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Abstract: Based on the continuous optimal aggregation operator, a novel distance measure is
proposed to deal with interval intuitionistic fuzzy clustering problems. The optimal ordered weighted
intuitionistic fuzzy quasi-averaging (OOWIFQ) operator and the continuous OOWIFQ operator
are presented to aggregate all the values in an interval intuitionistic fuzzy number. Some of their
desirable properties are also studied. The OOWIFQ operator can describe the fuzzy state of things
more realistically and present the fuzzy properties more accurately. The opinions of experts are
very important, the OOWIFQ operators take expert preferences into account to reduce systematic
errors. Considering the hesitation of things and avoiding distortion of information, we put forward
the distance measure for interval intuitionistic fuzzy numbers by using symmetric information
entropy. Based on the continuous OOWIFQ operator and proposed distance measure, a new interval
intuitionistic fuzzy clustering (IIFC) algorithm is proposed. The application in soil clustering shows
the validity and practicability of the IIFC algorithm.

Keywords: interval intuitionistic fuzzy number; aggregation operator; symmetric information
entropy; clustering

1. Introduction

Clustering is an unsupervised classification and an important way for people to understand society
and nature. In recent decades, clustering has attracted extensive attention and played an important
role in many fields, such as pattern recognition [1–5], image segmentation [6–10], data mining [11–13],
etc. The traditional clustering algorithm can be divided into classification clustering method [14,15],
hierarchical clustering method [16,17], density clustering method [18–20], grid clustering method [21–24],
and model clustering method [25,26]. Traditional clustering algorithms assume that any data vector
belongs to only one class. This approach can naturally cluster compact and well separated data sets.
However, clusters often overlap, and some data vector parts belong to more than one cluster.

In the real world, the boundaries between many objective things are often vague. It is bound
to be accompanied by ambiguity when categorizing things, which leads to fuzzy clustering analysis.
Ruspini [27] put forward the concept of fuzzy partition. Many scholars proposed a variety of clustering
methods, such as the method based on similarity relation [28] and fuzzy relation [29,30], the transitive
closure method based on fuzzy equivalence relation [31,32], the maximum tree method based on fuzzy
graph theory [33] and dynamic programming [34].
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In recent years, considering the degree of hesitation between things, the research of intuitionistic
fuzzy sets and interval intuitionistic fuzzy sets have become a hot topic. The facts show that intuitionistic
fuzzy sets and interval intuitionistic fuzzy sets can describe and portray the ambiguous nature of
the objective world more delicately. However, most of the interval intuitionistic fuzzy clustering
algorithms only consider a certain value in the interval, which makes the information missing and
distorted. In addition, in the clustering algorithm the preference of decision maker is not taken into
account, which may easily cause the result to be inconsistent with the expected result. From the
current literatures, there are a few researches on the interval intuitionistic fuzzy set clustering algorithm,
and their research have important practical significance. The proposed distance measure considers all
the information in the continuous interval. The distortion and loss of information are avoided. Aiming
at the shortcomings of existing algorithms and combining with the distance measure based on symmetric
information entropy, an interval intuitionistic fuzzy clustering algorithm with preference is proposed.
The algorithm considers not only the preference of the decision maker, but also all the values of the
interval. The algorithm is applied to the soil clustering to provide guidance for scientific fertilization.

The rest of this paper is organized as follows. Section 2 introduces some basic knowledge of
intuitionistic fuzzy sets and relevant aggregation operators. In Section 3, a continuous optimal aggregation
operator based on Chi-squared deviation is proposed. In Section 4, the new distance measure based on
symmetric information entropy is proposed. The intuitionistic fuzzy clustering (IIFC) algorithm and its
application are analyzed in Sections 5 and 6, respectively. This work is concluded in the last section.

2. Preliminaries

2.1. Some Basic Concepts of Intuitionistic Fuzzy Set

Intuitionistic fuzzy set theory was developed from fuzzy set theory by Atanassov [35]. Intuitionistic
fuzzy set considers membership, non-membership, and hesitation of input data. Therefore, in practical
applications, intuitionistic fuzzy set has greater power to represent fuzzy and uncertain information
than fuzzy set. In the following, we will briefly review some basic concepts of intuitionistic fuzzy set
and introduce the distance measure of intuitionistic fuzzy sets.

Definition 1. Let X be a fixed set. A fuzzy set α̃ is defined as [35]:

α̃ =
{〈

x, uα(x), vα(x)
〉∣∣∣x ∈ X

}
(1)

where the functions uα(x) : X→ [0, 1] and vα(x) : X→ [0, 1] indicate the degree of membership and degree of
non-membership respectively. For any x ∈ X, 0 ≤ µα(x) + να(x) ≤ 1.

The third parameter of the intuitionistic fuzzy set α̃ is πα(x), called the hesitancy degree of intuitionistic
fuzzy set α, where πα(x)= 1 − uα(x) − vα(x). Evidently, we can obtain 0 ≤ πα(x) ≤ 1. When πα(x) = 0,
we have µα(x) + να(x) = 1, the intuitionistic fuzzy set becomes the traditional fuzzy set. For convenience,
α̃ = (uα, vα) is called an intuitionistic fuzzy number, where uα ∈ [0, 1], vα ∈ [0, 1] and uα + vα ≤ 1.

Definition 2. Let X be a finite set. An interval intuitionistic fuzzy set Ã on X is expressed as [36]:

Ã =
{〈

x, [u−A(x), u+
A (x)], [v

−

A(x), v+A (x)]
〉∣∣∣∣x ∈ X

}
(2)

where u−A(x) ≥ 0 and v−A(x) ≥ 0. For any x ∈ X on A satisfies the following condition: u+
A (x) + v+A (x) ≤ 1.

For convenience, ([u−A, u+
A ], [v

−

A, v+A ]) is called an interval intuitionistic fuzzy number, where u−A, v−A ≥ 0 and
u+

A + v+A ≤ 1.

Definition 3. For any interval intuitionistic fuzzy numbers ã = ([u−A, u+
A ], [v

−

A, v+A ]) and b̃ =

([u−B , u+
B ], [v

−

B , v+B ]), the relationship between ã and b̃ is defined as follows [36]:
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(a) If u−A ≤ u−B , u+
A ≤ u+

B , v−A ≥ v−B and v+A ≥ v+B , then ã ≤ b̃.

(b) If u−A = u−B , u+
A = u+

B , v−A = v−B and v+A = v+B , then ã = b̃.

