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Abstract: In this paper, we present and study a new family of continuous distributions, called
the type II power Topp-Leone-G family. It provides a natural extension of the so-called type II
Topp-Leone-G family, thanks to the use of an additional shape parameter. We determine the main
properties of the new family, showing how they depend on the involving parameters. The following
points are investigated: shapes and asymptotes of some important functions, quantile function, some
mixture representations, moments and derivations, stochastic ordering, reliability and order statistics.
Then, a special model of the family based on the inverse exponential distribution is introduced. It is
of particular interest because the related probability functions are tractable and possess various kinds
of asymmetric shapes. Specially, reverse J, left skewed, near symmetrical and right skewed shapes are
observed for the corresponding probability density function. The estimation of the model parameters
is performed by the use of three different methods. A complete simulation study is proposed to
illustrate their numerical efficiency. The considered model is also applied to analyze two different
kinds of data sets. We show that it outperforms other well-known models defined with the same
baseline distribution, proving its high level of adaptability in the context of data analysis.

Keywords: Topp-Leone distribution; type II Topp-Leone-G family; moments; stochastic ordering;
reliability; estimation; data analysis.

MSC: 60E05; 62E15; 62F10

1. Introduction

Among the existing distributions with support over the unit interval, the so-called Topp-Leone
distribution, introduced by [1], is one of the most useful. This success is explained by the
tractability of the corresponding functions, only depending on a single parameter α > 0.
More precisely, its cumulative distribution function (cdf) and probability density function (pdf) are
given by, respectively,

Fo(x; α) = xα(2− x)α, x ∈ (0, 1)

and
fo(x; α) = 2αxα−1(1− x)(2− x)α−1, x ∈ (0, 1).
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This last function is known to be a perfect example of bounded J-shaped pdf. Also,
the corresponding hazard rate function (hrf) is given by

ho(x; α) =
2αxα−1(1− x)(2− x)α−1

1− xα(2− x)α
, x ∈ (0, 1).

A feature of this hrf is to be of great flexibility; it can have bathtub shape or be non-increasing,
depending on the values of α. Other nontrivial properties on the Topp-Leone distribution can be found
in, e.g., [2–4]. For the use of the Topp-Leone distribution in different applied statistical settings, we
refer the reader to [5–8]. Some extensions of the Topp-Leone distribution can be found in [9,10]. On the
other side, in the recent years, the Topp-Leone distribution reveals to be particularly efficient to define
general families of distributions enjoying nice properties, including a great ability to model different
practical data sets. Among these families, there are the Topp-Leone-G family studied via different
approaches by [11–14], the Topp-Leone-G power series family by [15,16], the type II Topp-Leone-G
family by [17], the Topp-Leone odd log-logistic family by [18], the type II generalized Topp-Leone-G
family by [19], the Fréchet Topp- Leone-G family by [20], the exponentiated generalized Topp-Leone-G
family by [21] and the transmuted Topp-Leone-G family by [22]. Now, for the purposes of this paper,
let us describe the general family introduced by [23]. It is based on the so-called power Topp-Leone
distribution defined with the cdf and pdf given by, respectively,

F∗(x; α, β) = xαβ(2− xβ)α, x ∈ (0, 1)

and
f∗(x; α, β) = 2αβxαβ−1(1− xβ)(2− xβ)α−1, x ∈ (0, 1).

The power Topp-Leone distribution corresponds to the distribution of the random variable
Y = X1/β, where X is a random variable following the Topp-Leone distribution (with parameter α).
Obviously, the role of the parameter β is to give more flexibility to the former Topp-Leone distribution.
In order to take benefit of this new parameter and open new perspectives, ref. [23] developed the
power Topp-Leone-G family defined by the following cdf: F(x; α, β, ξ) = F∗ (G(x; ξ); α, β), x ∈ R,
where G(x; ξ) denotes the cdf of a continuous distribution depending on a parameter vector ξ.

In this paper, we explore a new direction of work by investigating the type II version of the power
Topp-Leone-G family. Indeed, we define the type II power Topp-Leone-G (TIIPTL-G) family by the cdf
given by

F(x; α, β, ξ) = 1− F∗ (1− G(x; ξ); α, β) , x ∈ R,

i.e.,
F(x; α, β, ξ) = 1− [1− G(x; ξ)]αβ

{
2− [1− G(x; ξ)]β

}α
, x ∈ R.

To the best of our knowledge, the mathematical foundations of this family has no equivalence
in the statistical literature, opening the door of new modelling. Let us just notice that, for β = 1,
the corresponding cdf is reduced to F(x; α, β, ξ) = 1−

[
1− G(x; ξ)2]α, which corresponds to the cdf of

the type II Topp-Leone-G family developed by [17]. In this sense, the TIIPTL-G family can be viewed
as a generalization of the type II Topp-Leone-G family. The overall motivations behind the TIIPTL-G
family are to

• create distributions with different shapes for the pdf and hrf,
• transform symmetrical distributions into skewed distributions,
• construct heavy-tailed distributions,
• increase the flexibility of the mode(s), mean, variance, skewness and kurtosis of the

baseline distribution,
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• provide better fits than other general families (including those based on the
Topp-Leone distribution) with the same baseline distribution and possibly more complex
(with more parameters).

Most of these points are developed in detail in our study, with the consideration of the inverse
exponential distribution as baseline. In order to motivate this choice of baseline, let us recall that
the inverse exponential distribution was introduced by [24] as a suitable alternative to the standard
exponential distribution. In particular, the inverse exponential model is more appropriated than
the exponential one when lifetime data present an inverted bathtub failure rate. We refer to [25]
for a complete discussion in this regard. As indicated by its name, if X denotes a random variable
following the exponential distribution with parameter θ > 0, the inverse of X, i.e., Y = X−1, follows
the inverse exponential distribution with parameter θ. That is, the corresponding cdf and pdf are given
by, respectively,

G(x; θ) = e−θ/x, x > 0, (1)

and
g(x; θ) =

θ

x2 e−θ/x, x > 0.

Thanks to the structure of the TIIPTL-G family, we significantly increase the practical properties
of the inverse exponential distribution (more flexible shapes for the corresponding pdf, hrf, mode,
skewness, kurtosis, etc.). In particular, we show that the resulting distribution can have better
results in fitting data sets than seven adversary distributions, including five also based on the inverse
exponential distribution.

The rest of the paper is arranged as follows. Section 2 defines the TIIPTL-G family, with a focus on
the special member previously mentioned, i.e., using the inverse exponential distribution as baseline.
In Section 3, some of general mathematical properties of the TIIPTL-G family are derived, including
the quantile function, mixture representations of the corresponding cdf and pdf, several kinds of
moments, stochastic ordering, reliability and order statistics. The Section 4 is devoted to the special
TIIPTL-G model using the inverse exponential distribution as baseline, with estimation of the model
parameters via three different well-established methods: the maximum likelihood, percentile and
right-tail Anderson-Darling methods. The TIIPTL-G models aim to be used in a data analysis setting.
In this regard, Section 5 is devoted to the analyzes of two practical data sets, with comprehensible
comparison to seven other models having the same baseline distribution. The discussion ends in
a conclusion presented in Section 6.

