface are created and stored in a RDF/XML syntax (see Section 6.1). The next proposal is
MASTRO [85], which is a framework that enables the definition of mappings between a relational
database and vocabulary.

Another group of proposals [81,94] use First-Order Logic (FOL) [61]. Tirmizi et al. [94] present
formal rules in FOL to transform column to predicate and table to class. The authors present the
system which is complete with respect to a space of the possible primary key and foreign key mixtures.
The next proposal is MARSON [81], which uses mappings based on virtual documents (called vectors
of coefficients). It removes incorrect mappings via validating mapping consistency. Moreover, a special
type of semantic mappings (called contextual mappings) is presented in the paper.

Some approaches [76,83,87,91,94,97] adopt other mapping representations. RDBToOnto [76,77] is a
tool that simplifies the implementation of methods for vocabulary acquisition from databases. It provides a
visual interface for manual modification and adjustment of the learning parameters. RDBToOnto links
the data analysis with heuristic rules and generates an ontology. DB2OWL [87] creates local vocabulary
from a relational database that is aligned to reference vocabulary. The vocabulary generated in that
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proposal reflects the database semantics. The mappings are stored in an R2O [104] document. The next
proposal is SOAM [83], which uses the column to predicate and the table to class approach. It creates
an initial schema, which is refined by referring to a dictionary. Constraints are mapped to constraints
in the vocabulary schema. That approach tries to establish the quality of the constructed vocabulary.
Another proposal is [91]. It is a domain semantics-driven mapping generation approach. Mapping is
created on the XSLT [105] and XPath [106]. Yet another approach is XSPARQL [97], which can be used
both in relational databases and XML (see Section 5.2).

There are also several approaches [74,80,84,92,93] that do not have a defined mapping
representation. Astrova [74,75] discusses correlation among key, data in key attributes between
two relations and non-key attributes. In these papers, the quality of transformation is considered.
Buccella et al. [80], Shen et al. [92] and Stojanovic et al. [93] examine heuristic rules. Byrne [84] proposes
a domain-specific approach for the generic design of cultural heritage data and discusses the options
for including published heritage thesauri.

5.2. Bringing XML into the RDF

This subsection overviews and compares the approaches for mapping from XML into RDF. Table 6,
presents key approaches from related work. It presents features of the below-mentioned proposals,
namely: Existing vocabulary, schema representation (RDF, OWL and DAML+OIL [70]) and level
of automation.

Table 6. XML mapping. This table presents the features of transformation approaches, namely:
Existing vocabulary (yes–2�, no–4), schema representation and level of automation (automatic–2�,
semi-automatic–2 and manual–4).

Approaches Existing Schema Auto-
Vocabulary Representation Matic

[107] 4 RDFS, DAML+OIL 4
[108] 4 RDFS, OWL 2�
[109] 4 RDFS, OWL 2�
[110] 4 n/a 2�
[111] 4 RDFS, OWL 2�

[98,112] 4 n/a 2
[113] 4 RDFS, OWL 2�
[114] 4 RDFS, OWL 2
[115] 2� RDFS, OWL 2�
[116] 2� RDFS, OWL 2
[69] 4 RDFS, OWL 2
[117] 4 n/a 2
[118] 4 n/a 2
[119] 4 RDFS, OWL 2�
[120] 4 RDFS, OWL 2�
[121] 2� RDFS, OWL 2�
[122] 4 RDFS 2�
[123] 4 RDFS 2�
[124] 4 RDFS, OWL 2�
[125] 4 RDFS, OWL 2
[126] 2� RDFS, OWL 2�
[127] 2� RDFS, OWL 2�
[128] 4 RDFS, OWL 2�
[129] 4 RDFS, OWL 2�

