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Abstract: In this work, we employ stochastic differential equations (SDEs) to model tree stem taper. 
SDE stem taper models have some theoretical advantages over the commonly employed regression-
based stem taper modeling techniques, as SDE models have both simple analytic forms and a high 
level of accuracy. We perform fixed- and mixed-effect parameters estimation for the stem taper 
models by developing an approximated maximum likelihood procedure and using a data set of 
longitudinal measurements from 319 mountain pine trees. The symmetric Vasicek- and asymmetric 
Gompertz-type diffusion processes used adequately describe stem taper evolution. The proposed 
SDE stem taper models are compared to four regression stem taper equations and four volume 
equations. Overall, the best goodness-of-fit statistics are produced by the mixed-effect parameters 
SDEs stem taper models. All results are obtained in the Maple computer algebra system. 

Keywords: asymmetric Gompertz process; symmetric Vasicek process; tree stem taper; mountain 
pine  

 

1. Introduction 

Stem taper modeling is an attractive way to estimate tree size variables, both in forestry research 
and practice, due to its analytical flexibility. These types of models have been increasingly used for 
forest inventory and growth forecasting tools. The most difficult challenge of stem taper modeling is 
in modeling tree species with stems that differ from an idealized shape. This situation often leads to 
isolation of many tree species from stem taper modeling process.  

Many types of taper modeling techniques have been proposed and applied over the years. The 
most traditionally used stem taper parametric equations are regression models, which are classified 
into segmented polynomial [1], variable exponent [2], mechanistic [3], and stochastic differential 
equation [4,5] methods.  

In the early stages of the study of forest tree stem taper [6], a hypothesis was framed that the 
best-fitting form curve of the square of the diameter and the height above ground at the point of 
measurement is a straight-line relationship. Later, Kozak et al. [7] presented a parabolic model for 
which the parameters were estimated using the ordinary least squares method. Max and Burkhart [1] 
published segmented polynomial models to describe the evolution of squared relative diameters by 
relative heights. New classes of stem taper models have been derived with reference to widely 
accepted mechanical and biological principles [3,8]. Sloboda [4] introduced the diffusion process 
analogy for stem taper modeling, focused on a brief methodological discussion of the stem taper 
model, and theoretically demonstrated that the evolution of the stem taper can be successfully 
formulated as a diffusion process. Fortunately, the proposed stochastic differential equation (SDE) 
stem taper model has led to a very simple approximation of the stem taper dynamic and the 
corresponding probabilities. Petrauskas et al. [9] successful promoted the SDE stem taper model to a 
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segmented model which uses two joining points to link three stem sections along the bole, where 
each section is modeled by a different type of fixed-effect parameters SDE.  

Stochastic differential equations are widely used to model biological dynamical systems in 
which a stochasticity phenomenon plays a leading role, embracing more complex variations in the 
dynamics and generalizing classical ordinary differential equation models [10,11]. The analytical 
theory of univariate diffusion processes has been successfully utilized for modeling the growth 
dynamics of an even-age stand [12,13]. Over the last decade, a variety of fixed- and mixed-effect 
parameters diffusion processes (both symmetrical and nonsymmetrical forms) have been applied in 
forest tree- and stand-level growth models. Recent research has focused on developing techniques to 
account for between-individual variabilities in stands. Stochastic growth theories, for example, have 
been built around the Vasicek, Gompertz, Bertalanffy, and gamma SDEs in both univariate [14] and 
bivariate [15,16] forms. Multivariate diffusion processes allow us to further consider the underlying 
covariance structure driving the changes in the state variables; for example, a trivariate case [17], a 
quadrivariate Vasicek case [18], and a quadrivariate Bertalanffy case [19] have been investigated. 

The main goal of this paper is to develop a segmented mixed-effect parameters SDE stem taper 
model that uses one joining point to link two sections, where each section is modeled by a different 
type of mixed-effect parameters SDE, and to describe the maximum likelihood procedure for fixed-
and mixed-effect parameter estimates. Another goal is to compare the developed stem taper models 
with well-known regression models for prediction of diameter at any specified height and volume. 
In the results, we consider a possible application of the SDE stem taper modeling technique to 
measurements from mountain pine stands in Lithuania. All results are obtained in the Maple 
computer algebra system using the Statistics and VectorCalculus packages. 

2. Materials and Methods  

2.1. SDE Taper Framework 

A large number of stem taper equations have been developed for different tree species and 
regions, which mathematically describe the tree diameter at an arbitrary height. Stem taper equations 
meet multifarious interests in forest management: first, we can calculate the stem diameter at any 
specified height; second, we can calculate the tree height for any specified value of stem diameter; 
and, finally, we can calculate the stem volume and the product volume, given specified dimensions. 
The estimates of specified product volume are significant in modern forest planning, for example, in 
evaluating the economics of different stand management regimes. 

This paper focuses on two stem taper modeling frameworks, which can be classified into 
stochastic differential equations and regression models. 

2.1.1. SDE Stem Taper Models 

In this study, we determine a taper model using a univariate stochastic process ( )iY x , Mi ,...,1=
, diffusing in M different tree stems randomly chosen from a theoretical population. The SDE taper 
model supposes that the changes of the relative diameter i h

i
DY
d

=  according to the relative height 

i
i

hx
h

=  ( [ ]1;0∈ix ) are expressed by the Itô-type SDE [20], where hD  is the diameter (outside the 

bark) at any arbitrary height h, id  is the diameter (at breast height, outside the bark) of the ith tree, 
and ih  is the total tree height (from ground to tip) of the ith tree. Two different SDEs are used for 
quantifying the stem development. The first evolution model of the relative diameter by the relative 
height takes the Gompertz form: 

( ) [ ( ) ( ) ln( ( ))] ( ) ( )i i i i i i i i i i i i i
B B B BdY x Y x Y x Y x dx Y x dW xα β σ= − +  (1) 

where ( )0 0( ) 1i i iP Y x y= = , Mi ,...,1= ; ( )i iY x  is the value of the diameter at a given relative height xi; 