2. Definition of the TIIPTL-G Family

The definition and essential functions of the TIIPTL-G family are set in this section.

2.1. Important Functions

We recall that the TIIPTL-G family is defined with the cdf given by

F(x; α, β, ξ) = 1− [1− G(x; ξ)]αβ
{

2− [1− G(x; ξ)]β
}α

, x ∈ R, (2)

with α, β > 0 and G(x; ξ) denotes any cdf of a continuous distribution with parameter vector ξ.
The corresponding survival function (sf) is given by S(x; α, β, ξ) = 1− F(x; α, β, ξ), i.e.,

S(x; α, β, ξ) = [1− G(x; ξ)]αβ
{

2− [1− G(x; ξ)]β
}α

, x ∈ R. (3)
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Upon differentiation of F(x; α, β, ξ), with some algebra, we show that the pdf of the TIIPTL-G
family is expressed as

f (x; α, β, ξ) = 2αβg(x; ξ) [1− G(x; ξ)]αβ−1
{

2− [1− G(x; ξ)]β
}α−1 {

1− [1− G(x; ξ)]β
}

, x ∈ R, (4)

where g(x; ξ) is the pdf corresponding to G(x; ξ).
The cumulative hazard rate function (chrf) of the TIIPTL-G family is given by H(x; α, β, ξ) =

− log[S(x; α, β, ξ)], i.e.,

H(x; α, β, ξ) = −αβ log [1− G(x; ξ)]− α log
{

2− [1− G(x; ξ)]β
}

, x ∈ R.

Upon differentiation of H(x; α, β, ξ), with some algebra, the corresponding hrf is given by

h(x; α, β, ξ) =
2αβg(x; ξ)

{
1− [1− G(x; ξ)]β

}
[1− G(x; ξ)]

{
2− [1− G(x; ξ)]β

} , x ∈ R. (5)

These functions will play a central role in the next, mainly f (x; α, β, ξ) and h(x; α, β, ξ), motivating
the study of their curvature features in the next section.

2.2. Asymptotes and Shapes

First of all, let us investigate the effects of the parameters α, β and ξ on the asymptotes of
F(x; α, β, ξ), f (x; α, β, ξ) and h(x; α, β, ξ). Using (2), (4) and (5), when G(x; ξ)→ 0, we have

F(x; α, β, ξ) ∼ αβ2G(x; ξ)2, f (x; α, β, ξ) ∼ h(x; α, β, ξ) ∼ 2αβ2g(x; ξ)G(x; ξ).

Also, when G(x; ξ)→ 1, we have

F(x; α, β, ξ) ∼ 1− 2α[1− G(x; ξ)]αβ, f (x; α, β, ξ) ∼ 2ααβg(x; ξ)[1− G(x; ξ)]αβ−1

and
h(x; α, β, ξ) ∼ αβg(x; ξ)[1− G(x; ξ)]−1.

We see that the asymptotes of f (x; α, β, ξ) are strongly impacted by α, β and ξ, mainly when
G(x; ξ)→ 1.

We now present the basics on the critical points for f (x; α, β, ξ) and h(x; α, β, ξ). Any critical point
x∗ of f (x; α, β, ξ) is solution of the equation {log[ f (x; α, β, ξ)]}′ = 0, with

log[ f (x; α, β, ξ)] = log(2) + log(α) + log(β) + log[g(x; ξ)] + (αβ− 1) log [1− G(x; ξ)]

+ (α− 1) log
{

2− [1− G(x; ξ)]β
}
+ log

{
1− [1− G(x; ξ)]β

}
and

{log[ f (x; α, β, ξ)]}′ = g(x; ξ)′

g(x; ξ)
− (αβ− 1)

g(x; ξ)

1− G(x; ξ)
+ (α− 1)β

g(x; ξ) [1− G(x; ξ)]β−1

2− [1− G(x; ξ)]β

+ β
g(x; ξ) [1− G(x; ξ)]β−1

1− [1− G(x; ξ)]β
.

The nature of x∗ can be determined according to the sign of φ∗ = {log[ f (x; α, β, ξ)]}′′ |x=x∗ .
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Also, any critical point x∗∗ of h(x; α, β, ξ) is solution of the equation {log[h(x; α, β, ξ)]}′ = 0, with
is equivalent to {log[ f (x; α, β, ξ)]}′ + h(x; α, β, ξ) = 0, i.e.,

{log[h(x; α, β, ξ)]}′ = g(x; ξ)′

g(x; ξ)
− (αβ− 1)

g(x; ξ)

1− G(x; ξ)
+ (α− 1)β

g(x; ξ) [1− G(x; ξ)]β−1

2− [1− G(x; ξ)]β

+ β
g(x; ξ) [1− G(x; ξ)]β−1

1− [1− G(x; ξ)]β
+ 2αβ

g(x; ξ)
{

1− [1− G(x; ξ)]β
}

[1− G(x; ξ)]
{

2− [1− G(x; ξ)]β
} .

The nature of x∗∗ can be determined according to the sign of φ∗∗ = {log[h(x; α, β, ξ)]}′′ |x=x∗∗ .
Here, x∗ and x∗∗ are not necessary unique; the presented equations may have several roots,

depending on G(x; ξ), α and β.

2.3. Special Members of the Family

Many special members of the TIIPTL-G family are of potential interest, for tractability of the
related functions and flexibility reasons. Some of them are listed in Table 1, defined with their sfs for
the sake of place.

Table 1. Some special members of the TIIPTL-G family defined with their sfs.