[130,131] 4 RDFS, OWL 2
[132] 4 n/a 2�
[133] 4 RDFS 2�
[134] 4 RDFS, OWL 2�

At the beginning, we focus on solutions [115,116,121,126,127] that use existing vocabulary and/or
ontology. This means that the XML data is transformed according to the mapped vocabularies.
Cruz et al. [115] propose basic mapping rules to specify the transformation rules on properties,
which are defined in the XML Schema. Deursen et al. [116] propose the method for the transformation
of XML data into RDF instances in an ontology-dependent way. X2OWL [121] is a tool that builds an



Symmetry 2020, 12, 84 18 of 33

OWL ontology from an XML data source and a set of mapping bridges. That proposal is based on an
XML Schema that can be modeled using different styles to create the vocabulary structure. The next
proposal is WEESA [126], which is an approach for Web engineering techniques and developing
semantically tagged applications. Another tool is JXML2OWL [127]. It supports the conversion from
syntactic data sources in XML language to a commonly shared global model defined by vocabulary.

Another group of proposals [107,109,111,119,120,122–125,130,133,134] do not support mappings
between XML Schemas and existing vocabularies. Amann et al. [107] discuss a data integration system,
where XML is mapped into vocabulary that supports roles and inheritance. That tool focuses on
offering the appropriate high-level primitives and methods for representing the semantics of data
expressed in XML. Janus [109] is a framework that focuses on an advanced logical representation of
XML Schema components and a set of patterns that enable the transformation from XML Schema
into the vocabulary. It supports a set of patterns that enable the translation from XML Schema
into ontology. SPARQL2XQuery [111] is a framework that transforms SPARQL [135] query into a
XQuery [136] using mapping from vocabulary to XML Schema. It allows query XML databases.
Ferdinand et al. [119] propose two independent mappings: From XML to RDF graphs and XML
Schema to OWL. That proposal allows items in XML documents to be mapped to different items in
OWL. Garcia et al. [120] present a domain-specific approach that maps the MPEG-7 standard to RDF.
Klein [122] proposes a procedure to transform the XML tree using the RDF primitives by annotating
the XML by RDFS. This procedure can multiply the availability of semantically annotated RDF data.
SWIM [123] is an integration middleware for mediating high-level queries to XML sources using RDFS.
Lehti et al. [124] show how the ontologies can be used for mapping data sources to a global schema.
In this work, the authors introduce how the inference rules can be used to check the consistency of such
mappings. In this paper, a query language based on XQuery is presented. O’Connor et al. [125] propose
an OWL-based language that can transform XML documents to arbitrary ontologies. It extends it
with Manchester syntax for XPath to support references to XML fragments. Another framework is
DTD2OWL [130], which changes XML into vocabularies. It also allows transforming specific XML
instances into OWL individuals. Xiao et al. [133] propose the mappings between XML schemas
and local RDFS vocabularies and those between local vocabulary and the global RDFS vocabulary.
The authors discuss the problem of query containment and present a query rewriting algorithm for
RDQL [137] and XQuery. Yahi et al. [134] propose an approach which covers schema level and data
level. In this proposal XML Schema documents are generated for XML documents with no schema
using the trang tool.

Solutions [110,113,117] using XSLT are separate from the ones mentioned above. Berrueta et al. [110]
discuss an XSLT+SPARQL framework, which allows to perform SPARQL queries from XSLT. It is a collection
of functions for XSLT, which allows to transform the XML results format. Yet another tool is XML2OWL [113],
which uses XSLT for mapping from XML to ontology. Droop et al. [117] propose another XSLT solution,
which allows embedding XPath into SPARQL. Shapkin et al. [128] propose a transformation language,
which is not strictly based on XLST but inspired by it. That proposal focuses on matching of types of
RDF resources.