2.2. Continuous Aggregation Operators

On a continuous interval, Yager [37] proposed a continuous ordered weighted average operator
(C-OWA) based on the OWA operator as follows:

Definition 4. A C-OWA operator is a mapping F : Γ→ R+ associated with a basic unit-interval monotonic
function Q, such that

FQ[a, b] =
∫ 1

0
[b− x(b− a)]dQ(x) (3)

where Γ is the set of all positive interval numbers, and R+ is the positive real number set. Q is the basic
unit-interval monotonic (BUM) function, and satisfies Q(0) = 0, Q(1) = 1 and Q(x) ≤ Q(y) for any x ≤ y,
x, y ∈ [0, 1].

Based on the idea of geometric mean, Yager and Xu [38] proposed the continuous ordered weighted
geometric (C-OWG) operator:

Definition 5. A C-OWG operator is a mapping G : Γ→ R+ associated with a BUM function Q, satisfying

GQ([a, b]) = b · (
a
b
)

∫ 1
0 (d Q(x)

dx xdx)
(4)

In 2008, Chen [39] et al. proposed the following continuous ordered weighted harmonic (C-OWH)
operators based on the harmonic mean and the C-OWA operator:

Definition 6. A C-OWH operator is a mapping H : Γ→ R+ associated with a BUM function Q, such that

HQ([a, b]) = (

∫ 1

0

dQ(x)
dx

[
1
b
+ x(

1
a
−

1
b
)]dx)

−1

(5)

In addition, on the continuous interval number, Liu et al. [40] proposed the continuous
quasi-ordered weighted averaging (C-QOWA) operators.

Definition 7. A C-QOWA operator is a mapping L : Γ→ R+ associated with the BUM function Q, such that

LQ([a, b]) = f−1
{∫ 1

0

dQ(x)
dx

[ f (b) − x( f (b) − f (a))]dx
}

(6)

where f is a continuous strictly monotonic function on [a, b].

3. Continuous OOWIFQ Operator for Aggregating Interval Intuitionistic Fuzzy Numbers Based
on Chi-Squared Deviation

Let α̃1= (u1, v1), α̃2= (u2, v2), · · · , α̃n= (un, vn) be n intuitionistic fuzzy numbers. If the result of
aggregation is (u, v) and W = (w1, w2 · · · , wn) is a weight vector, the total deviation between u and
u1, u2, · · · , un should be as small as possible, and the total deviation between v and ν1, ν2, · · · , νn should
also be small. Therefore, the optimization model is constructed as follows:
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minJ1, minJ2

s.t


J1 =

n∑
i=1

wi
(

f (ui)
f (u) −1)

2

f (ui)
f (u)

J2 =
n∑

i=1
wi

(
f (vi)
f (v) −1)

2

f (vi)
f (v)

(7)

where f is strictly monotonic function.
From the perspective of fairness principle, assuming that decision-makers have no additional

preference for the above model, the following optimization model is constructed:

minJ = λJ1 + (1− λ)J2 =
n∑

i=1

wi(λ(
f (ui)

f (u)
+

f (u)
f (ui)

) + (1− λ)(
f (vi)

f (v)
+

f (v)
f (vi)

) − 2) (8)

Take the partial derivatives of J with respect to u and v, respectively, and we have

∂J
∂u

= λ
n∑

i=1

wi(−
f (ui)

f 2(u)
f ′(u) +

f ′(u)
f (ui)

)

∂J
∂v

= (1− λ)
n∑

i=1

wi(−
f (vi)

f 2(v)
f ′(v) +

f ′(v)
f (vi)

)

Since f is strictly monotonic function, let ∂J
∂u = 0 and ∂J

∂v = 0, we have

u = f−1((

n∑
i=1

wi f (ui)

n∑
i=1

wi
f (ui)

)

1
2

) (9)

v = f−1((

m∑
i=1

wi f (vi)

m∑
i=1

wi
f (vi)

)

1
2

) (10)

Based on the ordered weighted average operator, sorting u and v in descending order, the optimal
ordered weighted intuitionistic fuzzy quasi-averaging (OOWIFQ) operator based on the Chi-squared
deviation is derived as follows:

Definition 8. Let α̃i = (ui, vi) be an intuitionistic fuzzy number and X̃ be a set of all intuitionistic fuzzy
numbers. An OOWIFQ operator is a mapping OOWIFQ : X̃

n
→ X̃ , defined by an associated weighting vector

w = (w1, w2, · · · , wn), such that

OOWIFQ(α̃1, α̃2, · · · , α̃n) = ( f−1((

n∑
i=1

wi f (uσi)

n∑
i=1

wi
f (uσi )

)

1
2

), f−1((

m∑
i=1

wi f (vεi)

m∑
i=1

wi
f (vεi )

)

1
2

)) (11)

where uσi ≥ uσi+1 , vεi ≥ vεi+1 is true for any i = 1, 2, · · · , n.

In real life, data tends to be continuous, but not discrete. Intuitionistic fuzzy number considers a
value in a continuous interval, which may lose some important information and make the clustering
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result deviated. To overcome this shortcoming, information fusion is needed for all values on the
continuous interval. Therefore, we propose a continuous OOWIFQ (C-OOWIFQ) operator based on
OOWIFQ operator.

Definition 9. Let β̃ = ([u−, u+], [v−, v+]) be an interval intuitionistic fuzzy number. A C-OOWIFQ operator
is a mapping C : Ĩ→˜associated with a BUM function Q, satisfying

CO f ,Q([u−, u+], [v−, v+])

= ( f−1((

∫ 1
0

dQ(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

),

f−1((

∫ 1
0

dQ(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

))

(12)

where Ĩ be a set of all interval intuitionistic fuzzy numbers.

Next, we will introduce the specific derivation process of Equation (13):

Let δ =
f (u+)− f (u−)

n , η =
f (v+)− f (v−)

m , u j = f−1( f (u+) − j · δ) and vi = f−1( f (v−) + i · η), for all
i = 1, 2, · · · , m, j = 1, 2, · · · , n.

(a). When f is strictly monotonic increasing, then δ ≥ 0, η ≥ 0 holds. As a result, we have

f (u+) − j · δ ≤ f (u+) − ( j− 1) · δ, f (v−) + (i− 1) · η ≤ f (v−) − i · η.