Distribution Name of G(x; ξ) ξ Support S(x; α, β, ξ)

TIIPTLU Uniform (θ) (0, θ)
[
1− x

θ

]αβ
{

2−
[
1− x

θ

]β
}α

TIIPTLP Power (a) (0, 1) [1− xa]αβ
{

2− [1− xa]β
}α

TIIPTLIEx Inverse exponential (θ) (0,+∞)
[
1− e−θ/x

]αβ
{

2−
[
1− e−θ/x

]β
}α

TIIPTLD Dagum (a, b, c) (0,+∞)

[
1−

(
1 +

( x
a
)−b
)−c

]αβ
{

2−
[

1−
(

1 +
( x

a
)−b
)−c

]β
}α

TIIPTLFr Fréchet (a) (0,+∞)
[
1− e−x−a

]αβ
{

2−
[
1− e−x−a

]β
}α

TIIPTLHC Half Cauchy (a) (0,+∞)
[
1− 2

π arctan
( x

a
)]αβ

{
2−

[
1− 2

π arctan
( x

a
)]β
}α

TIIPTLo Logistic (a, b) R
[
1− 1

1+e−(x−a)/b

]αβ
{

2−
[
1− 1

1+e−(x−a)/b

]β
}α

TIIPTLN Normal (µ, σ) R [1−Φ(x; µ, σ)]αβ
{

2− [1−Φ(x; µ, σ)]β
}α

2.4. The TIIPTLIEx Distribution

Among the presented special members in Table 1, we put emphasis on the TIIPTLIEx distribution,
corresponding to the TIIPTL-G defined with the cdf of the inverse exponential distribution with
parameter θ > 0 as baseline, as defined by (1). That is, the corresponding cdf, sf, pdf, chrf and hrf are,
respectively, given by

F(x; α, β, θ) = 1−
[
1− e−θ/x

]αβ
{

2−
[
1− e−θ/x

]β
}α

, x > 0, (6)

S(x; α, β, θ) =
[
1− e−θ/x

]αβ
{

2−
[
1− e−θ/x

]β
}α

, x > 0,
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f (x; α, β, θ) = 2αβ
θ

x2 e−θ/x
[
1− e−θ/x

]αβ−1
{

2−
[
1− e−θ/x

]β
}α−1 {

1−
[
1− e−θ/x

]β
}

, x > 0,

(7)

H(x; α, β, θ) = −αβ log
[
1− e−θ/x

]
− α log

{
2−

[
1− e−θ/x

]β
}

, x > 0 (8)

and

h(x; α, β, θ) =

2αβθe−θ/x
{

1−
[
1− e−θ/x

]β
}

x2
[
1− e−θ/x

] {
2−

[
1− e−θ/x

]β
} , x > 0. (9)

We thus introduce a new three-parameters lifetime distribution, with potential new features in
probability and statistics. Among them, we claim that the TIIPTLIEx distribution possesses flexible
functions. Since this aspect is hard to handle with theoretical tools, illustrations are proposed in
Figures 1 and 2, with plots of the pdf and hrf.
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Figure 1. Plots of some pdfs of the TIIPTLIEx distribution.
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Figure 2. Plots of some hrfs of the TIIPTLIEx distribution.

Figure 1 reveals that the pdf of the TIIPTLIEx distribution is reverse J, left skewed, near
symmetrical and right skewed. Figure 2 shows that the hrf of the TIIPTLIEx distribution is increasing,
decreasing and upside down bathtub shaped. All these observations are strong signs that the TIIPTLIEx
distribution enjoys a great flexibility in the modelling of various lifetime data sets.
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3. Some Properties of the TIIPTL-G Family

This section shows important distributional and structural properties satisfied by the
TIIPTL-G family.

3.1. Quantile Function

The quantile function (qf) Q(u; α, β, ξ) of the TIIPTL-G family satisfies the nonlinear equation

Q(F(u; α, β, ξ); α, β, ξ) = u, u ∈ (0, 1).

After some algebra, it comes:

Q(u; α, β, ξ) = QG

{
1−

[
1−

√
1− (1− u)1/α

]1/β

; ξ

}
, u ∈ (0, 1),

where QG(u; ξ) is the quantile function corresponding to G(x; ξ). The closed-form of the qf is one of
the advantages of the TIIPTL-G family. Indeed, the qf plays a central role; it allows to determine the
three first quartiles of the TIIPTL-G family, including the median defined by

M = Q(0.5; α, β, ξ) = QG

{
1−

[
1−

√
1− 0.51/α

]1/β
; ξ

}
.

The qf is also useful to generate values from the TIIPTL-G family at a given baseline cdf G(x; ξ).
Indeed, for any independent realizations u1, . . . , un from a random variable U following the uniform
distribution over the unit interval, then x1, . . . , xn with xi = Q(ui; α, β, ξ) are independent realizations
of a random variable X following corresponding TIIPTL-G distribution.

Finally, let us precise the qf of the TIIPTLIEx distribution; after some algebra, it expressed as

Q(u; α, β, θ) = −θ

[
log

{
1−

[
1−

√
1− (1− u)1/α

]1/β
}]−1

, u ∈ (0, 1). (10)

From this expression, the simulation of values from the TIIPTLIEx distribution is possible. This
result will be used in Section 4.

3.2. Mixture Representation

The following result presents a mixture representation of the cdf and pdf of the TIIPTL-G family.

Theorem 1. Let x such that G(x; ξ) ∈ (0, 1) (x such that G(x; ξ) = 1 is excluded). Let us introduce the
cdf and pdf of the exponentiated-G family defined by, respectively, Gγ(x; ξ) = G(x; ξ)γ and gγ(x; ξ) =

γg(x; ξ)G(x; ξ)γ−1. Then

• we have the following expansion for F(x; α, β, ξ):

F(x; α, β, ξ) = 1 +
+∞

∑
k,`=0

ak,`G`(x; ξ)

where

ak,` =

(
α

k

)(
β(k + α)

`

)
(−1)k+`+12α−k.

• we have the following expansion for f (x; α, β, ξ):

f (x; α, β, ξ) =
+∞

∑
k=0

+∞

∑
`=1

ak,`g`(x; ξ).
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Proof. Since G(x; ξ) ∈ (0, 1), implying that [1− G(x; ξ)]β /2 ∈ (0, 1), the generalized binomial
formula can applied and gives

F(x; α, β, ξ) = 1− [1− G(x; ξ)]αβ
+∞

∑
k=0

(
α

k

)
2α−k(−1)k [1− G(x; ξ)]βk

= 1 +
+∞

∑
k=0

(
α

k

)
2α−k(−1)k+1 [1− G(x; ξ)]β(k+α) .

By applying again the generalized binomial formula, we get

[1− G(x; ξ)]β(k+α) =
+∞

∑
`=0

(
β(k + α)

`

)
(−1)`G(x; ξ)`.

By combining all the above equalities, we obtain the desired mixture expansion for F(x; α, β, ξ).
The one for f (x; α, β, ξ) is derived upon differentiation, excluding the term in ` = 0 in the sum since its
vanishes. This completes the proof of Theorem 1.

3.3. Some Kinds of Moments

Here, we derive some kinds of the moments for the TIIPTL-G family. It is supposed that all the
introduced quantities are well-defined (convergent if any. . . ), depending on G(x; ξ), α, β and other
introduced functions-parameters.

3.3.1. Moments and Central Moments

First of all, for any positive integer r, the r-th moment is given by

µ′r =
∫ +∞

−∞
xr f (x; α, β, ξ)dx.