Another subgroup of approaches [98,108,114,118,129,132] supports mutual transformation.
XSPARQL [98,112] is a query language based on SPARQL and XQuery for transformations from
RDF into XML and back. It is built on top of XQuery in a syntactic and semantic view. Gloze [108] is
another tool for bidirectional mapping between XML and RDF. It uses information available in the
XML schema for describing how XML is mapped into RDF and back again. GRDDL [114] is a markup
language that obtains RDF data from XML documents. It is represented in XSLT. SAWSDL [118] is also
a markup language but it proposes a collection of new attributes for the WSDL [138] and XML Schema.
Other tools include SPARQL2XQuery [129] and XS2OWL [132].
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6. RDF Serializations

Several of RDF syntax formats exist for writing down graphs. RDF 1.1 introduces a number of
serialization formats, such as: Turtle, N-Triples, TriG, N-Quads, JSON-LD, RDFa, and RDF/XML. Note
that in RDF 1.1 RDF/XML is no longer the only recommended serialization format.

In Section 6.1, we present serializations that support single graphs. In Section 6.2, we briefly
introduce serialization which supports multiple graphs. Moreover, in this section we show the
above-mentioned formats in examples.

6.1. Single Graph Support

RDFa [139] (denoted rdfa in Table 7) is a RDF syntax which embeds RDF triples in HTML and
XML documents. The RDF data is mixed within the Document Object Model. This implies that
document content can be marked up with RDFa. It adds a set of attribute-level extensions to HTML
and different types of XML documents for embedding rich metadata within these documents. What is
more, RDFa allows for free intermixing of terms from multiple vocabularies. It is also designed in such
a way that the format can be processed without information of the specific vocabulary being used. It is
common in contexts where data publishers are able to change Web templates but have little additional
control over the publishing infrastructure.

Following [139], we provide the most important attributes that can be used in RDFa, such as:

• about–an attribute that is an IRI or CURIE [41] specifying the resource the metadata is about
(a RDF subject);

• rel and rev–attributes that expresses (reverse) relationships between two resources
(a RDF predicate);

• property–an attribute that expresses relationships between a subject and some literal value
(a RDF predicate);

• resource–an attribute for expressing a relationship’s partner resource that is not intended to be
navigable (a RDF object);

• href–an attribute that expresses the partner resource of a relationship (a RDF resource object);
• src–an attribute that expresses a relationship’s partner resource when the resource is embedded

(a RDF object that is a resource);
• content–an attribute that overrides the content of the element when using the property (a RDF

object that is a literal);
• datatype–an attribute that specifies the datatype of a literal;
• typeof–an attribute that specifies the RDF types of the subject or the partner resource;
• inlist–an attribute that specifies that the object associated with property or rel attributes on

the same element is to be pushed onto the list for that predicate;
• vocab–an attribute that specifies the mapping to be used when a RDF term is assigned in a value

of attribute.

Table 7. RDF serializations. This table presents the features of serializations, namely: Having W3C
Recommendation (yes–2�, no–4), human-friendly syntax (yes–2�, partial–2, no–4), easy to process
(yes–2�, partial–2, no–4), compact form (yes–2�, partial–2, no–4), similarity to Turtle syntax and
XML-based syntax (yes–2�, no–4) and multigraph support (yes–2�, no–4).

Feature ttl nt tg nq jld rdfa xml
Standard 2� 2� 2� 2� 2� 2� 2�
Human readable 2� 2 2� 2 2� 2� 2
Efficient 4 4 4 4 2 4 2
Normalized 4 2� 4 2� 2 4 4
Turtle family 2� 2� 2� 2� 4 4 4
XML family 4 4 4 4 4 2� 2�
Multiple graphs 4 4 2� 2� 2� 4 4
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Example 15. This example presents a RDFa 1.1 serialization that represents the RDF triples of Example 2.