Bα , Bβ , and Bσ  are fixed-effect parameters (for all trees); iy 0  is the nonrandom initial relative 
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diameter; index B indicates a butt part of a tree stem; and ( )i i
BW x , Mi ,...,1= , are mutually 

independent standard Brownian motions. The second dynamic of the relative diameter takes the 
Vasicek form: 

( ) ( ) ( ) ( )i i i i i i i
T T T Td Y x Y x dx dW xβ α σ= − +  (2) 

where Tα , Tβ , and Tσ  are fixed-effect parameters (identical for the entire population of trees); 
index T indicates a top part of a tree stem; and ( )i i

TW x  are mutually independent standard Brownian 
motions. The fixed-effect parameters Bα , Bβ , Tα , and Tβ  govern the mathematical form of the 
drift curves. The volatility parameters Bσ  and Tσ  in the SDEs stipulate the intrinsic variability of 
the taper curve, as two trees i and j, 1 ,i j M≤ ≤ , selected at random and with the same diameter at 
breast height and the same height (hi = hj), do not necessarily have the same stem taper curve and 
volume. Hence, the parameters Bσ  and Tσ  reflect the intrinsic variability when modeling a 
particular tree. 

In this study, we use a segmented SDE consisting of the two different SDEs defined by Equations 
(1) and (2). Many regression analysis techniques have recently been used for stem taper modeling, 
such as linear or nonlinear fixed- and mixed-effect models or generalized additive models [21]. The 
mixed-effect SDE models have the ability to model the stem variability and analyze data from several 
individual trees simultaneously. This modeling approach describes individual stems by a common 
mean and variance of the global distribution, with some of the model parameters varying within the 
stem (called random effects), while other parameters remain invariant between stems (called fixed-
effect parameters). Mixed-effect models use longitudinal data from all stems to estimate the fixed- 
and mixed-effect parameters. For the sake of simplicity, we assume that the parameters Bα  and Tα  
are both composed of fixed parameters and are normally distributed (with 0 mean and constant 
variance) random variables: 

i
B B Bα α ϕ≡ + , ( )2

1~ 0;i
B Nϕ σ  (3) 

i
T T Tα α ϕ≡ + , ( )2

2~ 0;i
T Nϕ σ  (4) 

In this study, the stem taper SDE with one joining point 
1.3
ih

 is defined, using the two different 

forms, by 

( )

1.3[ ( ) ( ) ln( ( ))] ( ) ( ),
 ( )

1.3( ) ( ),

i i i i i i i i i i i i
B B B B i

i i

i i i i i i
T T T T i

Y x Y x Y x dx Y x dW x x
hd Y x

Y x dx dW x x
h

α β σ

β α σ

 − + ≤= 
 − + >


 (5) 

( )
( )

1.3( ) ( ),
 ( )

1.3( ) ( ),

i i i i i i
B B B B i

i i

i i i i i i
T T T T i

Y x dx dW x x
hd Y x

Y x dx dW x x
h

β α σ

β α σ

 − + ≤= 
 − + >


 (6) 

Using Equations (3)–(6) and fixing the stem butt ( )0(0) 1i iP Y y= =  and top ( )(1) 0 1iP Y = = , we 

define four different stem taper models. The proposed SDE stem taper models use one tree-specific 
prior relative diameter ( )0(0) 1i iP Y y= =  (stem diameter measured at a stem height of 0 m).  

Model 1. (Fixed effects): Equation (5), ( )0(0) 1i iP Y y= =  and ( )(1) 0 1iP Y = = , Mi ,...,1= . 

Model 2. (Fixed effects): Equation (6), ( )0(0) 1i iP Y y= =  and ( )(1) 0 1iP Y = = , Mi ,...,1= . 
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Model 3. (Mixed effects): Equations (3)–(5), ( )2
1~ 0;i

B Nϕ σ , ( )2
2~ 0;i

T Nϕ σ , ( )0(0) 1i iP Y y= = , and 

( )(1) 0 1iP Y = = , Mi ,...,1= . 

Model 4. (Mixed effects): Equations (3), (4), and (6), ( )2
1~ 0;i

B Nϕ σ , ( )2
2~ 0;i

T Nϕ σ , ( )0(0) 1i iP Y y= = , and 

( )(1) 0 1iP Y = = , Mi ,...,1= . 

The diffusion process representing the solution of Equation (1) has a univariate log-normal 
distribution ( )1 ( ); ( )B BLN x v xμ  with mean, variance, and conditional probability density functions, 
respectively, as follows: 

0
0

2( )
( )

0
1( ) ln( )

2

B
B

x x
x x i B

B B
B

ex e y
β

β σμ α
β

− −
− −   −= + −    

  
 (7) 

( )0
2

2 ( )( ) 1
2

B x xB
B

B
v x e βσ

β
− −= − 2

Bσ  (8) 

( ) ( )21 1, exp ln ( )
2 ( )2 ( )

B
G B

BB
p y x y x

v xy v x
θ μ

π
 

= − − 
 

 (9) 

( ), ,B
B B Bθ α β σ=  and index G indicates the Gompertz-form. 

The diffusion process representing the solution of Equation (2) has a univariate normal 
distribution ( )1 ( ); ( )B BN x v xμ  with mean, variance, and conditional probability density functions, 
respectively, as follows: 

( ) ( )0
0( ) T x xi

T T Tx y e βμ α α − −= − − ⋅  (10) 

( )0
2

2 ( )( ) 1
2

T x xT
T

T
v x e βσ

β
− −= −  (11) 

( ) ( )21 1, exp ( )
2 ( )2 ( )

T
V T

TT
p y x y x

v xv x
θ μ

π
 

= − − 
 

 (12) 

( ), ,T
T T Tθ α β σ= , and index V indicates the Vasicek form. 