This integral can be calculated numerically by using any scientific software. A series expression is
possible by applying Theorem 1; we have

µ′r =
+∞

∑
k=0

+∞

∑
`=1

ak,`ω`,r, (11)

where ω`,r =
∫ +∞
−∞ xrg`(x; ξ)dx = `

∫ 1
0 u`−1[QG(u; ξ)]rdu.

The r-th central moment is given by

µr =
∫ +∞

−∞
(x− µ′1)

r f (x; α, β, ξ)dx =
r

∑
m=0

(
r
m

)
(−1)m(µ′1)

mµ′r−m.

From this formula, one can deduce the mean, the variance, the standard deviation, the cumulants,
the coefficients of skewness and kurtosis, and so on.

3.3.2. Inverted Moments

When the moments are not well defined, inverted moments can be of interest. Here, the r-th
inverted moment is given by

µ∗r =
∫ +∞

−∞
x−r f (x; α, β, ξ)dx.
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Then, the previous arguments hold; by applying Theorem 1, we have

µ∗r =
+∞

∑
k=0

+∞

∑
`=1

ak,`ρ`,r,

where ρ`,r =
∫ +∞
−∞ x−rg`(x; ξ)dx = `

∫ 1
0 u`−1[QG(u; ξ)]−rdu.

In the context of the TIIPTLIEx distribution, we have

ρ`,r =
∫ +∞

−∞
x−rg`(x; ξ)dx = `θ

∫ +∞

0
x−r−2e−`θ/xdx = (`θ)−rr!,

implying that

µ∗r = θ−rr!
+∞

∑
k=0

+∞

∑
`=1

ak,``
−r.

3.3.3. Incomplete Moments

For any positive integer r and t ∈ R, the r-th incomplete moment is given by

µ′r(t) =
∫ t

−∞
xr f (x; α, β, ξ)dx.

Again, one can determine it numerically. A series expression of it follows from Theorem 1;
we have

µ′r(t) =
+∞

∑
k=0

+∞

∑
`=1

ak,`ω`,r(t),

where ω`,r(t) =
∫ t
−∞ xrg`(x; ξ)dx = `

∫ G(t;ξ)
0 u`−1[QG(u; ξ)]rdu. From this formula, one can deduce

the mean deviations about the mean and the median, the mean residual life function, the Bonferroni
and Lorenz curves, and so on.

In the context of the TIIPTLIEx distribution, for any t > 0, we have

ω`,r(t) =
∫ t

−∞
xrg`(x; ξ)dx = `θ

∫ t

0
xr−2e−`θ/xdx = (`θ)r

∫ +∞

`θ/t
y−re−ydy = (`θ)rΓ(1− r, `θ/t),

where Γ(s, x) =
∫ +∞

x ys−1e−ydy (the so-called upper incomplete gamma function). Hence, in this case,
we can write

µ∗r (t) = θr
+∞

∑
k=0

+∞

∑
`=1

ak,``
rΓ(1− r, `θ/t).

3.4. Stochastic Ordering

When we deal with a general family of distributions, for practical purposes, it is of interest to
identify the inherent stochastic ordering of these members according to the parameters. In this regard,
one can use some distributional functions, as the cdf, hrf, likelihood ratio function. . . . Here, we focus
on the likelihood ratio order defined as follows. For two random variables X and Y, we say that
X �lr Y if and only if the ratio of the two corresponding pdfs (the one of X divided by the one of Y) is
a decreasing function in x. For the complete theory, we refer the reader to [26]. The following result is
about the likelihood ratio order related to the TIIPTL-G family, with fixed β.

Proposition 1. Let X1 and X2 be two random variables such that X1 and X2 have the pdfs of the TIIPTL-G
family given by f (x; α1, β, ξ) and f (x; α2, β, ξ), respectively. Then, we have X1 �lr X2.
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Proof. By using (4), we have

f (x; α1, β, ξ)

f (x; α2, β, ξ)
=

α1

α2
[1− G(x; ξ)]β(α1−α2)

{
2− [1− G(x; ξ)]β

}α1−α2
.

Hence, we get

log
[

f (x; α1, β, ξ)

f (x; α2, β, ξ)

]
= log(α1)− log(α2) + β(α1 − α2) log [1− G(x; ξ)]

+ (α1 − α2) log
{

2− [1− G(x; ξ)]β
}

and {
log
[

f (x; α1, β, ξ)

f (x; α2, β, ξ)

]}′
= −β(α1 − α2)

g(x; ξ)

1− G(x; ξ)
+ β(α1 − α2)

g(x; ξ) [1− G(x; ξ)]β−1

2− [1− G(x; ξ)]β

= β(α1 − α2)
g(x; ξ)

1− G(x; ξ)

[
[1− G(x; ξ)]β

2− [1− G(x; ξ)]β
− 1

]

= 2β(α2 − α1)
g(x; ξ)

1− G(x; ξ)

1− [1− G(x; ξ)]β

2− [1− G(x; ξ)]β
,

which is negative if α2 < α1. Therefore, log [ f (x; α1, β, ξ)/ f (x; α2, β, ξ)] is decreasing, implying that
f (x; α1, β, ξ)/ f (x; α2, β, ξ) is decreasing. This proves the desired likelihood ratio.

3.5. Reliability

One of the most common measure in the context of reliability is the coefficient R given by

R = P(X1 > X2),

where X1 and X2 are two random variables modeling the lifetime of a component in two different states.
Numerous statistical applications have been investigated, pioneered by [27]. Here, we determine R in
the context of the TIIPTL-G family. The first result is given in the following proposition.

Proposition 2. Let X1 and X2 be two independent random variables such that X1 and X2 have the cdfs of the
TIIPTL-G family given by F(x; α1, β, ξ) and F(x; α2, β, ξ), respectively. Then, we have

R =
α2

α1 + α2
.

Proof. Since X1 and X2 are independent, by using (2) and (4), after some algebra, we have

R =
∫ +∞

−∞
F(x; α2, β, ξ) f (x; α1, β, ξ)dx

= 1−
∫ +∞

−∞
2α1βg(x; ξ) [1− G(x; ξ)](α1+α2)β−1

{
2− [1− G(x; ξ)]β

}α1+α2−1 {
1− [1− G(x; ξ)]β

}
dx

= 1− α1

α1 + α2

∫ +∞

−∞
f (x; α1 + α2, β, ξ)dx = 1− α1

α1 + α2
=

α2

α1 + α2
.

The proof of Proposition 2 is ended.

We have R = 0.5 by taking α1 = α2, the standard value immediately obtained by the definition of
R and the fact that X1 and X2 are independent and identically distributed.