Since f−1 is also strictly monotonic increasing, we get

u j = f−1( f (u+) − j · δ) ≤ f−1( f (u+) − ( j− 1) · δ) = u j−1 (13)

vi−1 = f−1( f (v−) + (i− 1) · η) ≤ f−1( f (v−1) + i · η) = vi (14)

(b). On the contrary, when f is strictly monotonic decreasing, then δ ≤ 0, η ≤ 0 holds. It follows that

f (u+) − j · δ ≤ f (u+) − ( j− 1) · δ, f (v−) + (i− 1) · η ≤ f (v−) − i · η.

which can be further expressed as

u j = f−1( f (u+) − j · δ) ≤ f−1( f (u+) − ( j− 1) · δ) = u j−1 (15)

vi−1 = f−1( f (v−) + (i− 1) · η) ≤ f−1( f (v−1) + i · η) = vi (16)

According to Equation (11), the approximation of C f ,Q([u−, u+], [v−, v+]) can be derived as follows:

CO f ,Q([u−, u+], [v−, v+]) ≈ ( f−1((

n∑
j=1

w j f (uσ( j) )

n∑
j=1

wj
f (uσ( j) )

)

1
2

)), f−1((

m∑
i=1

w j f (vεi )

m∑
i=1

wi
f (vεi )

)

1
2

)

= ( f−1((

n∑
j=1

w j f (u j)

n∑
j=1

wj
f (uj)

)

1
2

)), f−1((

m∑
i=1

wi f (vi)

m∑
i=1

wi
f (vi)

)

1
2

))

(17)

where w j and wi are the associated weights of the ordered weighted average operator. Using the BUM
function, we can get the associated weights w j and wi as [41]
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w j = Q(
j
n
) −Q(

j− 1
n

), j = 1, 2, · · · , n. (18)

wi = Q(
i

m
) −Q(

i− 1
m

), i = 1, 2, · · · , m. (19)

where
n∑

j=1
w j =1 and

m∑
i=1

wi =1. Accordingly, we can write CO f ,Q as

CO f ,Q([u−, u+], [v−, v+]) ≈ ( f−1((

n∑
j=1

(Q(
j
n )−Q(

j−1
n )) f (u j)

n∑
j=1

(Q(
j
n )−Q(

j−1
n ))

f (uj)

)

1
2

),

f−1((

m∑
i=1

(Q( i
m )−Q( i−1

m )) f (vi)

m∑
i=1

(Q( i
m )−Q( i−1

m ))

f (vi)

)

1
2

))

Let ∆u = 1
n , ∆v = 1

m , and we have

CO f ,Q([u−, u+], [v−, v+])

≈ ( f−1((

n∑
j=1

(Q( j·∆u)−Q( j·∆u−∆u))( f (u+)−( f (u+)− f (u−))· j·∆u)

n∑
j=1

Q( j·∆u)−Q( j·∆u−∆u)
f (u+)−( f (u+)− f (u−))· j·∆u

)

1
2

),

f−1((

m∑
i=1

(Q(i·∆v)−Q(i·∆v−∆v))( f (v+)+( f (v+)− f (v−))·i·∆v)

m∑
i=1

Q(i·∆v)−Q(i·∆v−∆v)
f (v−)+( f (v+)− f (v−))·i·∆v

)

1
2

))

Finally, let n→∞, m→∞ , denoted as u = j · ∆u, v = i · ∆v. For all i = 1, 2, · · ·m, j = 1, 2, · · · n, we can
get u ∈ [0, 1], v ∈ [0, 1] and

CO f ,Q([u−, u+], [v−, v+])

= ( f−1((

∫ 1
0

dQ(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

),

f−1((

∫ 1
0

dQ(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

))

(20)

Denoting ũ = [u−, u+] and ṽ = [v−, v+], for convenience, we abbreviate Equation (21) as:

CO f ,Q([u−, u+], [v−, v+]) = (C f ,Q(ũ), C f ,Q(ṽ)) (21)

The C-OOWIFQ operator has the following properties, which are proved as follows:

Property 1. For all strictly monotonic continuous function f and BUM function Q, (u−, v+) ≤
CO f ,Q([u−, u+], [v−, v+]) ≤ (u+, v−) holds.

Proof. Let us consider different cases of function f :

(a) If f is strictly monotonic increasing, then f (u−) ≤ f (u+). Thus, for all u ∈ [0, 1], we have
f (u−) ≤ f (u+) − ( f (u+) − f (u−)) · u ≤ f (u+). It follows that

f (u−)
∫ 1

0

dQ(u)
du

du ≤
∫ 1

0

dQ(u)
du

( f (u+) − ( f (u+) − f (u−)) · u)du ≤ f (u+)

∫ 1

0

dQ(u)
du

du
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and

1
f (u+)

∫ 1

0

dQ(u)
du

du ≤
∫ 1

0

dQ(u)
du

f (u+) − ( f (u+) − f (u−)) · u
du ≤

1
f (u−)

∫ 1

0

dQ(u)
du

du.

By considering ∫ 1

0

dQ(u)
du

du = Q(1) −Q(0) = 1,

the above two inequalities can be further writhen as

f (u−) ≤
∫ 1

0

dQ(u)
du

( f (u+) − ( f (u+) − f (u−)) · u)du ≤ f (u+)

and
1

f (u+)
≤

∫ 1

0

dQ(u)
du

f (u+) − ( f (u+) − f (u−)) · u
du ≤

1
f (u−)

.

Accordingly, we have

( f (u−))2
≤

∫ 1
0

dQ(u)
du · ( f (u+) − ( f (u+) − f (u−)) · u)du∫ 1

0 (
dQ(u)

du
f (u+)−( f (u+)− f (u−))·u ) · du

≤ ( f (u+))
2.

Since f−1 is also strictly monotonic increasing, it holds that

u− ≤ f−1((

∫ 1
0

dQ(u)
du · ( f (u+) − ( f (u+) − f (u−)) · u)du∫ 1

0 (
dQ(u)

du
f (u+)−( f (u+)− f (u−))·u ) · du

)

1
2

) ≤ u+.

Similarly, for any v ∈ [0, 1], it can be proved that

v− ≤ f−1((

∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv∫ 1

0 (
dQ(v)

dv
f (v−)+( f (v+)− f (v−))·v ) · dv

)

1
2

) ≤ v+.

(b) If f is strictly monotonic decreasing, then f (u−) ≥ f (u+). Thus, for all u ∈ [0, 1], we have
f (u+) ≤ f (u+) − ( f (u+) − f (u−)) · u ≤ f (u−). Similarly, we have

f (u+) ≤

∫ 1

0

dQ(u)
du

( f (u+) − ( f (u+) − f (u−)) · u)du ≤ f (u−)

and
1

f (u−)
≤

∫ 1

0

dQ(u)
du

f (u+) − [ f (u+) − f (u−)] · u
du ≤

1
f (u+)

.

Because f−1 is strictly monotonic decreasing, so

u− ≤ f−1((

∫ 1
0

dQ(u)
du · ( f (u+) − ( f (u+) − f (u−)) · u)du∫ 1

0 (
dQ(u)

du
f (u+)−( f (u+)− f (u−))·u ) · du

)

1
2

) ≤ u+.

Similarly, for any v ∈ [0, 1], we have
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v− ≤ f−1((

∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv∫ 1

0 (
dQ(v)

dv
f (v−)+( f (v+)− f (v−))·v ) · dv

)

1
2

) ≤ v+.