Using the mean (Equations (7) and (10)) and variance (Equations (8) and (11)) functions, we can 
define the mean trajectory of diameter, 1 0( , , )i id h d h y , variance, 1 0( , , )i iw h d h y  and p-quantile 

development, 1 0( , , , )i idq h d h y p , for Model 1 ( ( ) 0i
BϕΕ =  and ( ) 0i

TϕΕ =  for Mi ,...,1= ) and Model 

3 in the following forms, respectively: 

( )
( ) ( )

2 2( / )
( / ) 2 ( / )

0

1 0
/ 1

1exp ln( ) 1 ,
2 4

( , , )
1.30 ( ) ,

i
Bi i

B B

i
T

h h
h h h hi i B B

B B
B Bi i

h hi i i
T T T T i i

ed e y e
d h d h y

hd e
h h

β
β β

β

σ σα ϕ
β β

α ϕ α ϕ

−
− −

−

    −   ⋅ + + − + −         = 
  ⋅ + − − + ⋅ >  
  

(13) 
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( ) ( )

( )
( ) ( )

2 2( / )2 ( / ) 2 ( / )
0

2
2 ( / )

1 0

22 2 ( / 1)

1exp 2 ln( ) 1
2 4

1.3( , , ) exp 1 1 ,
2

1.31 ,
2

i
Bi i

B B

i
B

i
T

h h
h h h hi i B B

B B
B B

h hi i B
i i

B

h hi T
i

T

ed e y e

hw hd h y e
h h

hd e
h h

β
β β

β

β

σ σα ϕ
β β

σ
β

σ
β

−
− −

−

−

    −   ⋅ + + − + −         
  
 = × − − ≤     

⋅ − > i















 (14) 

( )

( ) ( ) ( )

1 0

1

2/ 1 2 ( / 1)1

( , , , )

1 1.3exp 0;1 ,
2

1.30 ( ) ; 1 ,
2

i iT T

i i

i
B B pi i i i

h h h hi i i T
p T T T T i i

T

dq h d h y p

h h hd v
h h h h

hd e e
h h

β β

μ

σα ϕ α ϕ
β

−

− −−

     ⋅ + Φ ≤     
    =    ⋅Φ + − − + ⋅ − >   

 

 (15) 

Using the mean (Equation (10)) and variance (Equation (11)) functions, we can define the mean 
trajectory of diameter, 2 0( , , )i id h d h y , variance, 2 0( , , )i iw h d h y , and p-quantile development, 

2 0( , , , )i idq h d h y p , for Model 2 ( ( ) 0i
BϕΕ =  and ( ) 0i

TϕΕ =  for Mi ,...,1= ) and Model 4 in the 

following forms, respectively: 

( )( )
( ) ( )

/
0

2 0 / 1

1.3( ) ,
( , , )

1.30 ( ) ,

i
B

i
T

h hi i i
B B B B i i

i i

h hi i i
T T T T i i

hd y e
h hd h d h y
hd e
h h

β

β

α ϕ α ϕ

α ϕ α ϕ

−

−

 ⋅ + − − + ⋅ ≤=    ⋅ + − − + ⋅ >   

 (16) 

( ) ( )
( ) ( )

22 2 ( / )

2 0 22 2 ( / 1)

1.31 ,
2

( , , )
1.31 ,

2

i
B

i
T

h hi B
i i

Bi i

h hi T
i i

T

hd e
h hw h d h y
hd e
h h

β

β

σ
β

σ
β

−

−


⋅ − ≤

= 
 ⋅ − >


 (17) 

( ) ( ) ( )
( ) ( ) ( )

2 0

2/ 2 ( / )1
0

2/ 1 2 ( / 1)1

( , , , )

1.3( ) ; 1 ,
2

1.30 ( ) ; 1 ,
2

i iB B

i iT T

i i

h h h hi i i B
p B B B B i i

B

h h h hi i i T
p T T T T i i

T

dq h d h y p

hd y e e
h h

hd e e
h h

β β

β β

σα ϕ α ϕ
β

σα ϕ α ϕ
β

− −−

− −−

  
⋅Φ + − − + ⋅ − ≤     = 

  ⋅Φ + − − + ⋅ − >   
 

 (18) 

2.1.2. SDE Parameters Estimation 

In this section, we discuss the parameter estimation methods for the SDE stem taper Models 1–
4. This study focuses on discretely observed longitudinal tree stem measurements without 
measurement noise. This assumption has a great advantage for formulating the maximum likelihood 
function in closed form. Maximum likelihood estimation of the fixed- and random-effect parameters 
in Models 1–4 is possible, due to the availability of the exact expressions for the conditional 
probability density functions as defined by Equations (9) and (12). Assume that the relative diameter 

process Yi(xi) is directly observed at discrete relative height points { }1 2, , ,
i

i i i
nx x x , composing an 

estimation data set { }1 2, , ,
i

i i i
ny y y  where ni is the number of diameter measurements of the ith stem, 

Mi ,...,1= . For Models 1 and 2, the log-likelihood function takes the following form: 
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1 1
( , ) ln( ( , , ))

inM
B T i i B T

k k j j
i j

L p y xθ θ θ θ
= =

= , 1, 2k =  (19) 

where the conditional probability density functions, respectively, are 

( )
( )
( )

1

1.3, ,
, ,

1.3, ,

B
G i i

B T

T
V i i

hp y x
h hp y x
hp y x
h h

θ
θ θ

θ

 ≤= 
 >


 (20) 

( )
( )
( )

2

1.3, ,
, ,

1.3, ,

B
V i i

B T

T
V i i

hp y x
h hp y x
hp y x
h h

θ
θ θ

θ

 ≤= 
 >
  

(21) 

For the Models 3 and 4, the combined log-likelihood function for all M stems takes the following 
form: 