The following result generalizes Proposition 2, but with a less tractable series expression.
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Proposition 3. Let X1 and X2 be two independent random variables such that X1 and X2 have the cdfs of the
TIIPTL-G family given by F(x; α1, β1, ξ) and F(x; α2, β2, ξ), respectively. Then, we have

R = 1 +
+∞

∑
k,`,m=0

+∞

∑
q=1

a(2)k,` a(1)m,q
q

`+ q
,

where a(1)m,q = (α1
m)(

β1(m+α1)
q )(−1)m+q+12α1−m and a(2)k,` = (α2

k )(
β2(k+α2)

` )(−1)k+`+12α2−k .

Proof. By applying Theorem 1, we can write

F(x; α2, β2, ξ) = 1 +
+∞

∑
k,`=0

a(2)k,` G`(x; ξ), f (x; α1, β1, ξ) =
+∞

∑
m=0

+∞

∑
q=1

a(1)m,qgq(x; ξ).

Hence, since X1 and X2 are independent, by using these expressions, we have

R =
∫ +∞

−∞
F(x; α2, β2, ξ) f (x; α1, β1, ξ)dx = 1 +

+∞

∑
k,`,m=0

+∞

∑
q=1

a(2)k,` a(1)m,q

∫ +∞

−∞
gq(x; ξ)G`(x; ξ)dx,

with ∫ +∞

−∞
gq(x; ξ)G`(x; ξ)dx =

q
`+ q

∫ +∞

−∞
g`+q(x; ξ)dx =

q
`+ q

.

The proof of Proposition 3 is completed.

3.6. Order Statistics

We now provide some distributional results on order statistics in the setting of the TIIPTL-G
family. Let X1, . . . , Xn be a random sample from the TIIPTL-G family, i.e., X1, . . . , Xn are independent
and identically distributed having the common cdf given by (2), and Xi:n be the i-th order statistic.
The following result shows that the pdf of Xi:n can be expressed as a finite mixture of pdfs of the
TIIPTL-G family.

Proposition 4. Let fi:n(x; α, β, ξ) be the pdf of Xi:n. Then, we can write

fi:n(x; α, β, ξ) =
i−1

∑
j=0

bj f (x; α(j + n− i + 1), β, ξ),

where

bj =
n!

(i− 1)!(n− i)!

(
i− 1

j

)
(−1)j 1

j + n− i + 1
.

Proof. By using a well-known general result, the pdf of Xi:n is given by

fi:n(x; α, β, ξ) =
n!

(i− 1)!(n− i)!
f (x; α, β, ξ)[F(x; α, β, ξ)]i−1 [S(x; α, β, ξ)]n−i , x ∈ R.

By applying the standard binomial formula, we get

fi:n(x; α, β, ξ) =
n!

(i− 1)!(n− i)!

i−1

∑
j=0

(
i− 1

j

)
(−1)j

{
f (x; α, β, ξ) [S(x; α, β, ξ)]j+n−i

}
.
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Now, owing to (4) and (3), let us notice that

f (x; α, β, ξ) [S(x; α, β, ξ)]j+n−i

= 2αβg(x; ξ) [1− G(x; ξ)]α(j+n−i+1)β−1
{

2− [1− G(x; ξ)]β
}α(j+n−i+1)−1 {

1− [1− G(x; ξ)]β
}

=
1

j + n− i + 1
f (x; α(j + n− i + 1), β, ξ).

By putting the above equalities together, the proof of Proposition 4 is completed.

Some properties of Xi:n can be easily derived to Proposition 4 and the already shown properties
of the TIIPTL-G family in Section 3. As example, the r-th moment of Xi:n is defined by

µo
r =

∫ +∞

−∞
xr fi:n(x; α, β, ξ)dx.

Then, owing to Proposition 4, we have

µo
r =

i−1

∑
j=0

bjµ
′
j,r,

where µ′j,r =
∫ +∞
−∞ xr f (x; α(j + n− i + 1), β, ξ)dx can be expressed as in (11).

4. Estimation and Simulation

In this section, we discuss the inferential properties of the TIIPTLIEx model (see Section 2.4).
The model parameters, i.e., α, β and θ, are investigated by three different methods: the maximum
likelihood, percentile and right-tail Anderson-Darling methods, with a simulation study illustrating
their convergence properties. Hereafter, we consider a random variable X following the TIIPTLIEx
distribution, as well as n independent realizations x1, . . . , xn of X and their rearrangements in
increasing order denoted by x(1), . . . x(n).

4.1. Maximum Likelihood Method of Estimation

In the context of the TIIPTLIEx model, by using (7), the likelihood function is given by

L(α, β, θ) =
n

∏
i=1

f (xi; α, β, ξ)

= 2nαnβnθn
n

∏
i=1

1
x2

i
e−θ/xi

[
1− e−θ/xi

]αβ−1
{

2−
[
1− e−θ/xi

]β
}α−1 {

1−
[
1− e−θ/xi

]β
}

.

The maximum likelihood estimates (MLEs) are given by maximizing this function according to α,
β and θ. They are also defined as the maximum of the log-likelihood function defined by

`(α, β, θ) = log [L(α, β, θ)]

= n log(2) + n log(α) + n log(β) + n log(θ)− 2
n

∑
i=1

log(xi)− θ
n

∑
i=1

x−1
i + (αβ− 1)

n

∑
i=1

log
[
1− e−θ/xi

]
+ (α− 1)

n

∑
i=1

log
{

2−
[
1− e−θ/xi

]β
}
+

n

∑
i=1

log
{

1−
[
1− e−θ/xi

]β
}

.
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That is, the MLEs are the solutions of the three following equations: ∂`(α, β, θ)/∂α = 0,
∂`(α, β, θ)/∂β = 0 and ∂`(α, β, θ)/∂θ = 0, where

∂`(α, β, θ)

∂α
=

n
α
+ β

n

∑
i=1

log
[
1− e−θ/xi

]
+

n

∑
i=1

log
{

2−
[
1− e−θ/xi

]β
}

,

∂`(α, β, θ)

∂β
=

n
β
+ α

n

∑
i=1

log
[
1− e−θ/xi

]
− (α− 1)

n

∑
i=1

[
1− e−θ/xi

]β
log
[
1− e−θ/xi

]
2−

[
1− e−θ/xi

]β

−
n

∑
i=1

[
1− e−θ/xi

]β
log
[
1− e−θ/xi

]
1−

[
1− e−θ/xi

]β

and

∂`(α, β, θ)

∂θ
=

n
θ
−

n

∑
i=1

x−1
i + (αβ− 1)

n

∑
i=1

e−θ/xi

xi(1− e−θ/xi )

− (α− 1)β
n

∑
i=1

e−θ/xi
[
1− e−θ/xi

]β−1

xi

{
2−

[
1− e−θ/xi

]β
} − β

n

∑
i=1

e−θ/xi
[
1− e−θ/xi

]β−1

xi

{
1−

[
1− e−θ/xi

]β
} .

The solutions of these equations have no close form; mathematical software must be used to have
a numerical evaluation of the MLEs. In this study, we use the R software (see [28]).