Therefore, the Property 1 is proved. �

Property 2. For any BUM function Q, if u−1 ≤ u−2 , u+
1 ≤ u+

2 and v−1 ≥ v−2 , v+1 ≥ v+2 , then
CO f ,Q([u−1 , u+

1 ], [v
−

1 , v+1 ]) ≤ CO f ,Q([u−2 , u+
2 ], [v

−

2 , v+2 ]).

Proof.

(a) When f function is strictly monotonic increasing, for any u ∈ [0, 1], we have

f (u+
1 ) − ( f (u+

1 ) − f (u−1 )) · u ≤ f (u+
2 ) − ( f (u+

2 ) − f (u−2 )) · u.

It follows that∫ 1
0

dQ(u)
du · ( f (u+

1 ) − ( f (u+
1 ) − f (u−1 )) · u)du∫ 1

0 (
dQ(u)

du
f (u+1 )−( f (u+1 )− f (u−1 ))·u

) · du
≤

∫ 1
0

dQ(u)
du · ( f (u+

2 ) − ( f (u+
2 ) − f (u−2 )) · u)du∫ 1

0 (
dQ(u)

du
f (u+2 )−( f (u+2 )− f (u−2 )0·u

) · du

Since f−1 is also strictly monotonic increasing, so there is

f−1((

∫ 1
0

dQ(u)
du ·( f (u+1 )−( f (u+1 )− f (u−1 ))·u)du∫ 1
0 (

dQ(u)
du

f (u+1 )−( f (u+1 )− f (u−1 ))·u
)·du

)

1
2

)

≤ f−1((

∫ 1
0

dQ(u)
du ·( f (u+2 )−( f (u+2 )− f (u−2 ))·u)du∫ 1
0 (

dQ(u)
du

f (u+2 )−( f (u+2 )− f (u−2 ))·u
)·du

)

1
2

)

By similar proof processes, we can obtain

f−1((

∫ 1
0

dQ(v)
dv ·( f (v+1 )+( f (v+1 )− f (v−1 ))·v)dv∫ 1
0 (

dQ(v)
dv

f (v+1 )+( f (v+1 )− f (v−1 ))·v
)·dv

)

1
2

)

≤ f−1((

∫ 1
0

dQ(v)
dv ·( f (v+2 )+( f (v+2 )− f (v−2 ))·v)dv∫ 1
0 (

dQ(v)
dv

f (v+2 )+( f (v+2 )− f (v−2 ))·v
)·dv

)

1
2

)

(b) When f function is strictly monotonic decreasing, for any u ∈ [0, 1], we have

f (u+
1 ) − ( f (u+

1 ) − f (u−1 )) · u ≥ f (u+
2 ) − ( f (u+

2 ) − f (u−2 )) · u.

Obviously, it holds that∫ 1
0

dQ(u)
du · ( f (u+

1 ) − ( f (u+
1 ) − f (u−1 )) · u)du∫ 1

0 (
dQ(u)

du
f (u+1 )−( f (u+1 )− f (u−1 ))·u

) · du
≥

∫ 1
0

dQ(u)
du · ( f (u+

2 ) − ( f (u+
2 ) − f (u−2 )) · u)du∫ 1

0 (
dQ(u)

du
f (u+2 )−( f (u+2 )− f (u−2 ))·u

) · du

Because f−1 is also strictly monotonic decreasing, we get
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f−1((

∫ 1
0

dQ(u)
du ·( f (u+1 )−( f (u+1 )− f (u−1 ))·u)du∫ 1
0 (

dQ(u)
du

f (u+1 )−( f (u+1 )− f (u−1 ))·u
)·du

)

1
2

)

≥ f−1((

∫ 1
0

dQ(u)
du ·( f (u+2 )−( f (u+2 )− f (u−2 ))·u)du∫ 1
0 (

dQ(u)
du

f (u+2 )−( f (u+2 )− f (u−2 ))·u
)·du

)

1
2

)

By similar proof process, we can also get

f−1((

∫ 1
0

dQ(v)
dv ·( f (v+1 )+( f (v+1 )− f (v−1 ))·v)dv∫ 1
0 (

dQ(v)
dv

f (v+1 )+( f (v+1 )− f (v−1 ))·v
)·dv

)

1
2

)

≥ f−1((

∫ 1
0

dQ(v)
dv ·( f (v+2 )+( f (v+2 )− f (v−2 ))·v)dv∫ 1
0 (

dQ(v)
dv

f (v+2 )+( f (v+2 )− f (v−2 ))·v
)·dv

)

1
2

)

From the above analysis, we have CO f ,Q([u−1 , u+
1 ], [v

−

1 , v+1 ]) ≤ CO f ,Q([u−2 , u+
2 ], [v

−

2 , v+2 ]). Thus,
the property is proved. �

Property 3. For all BUM function Q, if u− = u+ = a, v− = v+ = b, then CO f ,Q([u−, u+], [v−, v+]) = (a, b).

Proof. Since u− = u+ = a, v− = v+ = b and
∫ 1

0
dQ(u)

du du = 1,
∫ 1

0
dQ(v)

dv dv = 1 (for all u, v ∈ [0, 1]), we
can get ∫ 1

0
dQ(u)

dx ·( f (u+)−( f (u+)− f (u−))·x)dx∫ 1
0 (

dQ(u)
du

f (u+)−( f (u+)− f (u−))·x
)·dx

=

∫ 1
0

dQ(u)
dx · f (a)dx∫ 1

0 (
dQ(u)

du
f (a) )·dx

=
f (a)·

∫ 1
0

dQ(u)
dx dx

1
f (a)

∫ 1
0 (

dQ(u)
du )·dx

= ( f (a))2
,

In very similar way, we can also get∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv∫ 1

0 (
dQ(v)

dv
f (v−)+( f (v+)− f (v−))·v ) · dv

= ( f (b))2.

So, we have CO f ,Q([u−, u+], [v−, v+]) = ( f−1(( f (a))2)
1
2 , f−1(( f (b))2)

1
2 ) = (a, b). �

Property 4. If Q1(u) ≤ Q2(u), Q1(v) ≤ Q2(v) for all u, v ∈ [0, 1], then CO f ,Q1([u
−, u+], [v−, v+]) ≤

CO f ,Q2([u
−, u+], [v−, v+]).

Proof. For all BUM function Q, we have:∫ 1
0

dQ(u)
du · ( f (u+) − ( f (u+) − f (u−)) · u)du

=
∫ 1

0 ( f (u+) − ( f (u+) − f (u−)) · u)dQ(u)

= ( f (u+) − ( f (u+) − f (u−)) · u) ·Q(u)|10 + ( f (u+) − f (u−)) ·
∫ 1

0 Q(u)du

= f (u−) + ( f (u+) − f (u−)) ·
∫ 1

0 Q(u)du

.