<div xmlns="http://www.w3.org/1999/xhtml"
prefix="
foaf: http://xmlns.com/foaf/0.1/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#"
>
<div typeof="foaf:Person" about="http://example.com/p#js">
<div property="foaf:name">John Smith</div>
<div rel="foaf:workplaceHomepage">
<a typeof="rdfs:Resource" href="http://univ.com/">
<span property="rdfs:label">University</span>
</a>
</div>
</div>
</div>

RDF/XML [140] (denoted xml in Table 7) is a syntax to serialize a RDF graph as an Extensible
Markup Language (XML) document. Nevertheless, the syntax is viewed as problematic to read and
write for humans so one should consider using other syntaxes for editors. In order to process a graph
in RDF/XML serialization, there must be a representation of nodes and predicates in the terms of
XML XML–names of attributes, names of elements, values of attributes, and contents of elements. This
syntax uses qualified names (so-called QNames) to represent IRI references. There are some limitations
imposed on RDF/XML by the XML format and the use of the XML namespace, which prevents the
storage of all RDF graphs as some IRI references are forbidden by the specifications of these standards.

Following [140], we provide the most important elements and attributes that can be used in
RDF/XML, such as:

• rdf:RDF–a root element of RDF/XML documents;
• rdf:Description–an element that contains elements that describe the resource, it contains the

description of the resource identified by the rdf:about attribute;
• rdf:Alt, rdf:Bag and rdf:Seq–elements that are containers used to describe a group of things

(see Section 2);
• rdf:parseType="Collection"–an attribute that describe groups that can only contain the

specified members;
• rdf:parseType="Resource"–an attribute that is used to omit blank nodes;
• xml:lang–an attribute that is used to allow content language identification;
• rdf:datatype–an attribute that is used to define a typed literal;
• rdf:nodeID–an attribute that identifies a blank node;
• rdf:ID and xml:base–attributes that abbreviate IRIs.

Example 16. This example presents a RDF/XML serialization that represents RDF triples of Example 2.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
>
<rdf:Description rdf:about="http://univ.com/">
<rdfs:label>University</rdfs:label>
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</rdf:Description>
<rdf:Description rdf:about="http://example.com/p#js">
<foaf:name>John Smith</foaf:name>
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:workplaceHomepage rdf:resource="http://univ.com/"/>
</rdf:Description>
</rdf:RDF>

Another RDF syntax refers to Terse RDF Triple Language (Turtle) [141] (denoted ttl in
Table 7). That solution offers textual syntax that enables recording RDF graphs in a compact form,
including abbreviations that use data patterns and datatypes. Following [141], we provide the most
important rules for constructing the Turtle document:

• The simplest triple statement consists of a sequence of subject, predicate, and object, separated by
space, tabulation or other whitespace and terminated by a dot after each triple.

• Often, the same subject will be referenced by several predicates. In this situation, a series of
predicates and objects are separated by a semicolon.

• As with predicates, objects are often repeated with the same subject and predicate. In this case,
a comma should be used as a separator.

• IRIs may be written as relative or absolute IRIs or prefixed names. Both absolute and relative IRIs
are enclosed in less-than sign and greater-than sign.

• Quoted literals have a lexical form followed by a datatype IRI, a language tag or neither. Literals
should be delimited by apostrophe or double quotes.

• Blank nodes are expressed as underscore, colon and a blank node label that is a series of name
characters. Blank nodes can be nested, abbreviated, and delimited by square brackets.

• Collections are enclosed by parentheses.

Example 17. This example presents a Turtle serialization that represents RDF triples of Example 2.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
<http://example.com/p#js> a foaf:Person ;
foaf:name "John Smith" ;
foaf:workplaceHomepage <http://univ.com/> .
<http://univ.com/> rdfs:label "University" .

N-Triples [142] (denoted nt in Table 7) is a line-based, plain text serialization format and a subset
of the Turtle format minus features such as shorthands. It means that there is a lot of redundancy,
and its files can be larger than Turtle and RDF/XML. N-Triples was designed to be a simpler format
than Turtle, and therefore easier for software to parse and generate. Following [142], we provide the
most important rules for constructing the N-Triples document:

• The triple statement consists of a sequence of subject, predicate, and object, divided by whitespace,
and terminated by a dot after each triple.