4.2. Percentile Method of Estimation

We now explore the percentile method of estimation pioneered by [29]. By using the qf of the
TIIPTLIEx distribution given by (10), we introduce the following function:

U(α, β, θ) =
n

∑
i=1

[
x(i) −Q(pi; α, β, θ)

]2

=
n

∑
i=1

x(i) + θ

[
log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]−1

2

,

where pi = i/(n + 1). Then, the percentile estimates (PCEs) of α, β and θ are obtained by minimizing
U(α, β, θ) according to α, β and θ, which is equivalent to solve the three following equations
simultaneously: ∂U(α, β, θ)/∂α = 0, ∂U(α, β, θ)/∂β = 0 and ∂U(α, β, θ)/∂θ = 0, where

∂U(α, β, θ)

∂α
= 2

n

∑
i=1

υ
(1)
i (α, β, θ)

x(i) + θ

[
log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]−1

 ,

∂U(α, β, θ)

∂β
= 2

n

∑
i=1

υ
(2)
i (α, β, θ)

x(i) + θ

[
log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]−1


and

∂U(α, β, θ)

∂θ
= 2

n

∑
i=1

υ
(3)
i (α, β, θ)

x(i) + θ

[
log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]−1

 ,
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with

υ
(1)
i (α, β, θ) =

∂Q(pi; α, β, θ)

∂α

= −
θ(1− pi)

1/α log(1− pi)

[
1−

√
1− (1− pi)1/α

]1/β−1

2α2β
√

1− (1− pi)1/α

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}[

log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]2 ,

υ
(2)
i (α, β, θ) =

∂Q(pi; α, β, θ)

∂β

= −
θ

[
1−

√
1− (1− pi)1/α

]1/β

log
[

1−
√

1− (1− pi)1/α

]
β2

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}[

log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]2

and

υ
(3)
i (α, β, θ) =

∂Q(pi; α, β, θ)

∂θ
=

[
log

{
1−

[
1−

√
1− (1− pi)1/α

]1/β
}]−1

.

For practical purposes, these PCEs can evaluated numerically.

4.3. Right-Tail Anderson-Darling Method of Estimation

We now discuss the right-tail Anderson-Darling estimates (RTADEs) of α, β and θ pioneered
by [30]. First of all, by using the cdf and chrf of the TIIPTLIEx distribution given by (6) and (8),
respectively, we introduce the following function:

R(α, β, θ) =
n
2
− 2

n

∑
i=1

F(x(i); α, β, θ) +
1
n

n

∑
i=1

(2i− 1)H(x(n+1−i); α, β, θ)

=
n
2
− 2

n

∑
i=1

{
1−

[
1− e−θ/x(i)

]αβ
{

2−
[
1− e−θ/x(i)

]β
}α}

− α
1
n

n

∑
i=1

(2i− 1)
[

β log
[
1− e−θ/x(n+1−i)

]
+ log

{
2−

[
1− e−θ/x(n+1−i)

]β
}]

.

Then, the RTADEs can be obtained by minimizing R(α, β, θ) according to α, β and θ,
which is equivalent to solve the three following equations simultaneously: ∂R(α, β, θ)/∂α = 0,
∂R(α, β, θ)/∂β = 0 and ∂R(α, β, θ)/∂θ = 0, where

∂R(α, β, θ)

∂α
= −2

n

∑
i=1

η
(1)
i (α, β, θ) +

1
n

n

∑
i=1

(2i− 1)
η
(1)
n+1−i(α, β, θ)

S(x(n+1−i); α, β, θ)
,

∂R(α, β, θ)

∂β
= −2

n

∑
i=1

η
(2)
i (α, β, θ) +

1
n

n

∑
i=1

(2i− 1)
η
(2)
n+1−i(α, β, θ)

S(x(n+1−i); α, β, θ)

and

∂R(α, β, θ)

∂θ
= −2

n

∑
i=1

η
(3)
i (α, β, θ) +

1
n

n

∑
i=1

(2i− 1)
η
(3)
n+1−i(α, β, θ)

S(x(n+1−i); α, β, θ)
,
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with

η
(1)
i (α, β, θ) =

∂F(x(i); α, β, θ)

∂α

= −
[
1− e−θ/x(i)

]αβ
{

2−
[
1− e−θ/x(i)

]β
}α [

β log
[
1− e−θ/x(i)

]
+ log

{
2−

[
1− e−θ/x(i)

]β
}]

,

η
(2)
i (α, β, θ) =

∂F(x(i); α, β, θ)

∂β

= −2α

{
1−

[
1− e−θ/x(i)

]β
}

log
[
1− e−θ/x(i)

] [
1− e−θ/x(i)

]αβ
{

2−
[
1− e−θ/x(i)

]β
}α−1

,

η
(3)
i (α, β, θ) =

∂F(x(i); α, β, θ)

∂θ

= −2αβ
1

x(i)
e−θ/x(i)

{
1−

[
1− e−θ/x(i)

]β
} [

1− e−θ/x(i)
]αβ−1

{
2−

[
1− e−θ/x(i)

]β
}α−1

and

S(x(n+1−i); α, β, θ) =
[
1− e−θ/x(n+1−i)

]αβ
{

2−
[
1− e−θ/x(n+1−i)

]β
}α

.

The quantities η
(1)
n+1−i(α, β, θ), η

(2)
n+1−i(α, β, θ) and η

(3)
n+1−i(α, β, θ) are defined in a similar manner

to η
(1)
i (α, β, θ), η

(2)
i (α, β, θ) and η

(3)
i (α, β, θ), respectively, with x(n+1−i) instead of x(i).

Numerical solutions are available in R to evaluate these RTADEs.

4.4. A Simulation Study

Here, we perform a simulation study giving numerical results to compare the performance of
the previously presented estimation methods. Our methodology is described as follows. By using the
corresponding qf, we generate N = 1000 random samples of size n = 50, 100, 200 and 500 from the
TIIPTLIEx distribution. Then, four sets of the parameters are assigned as: Set1: (α = 2, θ = 1.5, β = 2),
Set2: (α = 3, θ = 1.5, β = 2), Set3: (α = 2, θ = 1.5, β = 3) and Set4: (θ = 3, θ = 1.5, β = 3). Then,
we consider the following measures: the (mean) estimates and the corresponding mean squared errors
(MSEs) defined as follows:

̂Estimateε(n) =
1
N

N

∑
i=1

ε̂i, M̂SEε(n) =
1
N

N

∑
i=1

(ε̂i − ε)2,

where ε = α, θ or β, and ε̂i is the estimates of εi for i = 1, . . . , N via the considered method: MLE, PCE
or RTADE. The obtained numerical results are documented in Tables 2–5.