( )( ) ( ) ( )2 2
1 2

1 1

( , )

ln , , , , ln ( ) ln ( )
i

m
k

nM
i i B T i i i i i i

k j j B T B T B T
i j

LL

p y x p p d d

θ ψ

θ θ ϕ ϕ ϕ σ ϕ σ ϕ ϕ
+∞ +∞

= = −∞ −∞

  = + + ⋅    
  

, 3, 4k =  

(22) 

where the fixed-effect parameters are denoted by the vector ( )1 2, , , , , , ,m
B B B T T Tθ α β σ α β σ σ σ= , and 

the random effects are ( ) ( ) ( ){ }1 1 2 2, , , ,..., ,M M
B T B T B Tψ ϕ ϕ ϕ ϕ ϕ ϕ= . The conditional probability density 

functions, respectively, are 

( )
( )
( )

3

1.3, , ,
, , , ,

1.3, , ,

B i
G B i i

B T i i
B T

T i
V T i i

hp y x
h hp y x
hp y x
h h

θ ϕ
θ θ ϕ ϕ

θ ϕ

 ≤= 
 >


 (23) 

( )
( )
( )

4

1.3, , ,
, , , ,

1.3, , ,

B i
V B i i

B T i i
B T

T i
V T i i

hp y x
h hp y x
hp y x
h h

θ ϕ
θ θ ϕ ϕ

θ ϕ

 ≤= 
 >


 (24) 

where the fixed-effect parameters are ( )1 2, , , , , , ,f
B B B T T Tθ α β σ α β σ σ σ= , and the random effects are 

{ } ( ) ( ) ( ){ }1 2 1 1 2 2, ,..., , , , ,..., ,M M M
B T B T B Tψ ψ ψ ψ ϕ ϕ ϕ ϕ ϕ ϕ= . 

As the integral in Equation (22) does not have an exact solution and no analytic expression is 
known, using Laplace expansion, a two-step maximization procedure can be developed for fixed and 
random parameters estimation. In the first optimization step, we estimate the vector ψ  for every 

tree after plugging the estimates of the fixed-effect parameters mθ
∧

 into the following equation: 

argmax
i

i i m
kg

ψ
ψ ψ θ

∧ ∧ 
 =
 
 

, 1, 2, ...,i M= ; k = 3, 4, (25) 

where the function m
kg θ

∧ 
 ⋅
 
 

 is defined as 
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2 2
1 2

1
ln , , , ln ( ) ln ( )

in
i m i i B T i i i

k k j j B T
j

g p y x p pψ θ θ θ ψ ϕ σ ϕ σ
∧ ∧ ∧ ∧ ∧

=

          
          = + +

                    
  (26) 

The second optimization step estimates the vector mθ  after plugging the estimates of the 

random effects ψ
∧

 into the following equation: 

( )
( )2

1

,1( , ) ln 2 ln det
2

i i

i i mM B Tm i m
k i i

i B T

g
LL g

ψ ψ

ϕ ϕ θ
θ ψ ψ θ π

ϕ ϕ
∧

∧∧

=
=

    ∂        ≈ + − −      ∂ ∂           

 , k = 3, 4. (27) 

2.1.3. Standard Errors of the Parameter Estimates of the SDE Models 

The standard error measures the uncertainty of the estimated model parameters. To evaluate the 
asymptotic standard errors of the maximum likelihood estimators, we focused on the Fisher 
information matrix [22]. The approximate asymptotic variance of the approximated maximum 

likelihood estimators of the fixed effect parameters, θ
∧

, may be found by the inverse of observed 

Fisher information matrix. By defining the vector ( ) ( )( ) s
s

i

LLLL θθ
θ

∂′ ≡
∂

 and the matrix 

( )
2 ( )( )

T

s
s

i j

LL
LL

θθ
θ θ

 ∂″  ≡
∂ ∂  

, s = 1, 2, 3, 4, the observed Fisher information matrix takes the following 

form: 

2~ ( )( )
T

s

i j

LL
I

θ θ

θθ
θ θ ∧

∧

=

 ∂
= − 

∂ ∂  
, s = 1, 2, 3, 4. (28) 

Then, the approximate asymptotic standard errors of the fixed-effect parameters are just the 

square roots of the diagonal terms in the variance–covariance matrix defined by the matrix 
1~

( )I θ
−∧ 

 
 

: 

1~ 1( )iiSE I
n

θ θ
−∧ ∧   = ⋅   

   
 (29) 

2.1.4. Random Effects Calibration 

To calibrate the random effects, i
Bϕ , i

Tϕ , for a new stem in Models 3 and 4, random effects are 
calculated using special measurements taken from a particular stem. Using new special 
measurements of the relative diameters { }1 2, ,..., my y y  at relative heights { }1 2, ,..., mx x x , the random 

effects ( ),i i
B Tψ ϕ ϕ=  are given by 

( )
2 2
1 2

, 1
arg max ln , , , ln ( ) ln ( )

B T

m
m

k j j B T B T
j

p y x p p
ϕ ϕ

ψ θ ϕ ϕ ϕ σ φ σ
∧ ∧ ∧∧

=

      
      = + +

            
 , k = 3, 4. (30) 
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2.2. Nonlinear Regression Stem Taper Models 

Over the past few decades, forest statisticians have proposed advanced regression models for 
describing tree stem taper using simple functions, such as linear and more complex nonlinear 
functions. In developed countries, including the U.S. and Canada, the segmented polynomial model 
was traditionally used at the end of the twentieth century. It is obvious, however, that no single stem 
taper model corresponds well to longitudinal data sets for all tree species. To validate the proposed 
SDE stem taper models, we selected four different regression-type stem taper models of the variable 
form reported in forest research literature for comparison [3,23,24]. 

2.2.1. Segmented Polynomial 

Model 5. The segmented polynomial model was derived by Max and Burkhart [1]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

22
1 1 2 3 1 1 1 4 2 2 22 1 1 1d z z z z I z z I z

D
β β β β α α β α α= − − + − + − − + − −  (31) 

where d is the diameter at any particular height h, D is the diameter at breast height, H is the total 

tree height, z is the relative height (
hz
H

= ), α1 and α2 are the joining points of three segments, β1–β4 

are the unknown parameters to be estimated, and 

( ) 1, 0
0, 0

i
i i

i

z
I z

z
α

α
α

− ≥
− =  − <

  

2.2.2. Segmented q-Exponential 

Tsallis [25] described the q-exponential function, which has been applied successfully to model 
complex problems in a broad range of scientific areas, such as information theory [26] and forestry 
[27]. The pooled segmented function obtained from the q-exponential and polynomials can be 
utilized to describe the changes of tree stem diameter at a specified stem height.  