• IRIs should be represented as absolute IRIs and they are enclosed in less-than sign and greater-than sign.
• The representation of the lexical form is a sequence of a double quote (an initial delimiter), a list

of characters or escape sequence, and a double quote (a final delimiter).
• Blank nodes are expressed as underscore, colon and a blank node label that is a series of

name characters.

There are some changes in RDF 1.1 N-Triples, e.g., encoding is UTF-8 rather than US-ASCII and
blank node labels may begin with a digit. Syntactically, N-Triples is a subset of Turtle.
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Example 18. This example presents a N-Triples serialization that represents RDF triples of Example 2. Note
that we change some RDF term because of legibility.

<http://example.com/p#js> <http://...#type> <http://...foaf/0.1/Person> .
<http://example.com/p#js> <http://.../workplaceH...> <http://univ.com/> .
<http://example.com/p#js> <http://.../name> "John Smith" .
<http://univ.com/> <http://...#label> "University" .

6.2. Multiple Graphs Support

JSON-LD [143] (denoted jld in Table 7) is a JSON-based format to serialize structured data such as
RDF. The syntax of this serialization is created to simply integrate into deployed systems that use JSON
and provides a smooth upgrade path from JSON to JSON-LD. The use of RDF in JSON makes RDF
data accessible to Web developers without the obligation to install additional software libraries, parsers
or other tools for changing RDF data. Like JSON, JSON-LD uses human-readable text to transmit data
objects consisting of key-value pairs.

Keywords in JSON-LD start with the @ sign. Following [143], we provide the most important
keywords that can be used in JSON-LD, such as:

• @context–set the short-hand names that are used throughout a document;
• @id–uniquely identify things that are being described in the document with blank nodes or IRIs;
• @value–specify the data that is associated with a particular property;
• @language–define the language for a particular string value or the default language of a document;
• @type–set the data type of an IRI, a blank node, a JSON-LD value or a list;
• @container–set the default container type for a short-hand string that expands to an IRI or a

blank node identifier;
• @list–define an ordered set of data;
• @set–define an unordered set of data (values are represented as arrays);
• @reverse–used for reverse relationship expression between two resources;
• @index–specify that a container is used to index information;
• @base–define the base IRI against which relative IRIs are resolved;
• @vocab–expand properties and values in @type with a common prefix IRI;
• @graph–express a graph.

Example 19. This example presents a JSON-LD serialization that represents the RDF triples of Example 3.

{ "@id": "http://example.com/#people",
"@graph": [
{
"@id": "http://univ.com/",
"http://www.w3.org/2000/01/rdf-schema#label": "University"
},
{
"@id": "http://example.com/p#js",
"@type": "http://xmlns.com/foaf/0.1/Person",
"http://xmlns.com/foaf/0.1/name": "John Smith",
"http://xmlns.com/foaf/0.1/workplaceHomepage": {
"@id": "http://univ.com/"
}
}
]
}
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JSON-LD is a RDF syntax. However, it also extends the RDF data model, e.g., in JSON-LD
predicates can be IRIs or blank nodes whereas in RDF have to be IRIs. JSON-LD can serialize
generalized RDF triples, where subjects, predicates, and objects can be IRIs, blank nodes or literals.

Example 20. This example presents a JSON-LD serialization that represents a RDF triple: <#a> as a subject,
blank node as a predicate and "Alice" as an object.

{
"@context": {
"name": "_:b"
},
"@id": "#a",
"name": "Alice"
}

Another RDF syntax refers to TriG [144] (denoted trig in Table 7). It is a plain text syntax for RDF
datasets serialization. Syntactically, Turtle is subset of TriG. A document consists of:

1. A sequence of directives;
2. RDF triples;
3. graph statements which contain triple-generating statements.

Graph statements are a pair of blank node label or an IRI with a group of RDF triples surrounded
by curly brackets. The blank node label or IRI of the graph statement may be used in another graph
statement which implies taking the union of the triples generated by each graph statement. A blank
node label or IRI used as a graph label may also reoccur as part of any RDF triples.