In a similar process, the following equation can be obtained
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∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv

= f (v+) − ( f (v+) − f (v−)) ·
∫ 1

0 Q(v)dv
.

Moreover, we have

∫ 1
0 (

dQ(u)
du

f (u+)−( f (u+)− f (u−))·u ) · du

=
∫ 1

0 ( 1
f (u+)−( f (u+)− f (u−))·u ) · dQ(u)

=
Q(u)

f (u+)−( f (u+)− f (u−))·u |
1
0 −

∫ 1
0 (

f (u+)− f (u−)
( f (u+)−( f (u+)− f (u−))·u)2 )Q(u)du

= 1
f (u−) −

∫ 1
0 (

f (u+)− f (u−)
( f (u+)−( f (u+)− f (u−))·u)2 )Q(u)du

and ∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv

= 1
f (v+) +

∫ 1
0 (

f (v+)− f (v−)
( f (v−)+( f (v+)− f (v−))·v)2 )Q(v)dv

.

(a) when f function is strictly monotonic increasing, then f (u−) ≤ f (u+).

Since Q1(u) ≤ Q2(u) for all u ∈ [0, 1], we have
∫ 1

0 Q1(u)du ≤
∫ 1

0 Q2(u)du. It holds that

f (u−) + ( f (u+) − f (u−)) ·
∫ 1

0
Q1(u)du ≤ f (u−) + ( f (u+) − f (u−)) ·

∫ 1

0
Q2(u)du.

Therefore, we have

1
f (u−) −

∫ 1
0 (

f (u+)− f (u−)
( f (u+)−( f (u+)− f (u−))·u)2 )Q1(u)du

≥
1

f (u−) −
∫ 1

0 (
f (u+)− f (u−)

( f (u+)−( f (u+)− f (u−))·u)2 )Q2(u)du
,

which can be written as∫ 1

0

dQ1(u)
du

· ( f (u+) − ( f (u+) − f (u−)) · u)du ≤
∫ 1

0

dQ2(u)
du

· ( f (u+) − ( f (u+) − f (u−)) · u)du

and ∫ 1

0
(

dQ1(u)
du

f (u+) − ( f (u+) − f (u−)) · u
) · du ≥

∫ 1

0
(

dQ2(u)
du

f (u+) − ( f (u+) − f (u−)) · u
) · du.

Because f−1 is strictly monotonic increasing, so we have

f−1((

∫ 1
0

dQ1(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ1(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

)

≤ f−1((

∫ 1
0

dQ2(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ2(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

)

.

In a similar process, we get
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f−1((

∫ 1
0

dQ1(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ1(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

)

≥ f−1((

∫ 1
0

dQ2(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ2(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

)

.

Thus, we have CO f ,Q1([u
−, u+], [v−, v+]) ≤ CO f ,Q2([u

−, u+], [v−, v+]).

(b) when f function is strictly monotonic decreasing, then f (u−) ≥ f (u+). Since Q1(x) −Q2(u) ≤ 0,
we have∫ 1

0

dQ1(u)
du

· ( f (u+) − ( f (u+) − f (u−)) · u)du ≥
∫ 1

0

dQ2(u)
du

· ( f (u+) − ( f (u+) − f (u−)) · u)du,

∫ 1

0
(

dQ1(u)
du

f (u+) − ( f (u+) − f (u−)) · u
) · du ≤

∫ 1

0
(

dQ2(u)
du

f (u+) − ( f (u+) − f (u−)) · u
) · du.

Because f−1 is also strictly monotonic decreasing, we get

f−1((

∫ 1
0

dQ1(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ1(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

)

≤ f−1((

∫ 1
0

dQ2(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ2(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

)

.

Similarly, we have

f−1((

∫ 1
0

dQ1(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ1(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

)

≥ f−1((

∫ 1
0

dQ2(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ2(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

)

.

Therefore, we have CO f ,Q1([u
−, u+], [v−, v+]) ≤ CO f ,Q2([u

−, u+], [v−, v+]).
In summary, Property 4 is proved. �

Through the above proof, the C-OOWIFQ operator has some desirable properties such as
boundedness, monotonicity, identity and monotonicity about the function Q. The C-OOWIFQ operator
can aggregate all points in a closed interval, and can also take into account the preferences of experts,
so that the clustering of things by the C-OOWIFQ operator can be analyzed more comprehensively
and effectively. The proposed IIFC algorithm improves the reliability of analysis results.

Theorem 1. Let ([u−, u+], [v−, v+]) be an interval intuitionistic fuzzy number. For any strictly monotonic
function f and BUM function Q, CO f ,Q([u−, u+], [v−, v+]) is an intuitionistic fuzzy number.

Proof. It is easy to know that u−, v− ≥ 0, u+ + v+ ≤ 1, by Property 1 we have

0 ≤ u− ≤ f−1((

∫ 1
0

dQ(u)
du · ( f (u+) − ( f (u+) − f (u−)) · u)du∫ 1

0 (
dQ(u)

du
f (u+)−( f (u+)− f (u−))·u ) · du

)

1
2

) ≤ u+,
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0 ≤ v− ≤ f−1((

∫ 1
0

dQ(v)
dv · ( f (v−) + ( f (v+) − f (v−)) · v)dv∫ 1

0 (
dQ(v)

dv
f (v−)+( f (v+)− f (v−))·v ) · dv

)

1
2

) ≤ v+.

It follows that

f−1((

∫ 1
0

dQ(u)
du ·( f (u+)−( f (u+)− f (u−))·u)du∫ 1
0 (

dQ(u)
du

f (u+)−( f (u+)− f (u−))·u
)·du

)

1
2

)

+ f−1((

∫ 1
0

dQ(v)
dv ·( f (v−)+( f (v+)− f (v−))·v)dv∫ 1
0 (

dQ(v)
dv

f (v−)+( f (v+)− f (v−))·v
)·dv

)

1
2

) ≤ u+ + v+ ≤ 1

Therefore, CO f ,Q([u−, u+], [v−, v+]) is an intuitionistic fuzzy number. �

4. Distance Measure of Interval Intuitionistic Fuzzy Numbers Based on Symmetric
Information Entropy

Interval intuitionistic fuzzy number describes the uncertainty under the fuzzy setting. Since
entropy can effectively measure uncertainty, we propose an interval intuitionistic fuzzy distance
measure based on symmetric information entropy, which can be shown as follows:

Theorem 2. Let ã = ([uA
−, uA

+], [vA
−, vA

+]) and b̃ = ([uB
−, uB

+], [vB
−, vB

+]) be two interval intuitionistic
fuzzy numbers, then the distance measure between ã and b̃ is:

d(̃a, b̃) = 1
2 ln 2 (

∣∣∣∣C f ,Q(ũA) + C f ,Q(ũA)πA −C f ,Q(ũB) −C f ,Q(ũB)πB

∣∣∣∣×
ln(

∣∣∣∣C f ,Q(ũA)+C f ,Q(ũA)πA−C f ,Q(ũB)−C f ,Q(ũB)πB

∣∣∣∣∣∣∣∣C f ,Q(ũA)+C f ,Q(ũA)πA−C f ,Q(ũB)−C f ,Q(ũB)πB

∣∣∣∣
+

∣∣∣C f ,Q(ṽA)+C f ,Q(ṽA)πA−C f ,Q(ṽB)−C f ,Q(ṽB)πB
∣∣∣∣∣∣∣C f ,Q(ũA)+C f ,Q(ũA)πA−C f ,Q(ũB)−C f ,Q(ũB)πB

∣∣∣∣ )
+

∣∣∣C f ,Q(ṽA) + C f ,Q(ṽA)πA −C f ,Q(ṽB) −C f ,Q(ṽB)πB
∣∣∣×

ln(

∣∣∣∣C f ,Q(ũA)+C f ,Q(ũA)πA−C f ,Q(ũB)−C f ,Q(ũB)πB

∣∣∣∣∣∣∣C f ,Q(ṽA)+C f ,Q(ṽA)πA−C f ,Q(ṽB)−C f ,Q(ṽB)πB
∣∣∣

+

∣∣∣C f ,Q(ṽA)+C f ,Q(ṽA)πA−C f ,Q(ṽB)−C f ,Q(ṽB)πB
∣∣∣∣∣∣C f ,Q(ṽA)+C f ,Q(ṽA)πA−C f ,Q(ṽB)−C f ,Q(ṽB)πB
∣∣∣ ))

(22)

Denoting ∆û =|ûA − ûB|, ∆v̂ =|v̂A − v̂B|, ûA = C f ,Q(ũA) + C f ,Q(ũA)πA,

v̂A = C f ,Q(ṽA) + C f ,Q(ṽA)πA and πA= 1−C f ,Q(ũA) −C f ,Q(ṽA), Equation (22) can be abbreviated to
the following formula:

d(̃a, b̃) =
1

2 ln 2
(∆û ln

∆û + ∆v̂
∆û

+ ∆v̂ ln
∆û + ∆v̂

∆v̂
) (23)

Theorem 3. Let ã = ([uA
−, uA

+], [vA
−, vA

+]), b̃ = ([uB
−, uB

+], [vB
−, vB

+]) and c̃ =

([uC
−, uC

+], [vC
−, vC

+]) be three interval intuitionistic fuzzy numbers, the distance measure d must satisfy the
following properties:

(a) 0 ≤ d(̃a, b̃) ≤ 1.

(b) d(̃a, b̃)= 1 if and only if interval intuitionistic fuzzy numbers ã and b̃ reduce to ã= (1, 0) and b̃= (0, 1)

or ã= (0, 1) and b̃= (1, 0).
(c) d(̃a, b̃) = d(̃b, ã).

(d) ã ≤ b̃ ≤ c̃, then d(̃a, b̃) ≤ d(̃a, c̃) and d(̃b, c̃) ≤ d(̃a, c̃).
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Proof. For the proposed distance measure, four properties (a)–(d) should be satisfied, and the proof is
as follows:

The partial derivative of Equation (23) is obtained as follows:

∂d(̃a,̃b)
∂∆û

= 1
2 ln 2 (ln

∆û+∆v̂
∆û + ∆û ∆û

∆û+∆v̂ ·
∆û−(∆û+∆v̂)

(∆û)2 + ∆v̂ ∆v̂
∆û+∆v̂ ·

1
∆v̂ ).

= 1
2 ln 2 ln(1 + ∆v̂

∆û ) > 0.

Similarly, we get
∂d(̃a, b̃)
∂∆v̂

=
1

2 ln 2
ln(1 +

∆û
∆v̂

) > 0.

Thus, d(̃a, b̃) is an increasing function of independent variables ∆û and ∆v̂.

(a) From Equation (23), we have

d(̃a, b̃) =
1

2 ln 2
(∆û ln

∆û + ∆v̂
∆û

+ ∆v̂ ln
∆û + ∆v̂

∆v̂
).

∆û ≥ 0, ∆v̂ ≥ 0, therefore we have ∆û+∆v̂
∆û ≥ 1 and ∆û+∆v̂

∆v̂ ≥ 1. It is clear that d(̃a, b̃) ≥ 0 holds. Since
d(̃a, b̃) is an increasing function of ∆û and ∆v̂, d(̃a, b̃) takes the maximum of 1 when ∆ũ = ∆ṽ = 1.

(b) the proof of this property can be analyzed by the following two cases.

(i) d(̃a, b̃) is an increasing function of independent various ∆ũ and ∆ṽ, therefore the maximum

value d(̃a, b̃)= 1 is obtained when ∆ũ = 1 and ∆ṽ = 1. From ∆ũ = 1 and ∆ṽ = 1, we can
get that ã= (1, 0) and b̃= (0, 1) or ã= (0, 1) and b̃= (1, 0).

(ii) When ã= (1, 0) and b̃= (0, 1) or ã= (0, 1) and b̃= (1, 0), ∆û = ∆v̂ = 1 can be brought into
Equation (23) to get d(A, B)= 1.

(c) According to Equation (23), obviously, the symmetry of distance measure is holds.

(d) When ã ≤ b̃ ≤ c̃, from Definition 3, we have u−A ≤ u−B ≤ u−C, u+
A ≤ u+

B ≤ u+
C , v−A ≥ v−B ≥ v−C and v+A ≥

v+B ≥ v+C . Denoting ∆ûã,̃b =
∣∣∣∣ûA − ûB

∣∣∣∣, ∆v̂ã,̃b =
∣∣∣∣v̂A − v̂B

∣∣∣∣, ∆ûã,̃c =
∣∣∣ûA − ûC

∣∣∣ and ∆v̂ã,̃c =
∣∣∣v̂A − v̂C

∣∣∣,
respectively. It is clear that ∆ũã,̃b ≤ ∆ũã,̃c and ∆ṽã,̃b ≤ ∆ṽã,̃c. Therefore, we get d(̃a, b̃) ≤ d(̃a, c̃).