Model 6. A simple generalized model of stem taper can be defined, using the q-exponential function, as 

( ) 4
3

9

2
5 6

8 11 2
1

7 8 9

( 1) ( 1),
1 0.0001

(1 exp((1 ) ))

z z if z
d D z

z

ββ

β

β β α
β β

β β β −
+

 − + − ≥
= + − + 
 − − −  

 (32) 

where α is the joining point of two segments, β1–β9 are the unknown parameters to be estimated, and 

, 0,
[ ]

0, 0
a if a

a
if a+

≥
=  <

  

2.2.3. Variable Exponential 

Model 7. The stem taper model published by Lee et al. [24] and modified by Berhe and Arnoldsson [28] is 
defined as 

( )
2

3 4 5
2

1 1 0.0001
z z

d D z
β β βββ

+ +
= − +  (33) 

where β1–β5 are the unknown parameters to be estimated. 
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Model 8. The stem taper model published by Kozak [2] is defined as 

( )

0.1

3 334 15 7
4 6 8 9

3 3

32

1 1
exp / 1.3 1.31 1

3

1
3

1 0.0001
1.31

zz zz H
D H D

H Hzd D H

H

β ββ β β β

βββ

−

   
   − −   + + + + +
   

− −   
   

 
 − + =
 

− 
 

 
(34) 

where β1–β9 are the unknown parameters to be estimated. 

2.3. Nonlinear and Linear Regression Stem Volume Models 

Based on review papers on compiled stem volume regression models [29], four regression 
models were selected and compared with techniques involving stem tapers. All models include 
diameter at breast height, D, and total height, H, as the independent variables, whereas the last 
includes a form factor. 

Model 9. Schumacher and Hall [30] developed the power form stem volume model 

32
1V D H βββ=  (35) 

where β1–β3 are the unknown parameters to be estimated. 

Model 10. Using the q-exponential function, the stem volume can be defined in the following form [31]: 

53

1
1

1 2 4 5(1 exp((1 ) ))V H z βββ β β β −
+= + − − −    (36) 

where β1–β5 are the unknown parameters to be estimated. 

Model 11. Honer developed a two-parameter stem volume model [32]: 

2

2
1

DV

H
ββ

=
+

 (37) 

where β1 and β2 are the unknown parameters to be estimated. 

Model 12. A cylindrical form factor, F, has been used for tree stem volume modeling by the Lithuanian 
National Forest Inventory [9]. Tree stem volume is defined as 

2

4
V D H Fπ= ⋅ , 3 5 62 4

1 2 2F
D H DH D D H

β β ββ ββ= + + + + +  (38) 

where β1–β6 are the unknown parameters to be estimated. 

2.4. Evaluation of Models to Data 

A main goal of stem taper simulation as a descriptive model is to accurately predict the diameter 
value at a specified stem height from a set of predictors (tree diameter at breast height and total tree 
height). In order to interpret the performance of the statistical models on observational data, this 
study focuses on numerical statistics and visualization of residuals. The four statistics used to 
evaluate the goodness-of-fit were adjusted coefficient of determination, mean prediction error 
(percent prediction error, %), mean absolute prediction error (percent absolute prediction error, %), 
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and root-mean-square error (root-mean-square error, %). The mathematical expressions of the 
statistics are as follows: 

1. Adjusted coefficient of determination: 

( )

2

2 1
2

1

11

n

i i
i
n

i
i

y y
nR
n p

y y

∧

=

=

 
−  −  = −

−
−




  

2. Mean prediction error (percent prediction error, %): 

1

1 n

i i
i

B y y
n

∧

=

 
= −  

 
 , (

1

1% 100
n

i i

i

y yB
n y

∧

=

−= ⋅ )  

3. Mean absolute prediction error (percent absolute prediction error, %): 

1

1 n

i i
i

AB y y
n

∧

=
= − , (

1

1% 100
i in

i

y y
AB

n y

∧

=

−
= ⋅ ),  

4. Root-mean-square error (root-mean-square error, %): 

2

1

1 n

i i
i

RMSE y y
n p

∧

=

 
= −  −  

 , (

2

1

1% 100
n

i i

i

y yRMSE
n p y

∧

=

 
− = ⋅ −  

 
 ), and  

Here, 
1

M

i
i

n n
=

=  is the total number of observations used to fit (validate) the model, M is the 

number of stems, ni is the number of measured diameters in the ith tree stem, and iy , 
∧

iy , and y  are 
the measured, estimated, and average values, respectively, of the dependent variable (diameter, d; 
stem volume, v). 

3. Results and Discussion 

The newly developed models are nondeterministic models that consider symmetric and 
asymmetric diffusions of stem diameter at a particular height. Various regression models that 
incorporated diameter at breast height and tree height have been proposed [1,2,6,7,27,31]. However, 
there has been debate about the mathematical form of stem taper. Our developed models are not 
affected by the mathematical form of the stem taper, because we start from the evolution of the 
distribution [33] of the relative diameter. Another characteristic of our models is that the mixed-effect 
parameters SDE model deals with random growth rate for a given stem diameter and height. Such a 
model can express the variation in individual stem taper due to the random effects. 