Example 21. This example presents a TriG serialization that represents RDF triples of Example 3.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
<http://example.com/#people> {
<http://example.com/p#js> a foaf:Person ;
foaf:name "John Smith" ;
foaf:workplaceHomepage <http://univ.com/> .
<http://univ.com/> rdfs:label "University" .
}

N-Quads [145] (denoted nq in Table 7) is another line-based syntax for serializing RDF datasets.
That plain text format is a RDF syntax similar to N-Triples. N-Quads line statement is a sequence of
RDF terms representing the RDF triple (subject, predicate and object line in N-Triples) and graph label,
which can be an IRI or blank node. The graph label is also a part of a dataset, and this sequence is
terminated by a dot.

Example 22. This example presents a N-Quads serialization that represents RDF triples of Example 3. Note
that we change some RDF term because of legibility.

<http://univ.com/> <http://...#label> "University" <http://...#pe..>.
<http://example.com/p#js> <http://..#type> <http://../P..> <http://...#pe.>.
<http://example.com/p#js> <http://.../work...> <.../> <http://...#pe..>.
<http://example.com/p#js> <http://.../name> "John ..." <http://...#pe..>.
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In Table 7 we present features of the above-mentioned standardized serializations, namely:
Having W3C Recommendation, human-friendly syntax (partial support means that some fragments
may be difficult to read), easy to process, compact form (partial support means that there are several
different forms and not all are normalized), similarity to Turtle syntax and XML-based syntax and
multigraph support. Furthermore, there are a few RDF serializations that are not standardized, such as
TriX [146], RDF/JSON [147,148].

7. RDF Compression

RDF compression has been widely addressed recently. However, there is no leading standard for
RDF compression.

A recent work [149] points out that RDF datasets are highly compressible because of the RDF
graph structure and RDF syntax verbosity. In that paper, different compression approaches are
analyzed, including:

1. Direct compression;
2. adjacency list compression;
3. a RDF split into the element dictionaries and the statements.

The conclusions of that paper suggest that RDF is highly compressible.

Definition 20 (RDF compression processor). An RDF compression processor is used by application
programs for encoding their RDF data into compressed RDF data and/or to decode compressed RDF
data to make the data accessible.

Header-Dictionary-Triples [150] (denoted hdt in Table 8), a binary format that is based on three
main parts:

1. A header, which includes metadata describing the RDF dataset;
2. a dictionary, which organizes all the identifiers in the graph (it provides a list of the RDF terms

such as literals, IRIs and blank nodes);
3. a triples component, which consists of the underlying RDF graph pure structure.

HDT achieves high levels of compression and provides retrieving features to the compressed
data. That approach works on the complete dataset, with non-negligible processing time. That idea
is extended in [151]. In that thesis, the author proposes techniques to compress rich-functional RDF
dictionaries and triple indexing. That thesis shows the use of a succinct data configuration to browse
HDT-encoded datasets. HDT can be used as a backend of Triple Pattern Fragments [152] and natively
supports fast triple-pattern extraction.

In [153,154] (denoted eri in Table 8), authors apply a feature of RDF data streams, which is the
symmetry and regularity of their structure and values. They propose a compressed Efficient RDF
Interchange format, which can reduce the amount of data transmitted when processing RDF streams.
ERI considers a RDF stream as a continuous flow of blocks of triples. A standard compressor can be
used in each channel and impact on its data regularities to produce better compression results.

Another approach is the RDF Differential Stream compressor based on Zlib [155] (denoted rdsz
in Table 8), which is a proposal for RDF streaming compression. It applies the general-purpose
stream compressor Zlib to RDF streams. It uses differential encoding to obtain structural similarities.
The results of this process are compressed with Zlib library to exploit extra redundancies. Furthermore,
that approach achieves gains in compression at the cost of increasing the processing time.