One can observe from Table 6 that the maximum likelihood method outperforms the other
methods (with the final score of 20.5). Therefore, the use of the MLEs to estimate the TIIPTLIEx model
parameters is justified.
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Table 2. Estimates and MSEs of TIIPTLIEx distribution for MLE, PCand RTADestimates for Set1:
(α = 2, θ = 1.5, β = 2).

MLEs PCEs RTADEs

n Estimates MSEs Estimates MSEs Estimates MSEs

50
2.143 0.291 2.094 0.662 1.599 0.801
1.528 0.067 1.392 0.102 1.115 0.585
2.022 0.271 1.857 0.370 1.572 0.707

100
2.115 0.106 2.176 0.480 1.668 0.786
1.519 0.033 1.405 0.072 1.142 0.570
1.960 0.066 1.826 0.286 1.567 0.673

200
2.088 0.074 2.003 0.393 1.626 0.759
1.511 0.011 1.452 0.033 1.143 0.550
1.981 0.042 1.968 0.142 1.585 0.653

500
2.105 0.047 2.089 0.221 1.813 0.488
1.499 4.844 * 1.428 0.017 1.282 0.344
1.948 0.025 1.846 0.133 1.741 0.406

* Indicates that the value multiply 10−3.

Table 3. Estimates and MSEs of TIIPTLIEx distribution for MLE, PC and RTAD estimates for Set2:
(α = 3, θ = 1.5, β = 2).

MLEs PCEs RTADEs

n Estimates MSEs Estimates MSEs Estimates MSEs

50
2.489 0.365 2.448 1.084 1.863 2.770
1.573 0.050 1.315 0.177 1.078 0.814
2.441 0.324 1.984 0.611 1.795 1.210

100
2.505 0.315 2.346 1.008 1.803 2.512
1.572 0.034 1.395 0.062 1.083 0.687
2.451 0.270 2.177 0.330 1.765 0.944

200
2.466 0.307 2.339 0.804 1.920 2.136
1.539 0.013 1.468 0.025 1.147 0.573
2.364 0.161 2.317 0.289 1.835 0.789

500
2.482 0.279 2.218 0.638 1.919 2.127
1.559 7.459 * 1.470 0.016 1.165 0.572
2.384 0.156 2.325 0.188 1.874 0.799

* Indicates that the value multiply 10−3.

Table 4. Estimates and MSEs of TIIPTLIEx distribution for MLE, PC and RTAD estimates for Set3:
(α = 2, θ = 1.5, β = 3).

MLEs PCEs RTADEs

n Estimates MSEs Estimates MSEs Estimates MSEs

50
2.630 0.525 2.439 0.463 2.661 0.620
1.536 0.040 1.389 0.121 1.489 0.060
2.589 0.318 2.453 0.821 2.481 0.469

100
2.585 0.432 2.334 0.250 2.626 0.469
1.517 0.019 1.395 0.074 1.452 0.022
2.627 0.312 2.465 0.704 2.429 0.386

200
2.534 0.310 2.344 0.239 2.593 0.389
1.474 0.012 1.363 0.050 1.429 0.013
2.507 0.285 2.319 0.694 2.368 0.383

500
2.524 0.292 2.344 0.164 2.619 0.376
1.454 6.626 * 1.406 0.027 1.449 7.531*
2.481 0.283 2.432 0.444 2.392 0.382

* Indicates that the value multiply 10−3.
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Table 5. Estimates and MSEs of TIIPTLIEx distribution for MLE, PC and RTAD estimates for Set4:
(α = 3, θ = 1.5, β = 3).

MLEs PCEs RTADEs

n Estimates MSEs Estimates MSEs Estimates MSEs

50
3.224 0.652 2.711 0.464 3.120 0.318
1.567 0.058 1.421 0.099 1.514 0.047
3.193 0.494 3.022 0.911 3.082 0.266

100
3.336 0.431 2.582 0.311 3.082 0.221
1.542 0.016 1.369 0.053 1.510 0.027
3.027 0.187 2.838 0.436 3.022 0.148

200
3.280 0.309 2.705 0.159 3.019 0.099
1.522 7.876 * 1.418 0.027 1.511 0.013
2.965 0.118 2.912 0.248 3.030 0.073

500
3.225 0.196 2.760 0.091 3.091 0.082
1.480 3.803 * 1.476 8.344 * 1.513 5.006 *
2.817 0.117 3.065 0.099 2.995 0.050

* Indicates that the value multiply 10−3.

Table 6. Ranks of all the three methods of estimation for the considered sets of parameters.

Sets n MLEs PCEs RTADEs

Set1: (α = 2, θ = 1.5, β = 2)

50 1.0 2.0 3.0
100 1.0 2.0 3.0
200 1.0 2.0 3.0
500 1.0 2.0 3.0

Set2: (α = 3, θ = 1.5, β = 2)

50 1.0 2.5 2.5
100 1.0 2.0 3.0
200 1.0 2.0 3.0
500 1.0 2.0 3.0

Set3: (α = 2, θ = 1.5, β = 3)

50 1.0 2.5 2.5
100 1.0 2.5 2.5
200 1.0 2.5 2.5
500 1.0 2.5 2.5

Set4: (α = 3, θ = 1.5, β = 3)

50 2.0 3.0 1.0
100 2.0 3.0 1.0
200 2.0 3.0 1.0
500 2.5 2.5 1.0

Sum of the partial ranks 20.5 38.0 37.5

Final rank 1.0 3.0 2.0

5. Applications

This section shows the potential of the TIIPTL-G family distribution in a practical setting.
We consider the TIIPTLIEx model and all the consider model parameters will be estimated by the
maximum likelihood method, with the use of the R software. We compare the TIIPTLIEx model with
seven three(or less)-parameter models connected to the IEx model, namely: the Kumaraswamy inverse
exponential (KIEx) model (see [31]), beta inverse exponential (BIEx) model (see [32]) by keeping
shape parameter is equal to one, alpha-power inverse Weibull (AIW) model (see [33]), logistic inverse
exponential (LIEx) model (see [34]), inverse Weibull inverse exponential (IWIEx) model (see [35]), type
II Topp-Leone generalized inverse Rayleigh (TIR) model (see [36]) and standard IEX model.

Two practical data sets are analyzed. The first data set contains the ball bearing data, which
indicates the number of revolutions before failure for ball bearing (see [37]). The data are as follows:
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33.00, 68.64, 173.40, 41.52, 42.12, 68.64, 68.88, 45.60, 48.48, 84.12, 93.12, 98.64, 105.12, 105.84, 51.84, 51.96,
54.12, 17.88, 55.56, 127.92, 128.04, 67.80, 67.80, 28.92.