3.1. Estimation Results 

We illustrate the proposed modeling technique by using a mountain pine tree (Pinus mugo Turra) 
data set. The data used for modeling consisted of measurements collected from 30 mountain pine 
plots located in western Lithuania (Kuršių Nerija). This tree species was planted to stop drifting sand 
dunes of Curonian Spit in the nineteenth to twentieth centuries. The age of sampled stands varies 
from 53 to 123 years. The size of round sample plot was 150 m2. Total diameter at the breast height 
was measured for 7002 trees, height for 702 trees, and stem diameter on each 0.5 m (longitudinal) for 
319 trees. 102 trees were cut down for biomass estimation. A total of 319 trees were used. At plot 
establishment, the following data were recorded for every sample tree: diameter over bark at 1.30 m, 
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tree height, and stem volume (calculated by Equation (40)). The data set was randomly divided into 
estimation and validation data sets. A random sample of 217 stems was selected for model estimation, 
and the remaining data set of 102 stems was used for model validation. The observed data set of 
longitudinal measurements of the diameter at a specified height are presented in Figure 1. Summary 
statistics for the diameter at breast height (d), the total height (h), and volume (v) for all of the stems 
used in the model estimation, and validation data sets, are presented in Table 1. 

Figure 1. Relative stem diameter plotted against relative height: (a) Measurements of 10 observed 
trees from the estimation data set and (b) measurements of 10 observed trees from the validation data 
set. 

Table 1. Summary statistics of all measured stems. 

Data 
Number 

of 
Stems  

Min Max Mean St. 
Dev. 

Number 
of Stems 

Min Max Mean St. 
Dev. 

Estimation Validation 
d (mm) 217 15.0 78.0 37.51 11.59 102 20.0 84.0 36.93 9.25 
h (dcm) 217 17.0 71.4 35.10 9.86 102 2.3 60.4 34.63 7.09 
v (dcm3) 217 0.471 18.966 3.828 2.943 102 0.910 24.734 3.511 2.742 

The methodology of parameter estimation, which is known as machine learning, deals with fitting 
the parameters to reproduce the observed data set. The approaches most commonly used in the 
estimation of parameters are the least squares method and the maximum likelihood procedure. The 
fixed- and mixed-effect parameters of the SDE stem taper Models 1–4 were estimated utilizing the 
maximum likelihood methodology developed in Sections 2.1.2 and 2.1.3, and the parameters of the 
nonlinear regression models 5–12 were estimated by the least squares methodology [34]. For the 
parameters and their standard error estimates, algorithms were developed and realized using the 
symbolic algebra system Maple [35]. The results of parameter estimation and the standard errors for 
Models 1–12 are listed in Table 2. 

Table 2. Estimates of fixed-effect parameters and their standard errors (in parenthesis) for all fitted 
stem taper and volume models. 

 
Parameters of SDE Models 

αB βB σB αT βT σT σ1 σ2  

1 
−0.6209 
(0.0009) 

1.9619 
(0.0038) 

0.2586 
(0.0002) 

1.0262 
(0.0002) 

4.7321 
(0.0030) 

0.4161 
(0.0002) 

− −  

2 
0.7386 

(0.0006) 
2.6620 

(0.0033) 
0.3369 

(0.0003) 
1.0213 

(0.0002) 
4.7729 

(0.0030) 
0.4196 

(0.0002) 
− −  

3 
0.5429 

(0.0009) 
2.1504 

(0.0034) 
0.1918 

(0.0002) 
1.0212 

(0.0001) 
4.8294 

(0.0025) 
0.3584 

(0.0002) 
0.3755 

(0.0005) 
0.1098 

(0.0001) 
 

4 
0.7218 

(0.0007) 
2.4400 

(0.0032) 
0.2576 

(0.0002) 
1.0212 

(0.0001) 
4.8294 

(0.0025) 
0.3584 

(0.0002) 
0.1689 

(0.0002) 
0.1098 

(0.0001) 
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Model 
Parameters of Regression Models 

β1 β2 β3 β4 β5 β6 β7 β8 β9 

5 −4.8466 
(2.1724) 

1.7202 
(1.2734) * 

−2.6159 
(1.5277) * 

78.601 
(7.8595) 

0.7825 
(0.0070) 

0.0940 
(0.0030) 

− − − 

6 
0.3996 

(0.2601) 
5.3867 

(0.2206) 
0.7490 

(0.0101) 
−0.5407 
(0.0379) 

0.5292 
(0.1046) 

−0.9364 
(0.0633) 

4.9294 
(0.4817) 

−11.9415 
(0.8444) 

4.7264 
(0.2347) 

7 
3.5740 

(0.1237) 
0.7461 

(0.0092) 
0.6350 

(0.0571) 
−0.5765 
(0.0687) 

0.4593 
(0.0218) 

− − − − 

8 
2.6297 

(0.1602) 
0.7508 

(0.0162) 
0.0548 

(0.0214) 
0.3480 

(0.0186) 
0.1285 

(0.0597) 
0.2683 

(0.0218) 
−1.4783 
(0.6825) 

−0.0024 
(0.0017) * 

0.0231 
(0.0406) * 

9 
0.6339 

(0.1514) 
1.6095 

(0.0527) 
0.9114 

(0.0553) 
− − − − − − 

10 
−0.3883 

(0.4794) * 

0.0549 
(0.0174) 

0.8402 
(0.0911) 

2.3440 
(0.5437) 

−0.3139 
(0.0641) 

− − − − 

11 
0.0148 

(0.0016) 
1.0312 

(0.0741) 
− − − − − − − 

12 
0.0789 

(0.2482) 
0.1942 

(0.2260) 
34.4302 

(12.0618) 
−17.8971 
(8.6782) 

0.0405 
(0.0535) 

1.6661 
(1.6431) 

− − − 

* non-significant parameter. 

3.2. Comparison of Stem Taper Models 

To be an applicable taper model, a model needs to predict diameter measurements at a particular 
height in a stem highly accurately. To evaluate taper model performance, adjusted coefficient of 
determination, mean prediction error (percent prediction error, %), mean absolute prediction error 
(percent absolute prediction error, %), and root-mean-square error (percent root-mean-square error, 
%) were calculated, which are presented in Table 3. 

Table 3. Statistical indices for all fitted stem taper models. 