The interest on RDF compression over streaming data has been indirectly covered by RDF stream
processing systems such as Continuous Query Evaluation over Linked Streams Cloud [156] (denoted
cqels in Table 8) and Ztreamy [157] (denoted ztr in Table 8). These papers emphasize the significance
of compression for scalable transmission of RDF streams over the Web. In [156], authors propose an
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approach to deal with this issue by dictionary encoding. In [157], authors discuss a scalable middleware
for stream publishing.

Several research areas have emerged around MapReduce and RDF compression, e.g., scalable
compression of large RDF datasets [158] and large RDF data compression and decompression
efficiency [159] (denoted mr in Table 8). The first paper presents an approach based on
providing another dictionary-based compression on top of MapReduce [160]. In the second one,
authors expand [159] and achieve linear scalability concerning the number of nodes and input size.
Another proposal is presented in [161], where HDT-MR is introduced. HDT-MR uses MapReduce
technique to process a huge RDF and build the HDT serialization.

It is worth noting that EXI (Efficient XML Interchange) [162] can be used to RDF compression but it
can only serialize XML [163], i.e., RDF/XML or TriX or JSON [164] i.e., JSON-LD. In Table 8 we present
features of the above-mentioned proposals, namely: Having W3C Recommendation, binary syntax,
ability to stream, ability to scale and support of a software library used for data compression (Zlib).

Table 8. RDF compression. This table presents the features of serializations, namely: Having W3C
Recommendation (yes–2�, no–4), binary syntax (yes–2�, no–4), ability to stream (yes–2�, no–4), ability
to scale (yes–2�, no–4), and support of a software library used for data compression (yes–2�, no–4).

Feature hdt eri rdsz cqels ztr mr
Standard 2�? 4 4 4 4 4
Binary format 2� 2� 2� 2� 2� 2�
Streamable 4 2� 2� 2� 2� 2�
Scalable 2� 2� 2� 2� 2� 2�
Zlib 4 4 2� 4 2� 2�

? W3C Member Submission.

8. Conclusions

Standards are instrumental in achieving a significant level of interoperability. W3C recommendations
provide people and institutions a basis for mutual understanding. The recommendations that define RDF
are used as tools to facilitate various providers to interact with one another. Despite the achievements
of current RDF recommendations, they are not sufficient for achieving full end-to-end interoperability.
The standards leave several areas vulnerable to variations in interpretation. In this article, we outlined
various RDF recommendations, scientific papers that extend and clarify them, and presented a summarised
formal description that we hope will clarify some of interpretative differences.

We specifically provided insights on the interpretation of the handling of blank nodes and
reification. We presented several interpretative differences, each corresponding to an entailment
regime in a standard way. We surveyed various RDF serializations, RDF compression proposals,
and RDF mapping approaches to highlight their differences. Finally, we presented a summarized
formal definition of RDF 1.1 and emphasized changes between RDF versions 1.0 and 1.1.

We argue that knowledge representation and data integration on the Web faces some of the
same challenges faced ten years ago, in spite of the significant work being accomplished by both
researchers and implementers. We hope that this review contributes to a better understanding of RDF
1.1, and provides the basis for a discussion of interpretative differences. We hope some of these gaps
may be able to be fixed in a future version of RDF, such as selection of concise reification, and a formal
description of the data model that addresses practical experiences with reification, and blank nodes.
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Abbreviations

The following abbreviations are used in this manuscript:

CURIE compact URI expressions
DOM Document Object Model
dRDF domain-restricted RDF
EXI Efficient XML Interchange
FOAF Friend of a Friend
FOL First-Order Logic
HDT Header-Dictionary-Triples
HTTP Hypertext Transfer Protocol
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
OWL Web Ontology Language
QNames qualified name
R2RML RDB to RDF Mapping Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol And RDF Query Language
SQL Structured Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language
XQuery XML Query language
XSLT Extensible Stylesheet Language Transformations
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