The second considered data set contains the waiting times (in seconds), between 65 successive
eruptions of the Kiama Blowhole. These values were recorded by Jim Irish on July 12, 1998, and
recently has been referenced by [38]. The data are as follows: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16,
29, 54, 91, 8, 17, 55, 10, 35, 47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9,
37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

The MLEs of the model parameters are documented in Tables 7 and 8 for the first and second data
sets, respectively. The standard goodness-of-fit measures are computed in Tables 9 and 10, indicating
the estimated log-likelihood ( ˆ̀), Akaike information criterion (AIC), corrected Akaike information
criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC),
Cramer-von Mises (W*) statistic and Anderson-Darling (A*) statistic. The lower the values of these
numerical criteria, the better the fit. We thus see that the TIIPTLIEx model is the best. With a focus on
the TIIPTLIEx model, the P-P (Probability-Probability) plot and various fits involving estimated cdfs,
sfs and pdfs over for the first and second data sets can be seen in Figures 3 and 4. All of them illustrate
the nice fits of the TIIPTLIEx model, showing its potential of interest for the practitioner in an analysis
of data setting. We complete these analyzes by showing the fits of the estimated pdfs in Figures 5 and 6
over the histograms of the first and second data sets, respectively. On the other hand, estimated cdfs
over the empirical cdf can be seen in Figures 7 and 8 for the first and second data sets, respectively.
As remark, from the fits of the plain red line (TIIPTLIEx) and the dashed black line (IEx) in the above
figures, one can notice that the TIIPTLIEx model significantly increases the flexible properties of the
former IEx model, reaching new perspectives of statistical modelling for various kinds of data sets.

Table 7. MLEs and their standard errors (in parentheses) for the first data set.

Model α β θ λ a b

TIIPTLIEx 46.4917 0.2570 58.4781 - - -
(2.0811) (0.4493) (3.7038) - - -

KIEx 15.5780 5.6385 8.6130 - - -
(2.7977) (2.2527) (0.5530) - - -

BIEx - - 11.6360 - 16.9072 3.8280
- - (0.9004) - (0.1398) (1.0557)

AIW 35.4934 1.2320 - 33.8531 - -
(3.0404) (0.1345) - (6.8240) -

LIEx - - - - 4.2022 28.3120
- - - - (0.7476) (2.9606)

IWIEx 1.7362 1.8178 27.5001 - - -
(2.4572) (0.2659) (9.7337) - - -

TIR 14.5765 5.6554 1.0716 - - -
(0.6273) (1.38163) (0.3041) - - -

IEx - - 55.4934 - - -
- - (11.3275) - - -



Symmetry 2020, 12, 75 19 of 24

Table 8. MLEs and their standard errors (in parentheses) for the second data set.

Model α β θ λ a b

TIIPTLIEx 28.7430 0.1522 10.9219 - - -
(0.4839) (0.1831) (2.4038) - - -

KIEx 21.3327 1.7608 1.3437 - - -
(1.9516) (0.3244) (7.9917) - - -

BIEx - - 11.7217 - 2.8252 1.6669
- - (0.1304) - (0.2676) (0.9539)

AIW 3.6810 49.2020 - 1.4616 - -
(4.6113) (0.0244) - (0.1661) -

LIEx - - - - 2.4594 11.2381
- - - - (0.2792) (1.2269)

IWIEx 1.2470 1.2812 14.3304 - - -
(2.1153) (0.1442) (5.3741) - - -

TIR 16.8288 0.2966 0.5422 - - -
(9.7095) (3.8675) (0.0809) - - -

IEx - - 20.4026 - - -
- - (2.5503) - - -

Table 9. The − ˆ̀, AIC, CAIC, BIC, HQIC, W* and A* values for the first data set.

Model − ˆ̀ AIC CAIC BIC HQIC W* A*

TIIPTLIEx 117.7402 241.4803 242.6803 245.0145 242.4180 0.0343 0.2247
KIEx 118.0351 242.0702 243.2702 245.6044 243.0078 0.0373 0.2561
BIEx 118.7151 243.4301 244.6301 246.9643 244.3677 0.0499 0.3567
AIW 125.6581 257.3162 258.5162 260.8504 258.2539 0.0399 0.2780
LIEx 119.1395 242.2790 242.8504 245.6351 242.9043 0.0526 0.3747

IWIEx 120.6731 247.3462 248.5462 250.8804 248.2838 0.0910 0.6401
TIR 120.6591 247.3182 248.5182 250.8524 248.2558 0.0947 0.6639
IEx 126.9634 255.9268 256.1086 257.1049 256.2394 0.0498 0.3562

Table 10. The − ˆ̀, AIC, CAIC, BIC, HQIC, W* and A* values for the second data set.

Model − ˆ̀ AIC CAIC BIC HQIC W* A*

TIIPTLIEx 293.7982 593.5963 593.9963 600.0730 596.1478 0.1211 0.8804
KIEx 294.761 595.5237 595.9237 602.0003 598.0751 0.1512 1.0674
BIEx 294.8518 595.7036 596.1036 602.1802 598.2557 0.1575 1.1037
AIW 294.9399 595.8798 596.2798 602.3565 598.4313 0.1591 1.1133
LIEx 299.3795 602.7589 602.9556 607.0767 604.4599 0.2466 1.6523

IWIEx 295.5628 597.1256 597.5256 603.6023 599.6771 0.1889 1.28434
TIR 296.7181 599.4362 599.8362 605.9128 601.9876 0.2378 1.5590
IEx 299.1754 600.3507 600.4152 602.5096 601.2012 0.1566 1.0983
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Figure 3. Estimated plots of competitive models for the first data set.
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Figure 5. Plots of the estimated pdfs over histograms for data set 1.
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Figure 6. Plots of the estimated pdfs over histograms for data set 2.
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Figure 8. Plots of the estimated cdfs over the empirical cdf for data set 2.

6. Conclusions

A new family of distributions is proposed in this paper, called the type II power Topp-Leone-G
(TIIPTL-G) family. It extends, in some senses, the so-called type II Topp-Leone-G family by the
add of a new shape parameter. The main properties of the TIIPTL-G family are discussed, proving
several essential results on the quantile function, mixture representation of the cdf and pdf, moments,
stochastic ordering, reliability and order statistics. A focus is put on the special member defined
with the inverse exponential distribution as baseline, introducing a new three-parameter lifetime
distribution. We perform an inferential study on the related model, called the TIIPTLIEx model,
including the use of several estimation methods for the model parameters. Then, we apply this
new model to two practical data sets, by adopting the maximum likelihood method of estimation.
Seven competitors models are considered but no one perform better to the TIIPTLIEx model in terms
of standard goodness-of-fit measures. Thus, the TIIPTL-G family of distribution has a straightforward
utilization within the errors-in-variables models, especially for an application in calibration (see [39])
or within the change-point analysis (see [40]). We therefore believe that the TIIPTL-G family has
a promising usefulness for future applications beyond the scope of this paper.
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