In the same way, d(̃b, c̃) ≤ d(̃a, c̃) also holds. �

5. Interval Intuitionistic Fuzzy Clustering Algorithm

For the multiple attribute clustering problem with interval intuitionistic fuzzy information, let
m object sets G = {G1, G2, · · · , Gm} and the attribute set H = {H1, H2, · · · , Hn}. In real life, sometimes
the membership degree and non-membership degree of attributes for an object cannot be accurately
measured. Since multiple measurements often fluctuate in a certain interval, we solve this problem
well by using interval intuitionistic fuzzy numbers. Suppose the attribute matrix be Ã = (̃ai j)m×n,
where ãi j = ([u−i j, u+

i j ], [v
−

i j, v+i j ]) (i = 1, 2, · · · , m, j = 1, 2, · · · , n). [u−i j, u+
i j ] indicates that the object

Gi corresponds to the attribute H j with the degree of membership between u−i j and u+
i j and the

non-membership degree between v−i j and v+i j .
Based on the C-OOWIFQ operator and the symmetric information entropy based distance measure,

we propose an interval intuitionistic fuzzy clustering (IIFC) algorithm as follows. The flow chart of
IIFC algorithm is illustrated in Figure 1.

Step 1 Select an strictly monotonic function f (x) and BUM function Q(x), and enter the cluster

number k and the sample attribute matrix Ã = (̃ai j)m×n, where ãi j = ([u−i j, u+
i j ], [v

−

i j, v+i j ]) (i =
1, 2, · · · , m, j = 1, 2, · · · , n).
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Step 2 bi j = CO f ,Q([u−i j, u+
i j ], [v

−

i j, v+i j ]) is calculated by Equation (12), where B̃ = (bi j)m×n.

Step 3 Select a random sample from B̃ as the initial clustering center c1.
Step 4 Firstly, calculate the shortest distance between each object and the existing clustering center,

denoted by D(x); then calculate the probability D(x)2∑
x∈X D(x)2 that each object is selected as the

next cluster center. Finally, a cluster center is selected according to the roulette method.
Step 5 Repeat Step 4 until k cluster centers are selected.

Step 6 For each object xi (xi = {bi1, bi2, · · · , bin}) in B̃, its symmetric entropy distance to the k cluster
center is calculated by the Equation (23) and divided into the class corresponding to the cluster
center with the smallest distance.

Step 7 For each category ci, recalculate its cluster center ci =
1
|ci |

∑
x∈xi

x.

Step 8 Repeat Steps 6 and 7 until the position of the cluster center does not change.
Step 9 End.
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6. Numerical Example

This article focuses on the theoretical research of the algorithm. The IIFC algorithm can be
applied to many fields such as data mining, image segmentation, feature extraction, and soil attribute
analysis. This paper verifies the feasibility and effectiveness of the IIFC algorithm through clustering
examples. The soil composition can be measured by using conventional soil agrochemical analysis
method. Assume that the following experimental sample attributes are selected: total nitrogen (TN),
total phosphorus (TP), organic matter (OM), available nitrogen (AN), available phosphorus (AP),
and available potassium (AK). Let us suppose that fifteen soil samples are considered here, and the
attribute values of these soil samples are given by using interval intuitionistic fuzzy numbers, shown
in Table 1.

Table 1. The attribute values of soil sample.

No. TN TP OM AN AP AK

1 ([0.6,0.6],
[0.3,0.3])

([0.1,0.7],
[0.2,0.3])

([0.1,0.5],
[0.0,0.1])

([0.3,0.3],
[0.1,0.4])

([0.3,0.4],
[0.1,0.1])

([0.2,0.7],
[0.0,0.1])

2 ([0.1,0.1],
[0.5,0.5])

([0.6,0.9],
[0.1,0.1])

([0.1,0.1],
[0.1,0.1])

([0.2,0.2],
[0.1,0.2])

([0.3,0.3],
[0.0,0.3])

([0.0,0.3],
[0.2,0.2])

3 ([0.2,0.4],
[0.1,0.2])

([0.6,0.8],
[0.0,0.1])

([0.0,0.7],
[0.0,0.1])

([0.0,0.0],
[0.1,0.1])

([0.5,0.8],
[0.1,0.2])

([0.5,0.9],
[0.0,0.0])

4 ([0.4,0.6],
[0.2,0.2])

([0.3,0.4],
[0.1,0.3])

([0.5,0.6],
[0.2,0.3])

([0.0,0.1],
[0.1,0.1])

([0.4,0.9],
[0.1,0.1])

([0.0,0.1],
[0.1,0.5])

5 ([0.0,0.0],
[0.6,0.7])

([0.0,0.5],
[0.0,0.0])

([0.0,0.1],
[0.0,0.3])

([0.3,0.4],
[0.1,0.2])

([0.5,0.8],
[0.0,0.0])

([0.1,0.3],
[0.0,0.0])

6 ([0.1,0.6],
[0.3,0.4])

([0.2,0.3],
[0.1,0.6])

([0.0,0.8],
[0.2,0.2])

([0.5,0.5],
[0.3,0.5])

([0.2,0.2],
[0.3,0.4])

([0.0,0.3],
[0.3,0.4])

7 ([0.6,0.6],
[0.1,0.1])

([0.2,0.4],
[0.0,0.1])

([0.1,0.2],
[0.0,0.1])

([0.1,0.2],
[0.2,0.3])

([0.4,0.7],
[0.0,0.2])

([0.1,0.2],
[0.1,0.1])

8 ([0.4,0.5],
[0.0,0.1])

([0.0,0.1],
[0.6,0.8])

([0.1,0.9],
[0.0,0.0])

([0.2,0.4],
[0.3,0.6])

([0.0,0.5],
[0.0,0.1])

([0.3,0.9],
[0.0,0.1])

9 ([0.6,0.7],
[0.1,0.2])

([0.0,0.6],
[0.0,0.0])

([0.3,0.8],
[0.0,0.1])

([0.1,0.1],
[0.3,0.6])

([0.0,0.0],
[0.0,0.2])

([0.1,0.6],
[0.1,0.1])

10 ([0.2,0.4],
[0.0,0.2])

([0.0,0.7],
[0.1,0.1])

([0.2,0.2],
[0.2,0.4])

([0.5,0.8],
[0.0,0.1])

([0.6,0.9],
[0.0,0.1])

([0.6,0.8],
[0.0,0.0])

11 ([0.0,0.1],
[0.3,0.6])

([0.4,0.9],
[0.0,0.0])

([0.1,0.1],
[0.0,0.0])

([0.3,0.5],
[0.1,0.5])

([0.2,0.2],
[0.1,0.6])

([0.1,0.1],
[0.1,0.5])

12 ([0.3,0.3],
[0.4,0.6])

([0.1,0.1],
[0.1,0.2])

([0.5,1.0],
[0.0,0.0])

([0.4,0.7],
[0.1,0.1])

([0.1,0.6],
[0.4,0.4])

([0.1,0.2],
[0.2,0.6])

13 ([0.7,0.8],
[0.0,0.0])

([0.2,0.9],
[0.0,0.0])

([0.1,0.5],
[0.0,0.1])

([0.0,0.1],
[0.5,0.8])

([0.0,0.0],
[0.3,0.7])

([0.0,0.1],
[0.4,0.5])

14 ([0.4,0.4],
[0.4,0.5])

([0.5,1.0],
[0.0,0.0])

([0.7,0.8],
[0.1,0.1])

([0.3,0.4],
[0.1,0.6])

([0.1,0.1],
[0.5,0.7])

([0.0,0.3],
[0.1,0.3])

15 ([0.3,0.5],
[0.1,0.3])

([0.4,0.6],
[0.2,0.3])

([0.2,0.6],
[0.0,0.0])

([0.3,0.5],
[0.1,0.2])

([0.3,0.4],
[0.0,0.1])

([0.0,0.0],
[0.0,0.1])

According to the steps of IIFC algorithm, the specific clustering process is analyzed as follows.