Model 

Estimation Data Set Validation Data Set 

B 
(%B) 

AB 
(%AB) 

RMSE 
(%RM

SE) 
R2 B 

(%B) 
AB 

(%AB) 

RMSE 
(%RM

SE) 
R2 

1 −0.5368 
(−1.683) 

2.5766 
(8.075) 

4.0599 
(12.728) 

0.953
3 

−0.2505 
(−0.814) 

2.1768 
(7.076) 

3.3176 
(10.784) 

0.9671 

2 −0.4925 
(−1.544) 

2.5761 
(8.076) 

4.0498 
(12.697) 

0.953
5 

−0.1969 
(−0.640) 

2.1972 
(7.142) 

3.3457 
(10.889) 

0.9664 

3 −0.1875 
(−0.587) 

1.7065 
(5.350) 

2.6995 
(8.463) 

0.979
4 

−0.8018 
(−2.606) 

1.9522 
(6.346) 

3.0499 
(9.914) 

0.9722 

4 −0.1935 
(−0.606) 

1.7610 
(5.521) 

2.7448 
(8.605) 

0.978
7 

−0.8515 
(−2.768) 

1.9883 
(6.464) 

3.0697 
(9.978) 

0.9718 

5 −1.3717 
(−4.301) 

3.7903 
(11.883) 

5.4298 
(17.023) 

0.916
5 

−1.0559 
(−3.432) 

3.0086 
(9.780) 

4.2303 
(13.751) 

0.9464 

6 
2.4 × 10−9 

(7.6 × 10−8) 
2.9359 
(9.205) 

4.2083 
(13.194) 

0.949
9 

−0.1667 
(−0.542) 

2.8242 
(9.180) 

4.2461 
(13.802) 

0.9461 

7 
0.0856 
(0.268) 

2.9056 
(9.110) 

4.2197 
(13.230) 

0.949
5 

0.0013 
(0.004) 

2.7404 
(8.908) 

4.1211 
(13.396) 

0.9492 

8 −0.0173 
(−0.054) 

2.9790 
(9.340) 

4.2235 
(13.242) 

0.949
5 

−0.1936 
(−0.629) 

2.8909 
(9.397) 

4.2282 
(13.744) 

0.9465 

The stem taper modeling techniques presented in this study are generally grouped into SDE 
models and nonlinear regression models. As can be seen from Table 3, taper models 1–8 produced 
very similar statistical indices for both estimation and validation data sets. The stem taper SDE 
models (1–4) had very similar goodness-of-fit statistics (see Table 3); however, the SDE taper models 
used additional measurements that fixed tree diameter at stem height h = 0. Comparison of the 
statistical indices produced by SDE taper models (1–4) and the regression taper models (5–8) reveals 
that the SDE taper models were superior to the others. Random effects were calibrated, by Equation 
(30), using two additional stem diameters measured at a stem height of 1.0 m and 1.5 m for all stems 
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in the validation data set. This additional information marginally improved the values of all statistical 
indexes.  

Visualization of the residuals in Figure 2 shows that the SDE stem taper models (1–4) produced 
a more homogeneous residual variance than the regression stem taper models (5–8). The inclusion of 
random effects was found to be significant for Models 3 and 4. 

 

Figure 2. Residuals of predicted diameter plotted against predicted diameter. 

3.3. Comparison of Stem Volume Models 

The predicted stem volume was calculated by integrating the taper equations over the height: 

( )2

0

, ,
40 000

ih

i i iV d d h h dhπ= ，
 (39) 

where di is the diameter at breast height (mm) of the ith tree, and hi is the total tree height (dcm). 
The observed volume (V cm3) of each stem was computed using a truncated cone formula, up to 

the last section, where the final apex was calculated as a cone [31]: 

( )
2

2 2 2
1 1 1 1

13 40 000

i

i i

n

i ij ij ij ij ij in in
j

V d d d d L d Lπ −

+ + − −
=

 
 = + + ⋅ ⋅ + ⋅
 ⋅  


，
 (40) 
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where dij and Lij are the diameter (mm) and length (d cm), respectively, of the jth section j of the ith 
tree. 

The goodness-of-fit results for all presented stem taper models and volume predictions are given 
in Table 4. As can be seen from the table, the statistical indices of all volume models showed 
subdivision into three clusters (SDE taper volume, regression taper volume, and volume models). 
These clusters were characterized by very similar statistical indices within each cluster, for both 
estimation and validation data sets. The volumes predicted using stem taper mixed-effect-parameters 
SDE Models 3 and 4 (extra integral by Equation (39)) showed superior goodness-of-fit statistics, 
compared to the others, for both estimation and validation data sets (see Table 4). However, all SDE 
taper models (1–4) used additional measurements, which fixed the tree diameter at stem height h = 
0. Comparison of the statistical indices produced by the regression taper models (5–8; extra integral 
by Equation (39)) and the regression volume models (9–12) revealed that the regression volume 
models were superior to the regression taper models. In Models 3 and 4, the random effects calibrated 
by Equation (30) (using two additional stem diameter observations measured at a stem height of 1.0 
m and 1.5 m for all stems in the validation data set) improved all statistical indices for the volume 
predictions (see Validation Data Set columns in Table 4).  

Table 4. Statistical indices for all stem volume models. 