Step 1 Input the sample attribute matrix Ã, set f (x) = ex, Q(x) = x, and the classification number
k = 4.

Step 2 Calculate each bi j with Equation (12), and the calculated result is B̃ = (bi j)m×n.

Step 3 Intuitionistic fuzzy matrix B̃ is calculated, shown in Table 2.
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Step 4 Randomly select a sample from B̃ as the initial cluster center No. 1.
Step 5 Calculate the shortest distance between each object and the existing clustering center, denoted

by D(x); then calculate the probability that each object is selected as the next cluster center.
A cluster center is selected according to the roulette method.

Step 6 Repeat Step 4 until k cluster centers are selected. An initial clustering center is shown in Table 3.

Step 7 For each object xi (xi = {bi1, bi2, · · · , bin}) in B̃, the symmetric entropy distance from the k cluster
center is calculated by Equation (22) and divided into the class corresponding to the cluster
center with the smallest distance.

Step 8 For each category ci, recalculate its cluster center ci =
1
|ci |

∑
x∈xi

x.

Table 2. Intuitionistic fuzzy matrix B̃.

No. TN TP OM AN AP AK

1 (0.60,0.30) (0.43,0.25) (0.31,0.05) (0.30,0.26) (0.35,0.10) (0.47,0.05)
2 (0.10,0.50) (0.76,0.10) (0.10,0.10) (0.20,0.15) (0.30,0.16) (0.16,0.20)
3 (0.30,0.15) (0.70,0.05) (0.39,0.05) (0.00,0.10) (0.66,0.15) (0.71,0.00)
4 (0.50,0.20) (0.35,0.20) (0.55,0.25) (0.05,0.10) (0.67,0.10) (0.05,0.31)
5 (0.00,0.65) (0.27,0.00) (0.05,0.16) (0.35,0.15) (0.66,0.00) (0.20,0.00)
6 (0.37,0.35) (0.25,0.37) (0.45,0.20) (0.50,0.40) (0.20,0.35) (0.16,0.35)
7 (0.60,0.10) (0.30,0.05) (0.15,0.05) (0.15,0.25) (0.56,0.10) (0.15,0.10)
8 (0.45,0.05) (0.05,0.70) (0.55,0.00) (0.30,0.46) (0.27,0.05) (0.63,0.05)
9 (0.65,0.15) (0.33,0.00) (0.57,0.05) (0.10,0.46) (0.00,0.10) (0.37,0.10)

10 (0.30,0.10) (0.39,0.10) (0.20,0.30) (0.66,0.05) (0.76,0.05) (0.70,0.00)
11 (0.05,0.46) (0.67,0.00) (0.10,0.00) (0.40,0.31) (0.20,0.37) (0.10,0.31)
12 (0.30,0.50) (0.10,0.15) (0.77,0.00) (0.56,0.10) (0.37,0.40) (0.15,0.41)
13 (0.75,0.00) (0.59,0.00) (0.31,0.05) (0.05,0.66) (0.00,0.51) (0.05,0.45)
14 (0.40,0.45) (0.77,0.00) (0.75,0.10) (0.35,0.37) (0.10,0.60) (0.16,0.20)
15 (0.40,0.20) (0.50,0.25) (0.41,0.00) (0.40,0.15) (0.35,0.05) (0.00,0.05)

Table 3. Initial cluster center.

No. TN TP OM AN AP AK

1 (0.60,0.30) (0.43,0.25) (0.31,0.05) (0.30,0.26) (0.35,0.10) (0.47,0.05)
2 (0.50,0.20) (0.35,0.20) (0.55,0.25) (0.05,0.10) (0.67,0.10) (0.05,0.31)
3 (0.05,0.46) (0.67,0.00) (0.10,0.00) (0.40,0.31) (0.20,0.37) (0.10,0.31)
4 (0.30,0.15) (0.70,0.05) (0.39,0.05) (0.00,0.10) (0.66,0.15) (0.71,0.00)

After three iterations, the clustering center point no longer changes, and the final cluster center is
shown in Table 4.

Table 4. The final cluster center.

No. TN TP OM AN AK AK

1 (0.54,0.16) (0.32,0.25) (0.40,0.03) (0.25,0.31) (0.31,0.08) (0.32,0.07)
2 (0.54,0.18) (0.40,0.19) (0.44,0.17) (0.20,0.39) (0.29,0.32) (0.09,0.37)
3 (0.21,0.48) (0.57,0.06) (0.43,0.05) (0.38,0.23) (0.24,0.38) (0.14,0.28)
4 (0.20,0.30) (0.45,0.05) (0.21,0.17) (0.34,0.10) (0.69,0.07) (0.54,0.00)

The sample soil was successfully divided into four categories: (a) very poor 2, 5, 11; (b) poor
4, 6, 12, 15; (c) fertility 1, 3, 8, 10; (d) very fertility 7, 9, 13, 14. The clustering results derived by
IIFC algorithm are illustrated in Figure 2. By analyzing the soil composition of the sample, we can
scientifically conduct effective fertilization guidance for the sample.
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7. Conclusions

In this paper, a new continuous optimal aggregation operator based on Chi-squared deviation is
proposed, which can effectively convert interval intuitionistic fuzzy number into intuitionistic fuzzy
number. The distance between interval intuitionistic fuzzy numbers is calculated by constructing a
new distance measure based on symmetric information entropy. The C-OOWIFQ operator and the
distance measure based on symmetric information entropy are applied to deal with soil clustering.
The main advantages of this paper are shown as follows:

(1) Compared with traditional clustering and fuzzy clustering, interval intuitionistic fuzzy clustering
describes the fuzzy nature of things more delicately.

(2) The symmetric information entropy based distance measure considers all the information in the
continuous interval. Thus, the distortion and loss of information are avoided, and the result is
more accurate and effective.

(3) The C-OOWIFQ takes into account the preferences of decision makers.

In addition, the IIFC algorithm can effectively solve the problem of soil clustering. In the follow-up
study, we will apply the distance measure and symmetric information entropy to pattern recognition,
data mining, medical diagnosis and other fields.
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