Model 

Estimation Data Set Validation Data Set 

B 
(%B) 

AB 
(%AB) 

RMSE 
(%RMS

E) 
R2 

B 
(%B) 

AB 
(%AB) 

RMSE 
(%RMS

E) 
R2 

1 
−0.1735 
(−4.53) 

0.4490 
(11.72) 

0.7794 
(20.35) 

0.9302 
−0.0603 
(−1.71) 

0.2791 
(7.96) 

0.4060 
(11.56) 

0.9782 

2 
−0.1588 
(−4.15) 

0.4393 
(11.47) 

0.7599 
(19.85) 

0.9336 
−0.0461 
(1.33) 

0.2742 
(7.81) 

0.3975 
(11.32) 

0.9792 

3 
−0.0333 
(−0.87) 

0.1222 
(3.19) 

0.1737 
(4.53) 

0.9965 
−0.1710 
(−4.87) 

0.2553 
(7.27) 

0.3360 
(9.57) 

0.9851 

4 
−0.0363 
(−0.95) 

0.1347 
(3.51) 

0.1899 
(4.96) 

0.9958 
−0.1867 
(−5.32) 

0.2595 
(7.39) 

0.3336 
(9.50) 

0.9853 

5 
−0.3765 
(−9.83) 

0.7338 
(19.17) 

1.3362 
(34.90) 

0.7947 
−0.2446 
(−6.98) 

0.5111 
(14.55) 

0.7915 
(22.54) 

0.9174 

6 
0.0426 
(1.11) 

0.4494 
(11.74) 

0.7105 
(18.56) 

0.9420 
0.0560 
(1.59) 

0.4850 
(13.81) 

1.0163 
(28.94) 

0.8639 

7 0.0812 
(2.12) 

0.4542 
(11.86) 

0.7107 
(18.56) 

0.9419 0.0925 
(2.64) 

0.4865 
(13.86) 

1.0024 
(28.55) 

0.8676 

8 
0.0427 
(1.11) 

0.4423 
(11.55) 

0.7076 
(18.48) 

0.9424 
0.0545 
(1.55) 

0.4760 
(13.56) 

0.9931 
(28.29) 

0.8701 

9 
0.0204 
(0.53) 

0.4319 
(11.28) 

0.6941 
(18.13) 

0.9446 
0.0925 
(2.64) 

0.4865 
(13.86) 

1.0024 
(28.55) 

0.8676 

10 
1.1 × 10−9 

(3.0 × 10−8) 
0.4420 
(11.55) 

0.6865 
(17.93) 

0.9458 
0.0033 
(−0.09) 

0.4588 
(13.07) 

0.8081 
(23.01) 

0.9139 

11 
0.1321 
(3.45) 

0.4691 
(12.26) 

0.7559 
(19.74) 

0.9343 
0.1604 
(4.57) 

0.4029 
(11.48) 

0.6661 
(18.97) 

0.9415 

12 
2.2 × 10−10 
(5.8 × 10−9) 

0.4467 
(11.67) 

0.6741 
(17.81) 

0.9477 
0.0330 
(0.94) 

0.4677 
(13.32) 

0.8200 
(23.36) 

0.9114 

Visualizations of the residuals plotted against the predicted diameters (see Figure 3) show that 
volume prediction using SDE stem taper models (1–4; extra integral by Equation (33)) produced more 
homogeneous residual variance than the regression stem taper models (5–8; extra integral by 
Equation (33)) and the volume regression models (9–12). The inclusion of random effects was found 
to be considerable for the volume predictions of Models 3 and 4. 
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Figure 3. Residuals of volume predictions plotted against predicted diameter. 

3.4. Illustration of Tree Stem Tapers 

Traditionally, stem form is described by the stem taper technique, which relates the changes in 
stem diameter with increasing height (i.e., from the tree stump to the tree tip). Stem taper equations 
can predict the diameter at any specified height, total stem volume, merchantable volume, and height 
at any specified stem diameter. In this study, two approaches for determining an equation-like stem 
taper profile were examined: stochastic differential equation models and regression equation models. 
All stem taper equations for both modeling techniques are visualized in Figure 4. For illustration, 
three stems from the validation dataset, corresponding to large, medium, and small trees, were 
randomly selected. Figure 4a,b shows the improved fit of mixed-effect parameters SDE stem taper 
Models 3 and 4 to the three randomly selected trees due to the inclusion of random effects. The better 
fit of the SDE stem taper models (1–4; Figure 4a,b), compared with the regression stem taper models 
(5–8; Figure 4c,d) can be observed by visual inspection, as the predicted stem taper curves are closer 
to the observed data set of stem measurements.  
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Figure 4. Illustration of all presented stem taper equations: (a) stochastic differential equation (SDE) 
stem taper Models 1 and 3: mixed-effect Model 3, solid line; fixed-effect Model 1, dotted line. (b) SDE 
stem taper Models 2 and 4: mixed-effect Model 4, solid line; fixed-effect Model 2, dotted line. (c) 
Regression stem taper Models 5 and 7: Model 5, solid line; Model 7, dotted line. (d) Regression stem 
taper Models 6 and 8: Model 6, solid line; Model 8, dotted line. First stem, black colour; second stem, 
red colour; third stem, blue colour. Observed stem measurements are circles in all subfigures. 

The SDE stem taper modeling technique can better interpret stem structure evolution by 
utilizing higher central moments of the relative diameter. Figure 5 shows the mean stem taper 
dynamic, as well as its 0.025 and 0.975 quantile dynamics, for three randomly selected stems from the 
validation data set. 

 

Figure 5. SDE stem tapers curves and 0.025 and 0.975 quantiles: (a) SDE mixed-effects Model 3. (b) 
SDE fixed-effects Model 1. (c) SDE mixed-effects Model 4. (d) SDE fixed-effects model 2. Quantile 
curves are dashed for all subfigures. First stem, black colour; second stem, red colour; third stem, blue 
colour. 

4. Conclusions 

The SDE stem taper equations proposed in this paper are simple to use and provide a more 
accurate diameter prediction at a specified height than the most common form of regression 
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equations as well as volume predictions. The results of our statistical analyses (see Tables 2 and 3; 
Figures 2 and 3) indicate that the SDE stem taper Model 3 had the overall best performance in 
predicting tree diameter at a specified height. However, the calibration of random effects for a new 
observed tree requires some additional information and provides better performance when 
compared with implementation of only the fixed-effect parameters SDE stem taper model. All 
presented regression stem taper models showed extremely similar performance in predicting tree 
diameter at a specified height. The results of this study also indicated that the SDE stem taper models 
can be used to accurately estimate the total stem volume of mountain pine trees. Future investigation 
will cover applications of SDE models for predicting tree biomass. 
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