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Abstract: In particular, the problem of approximating a solution of an equation is of extreme importance
in many disciplines, since numerous problems from diverse disciplines reduce to solving such equations.
The solutions are found using iterative schemes since in general to find closed form solution is not
possible. That is why it is important to study convergence order of solvers. We extended the applicability
of an eighth-order convergent solver for solving Banach space valued equations. Earlier considerations
adopting suppositions up to the ninth Fŕechet-derivative, although higher than one derivatives are not
appearing on these solvers. But, we only practiced supposition on Lipschitz constants and the first-order
Fŕechet-derivative. Hence, we extended the applicability of these solvers and provided the computable
convergence radii of them not given in the earlier works. We only showed improvements for a certain
class of solvers. But, our technique can be used to extend the applicability of other solvers in the literature
in a similar fashion. We used a variety of numerical problems to show that our results are applicable to
solve nonlinear problems but not earlier ones.

Keywords: order of convergence; iterative solver; Lipschitz constant; Banach space; local convergence

1. Introduction

A plethora of problems from diverse disciplines such as Applied Mathematics, Mathematical:
Biology, chemistry, Economics, Physics, Environmental Sciences and also Engineering are reduced to
equations on abstract spaces via mathematical modeling. The closed form solution is obtained only
in rare cases. That is why it is important to develop iterates generating a sequence converging to the
solution based on some suitable hypotheses on the initial information. Hence, we consider the problem
of finding approximate unique solution α of

Γ(µ) = 0, (1)

is one of the top priorities in the field of numerical analysis. We consider that Γ : K ⊂ T1 → T2 is a
Fréchet differentiable operator, T1,T2 are Banach spaces, and K is a convex subset of T1. The L(T1, T2)

is the space of continuous operators from T1 to T2.
We have several examples where researchers demonstrated the applicability of (1). They transformed

the real life problems to (1) by adopting mathematical modeling and details can be found in [1–7].
We have to target on iterative solvers since it is not always feasible to access the solution α in an explicit
pattern. We have a small number of globally convergent methods that do not require a sufficiently close
starting point, e.g., Bisection method or regula falsi method. But, most of the algorithms determine
one zero at a time. If the zero has been determined with sufficient accuracy, the polynomial is deflated
and the algorithm is applied again on the deflated polynomial. In this way, we can determine all
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zeros simultaneously and also have theoretical importance [8] for the details of methods can be seen
in [9–19]. Therefore, we have extended amount of iterative solvers to solve problems like expression (1).
The analysis of solvers involves local convergence that stands on the knowledge around α. It also
ensures the convergence of iteration procedures. One of the most significant tasks in the analysis of
iterative procedures is to yield the convergence region. Hence, we suggest the radius of convergence.

We rewrite for this purpose the iterative solver suggested in [20] in the following way:

ντ = µτ − A−1
τ Γ(µτ),

µτ+1 = ντ − 4B−1
τ Γ(ντ),

, (2)

where µ0 ∈ K is an initial point, A : K → L(T1,T2) given as A(µτ) = Aτ = Γ′(µτ) +

Q(µτ)Γ(µτ), B(µτ , ντ) = Bτ = Γ′(µτ) + 4Q(µτ)Γ(µτ) + 2Γ′
(

µτ+ντ
2

)
+ Γ′(ντ), and Q(. .) : K×K→

L(T1, T2) is a bilinear operator. In the special case, when T1 = T2 = R, Q(µ, ν) = G′(µ)
G(µ)

,
where G(µ) 6= 0 for each x ∈ K− {α} solver (2) reduces to a fourth-order convergent solver studied
in [20]. Shah et al. [20] suggested fourth-order convergence by adopting Taylor series expansions and
suppositions up to the ninth-order derivative of the involved function. Such constraints hamper the
suitability of solver (2). But, only first-order derivative emerges in the solver (2). Let us assume the
succeeding function Γ on T1 = T2 = R, K =

[
− 1

2 , 3
2

]
as

Γ(µ) =

{
µ3 ln µ2 + µ5 − µ4, µ 6= 0
0, µ = 0

.

Then, we have that
Γ′(µ) = 3µ2 ln µ2 + 5µ4 − 4µ3 + 2µ2,

Γ′′(µ) = 6µ ln µ2 + 20µ3 − 12µ2 + 10µ

and
Γ′′′(µ) = 6 ln µ2 + 60µ2 − 24µ + 22.

From the above derivatives, it is straightforward to see that the 3rd-order derivative of Γ is
unbounded in A. In the available literature, we have a bulk number of research articles [1–7,20–34].
In the majority of these articles, authors mention that starting guess x0 must be adequately close to µ.
But this is not offering us an idea of: how to pick x0, how much closeness is sufficient for convergence,
find radius; bounds on ‖xn − µ‖ and results on uniqueness. We deal with all these questions for
solver (2) in the next section.

In the present study, we adopt only conditions on the first-order derivative of Γ with generalized
Lipschitz conditions. In addition, we are avoiding the Taylor series expansions because it proceeds with
higher-order derivatives of Γ, but we adopt Lipschitz parameters. In this way, we are not committed to
adopt higher-order derivatives for convergence order of (2). Further, we adopted the following (COC)
and (ACOC) for computing the convergence order:

ξ =
ln ‖µτ+2−α‖
‖µτ+1−α‖

ln ‖µτ+1−α‖
‖µτ−α‖

, for each n = 0, 1, 2, . . . , (3)

or the approximate computational order of convergence (ACOC) [21], defined as

ξ∗ =
ln ‖µτ+2−µτ+1‖
‖µτ+1−µτ‖

ln ‖µτ+1−µτ‖
‖µτ−µτ−1‖

, for each n = 1, 2, . . . , (4)
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where the computational order of convergence COC and the approximate computational order of
convergence ACOC [21], respectively. They do not require higher than one derivatives. It is vital to note
that ACOC does not need the prior information of exact root µ. Finally, we investigate the applicability
of our results on several numerical examples, where earlier works did not exhibit this behavior.

The remainder of this paper is coordinated in the succeeding way: We suggest the local
convergence study of solver (2) in Section 2. Numerical experimentation is depicted in Section 3.
Finally, we make concluding assertions in Section 4.

2. Study of Local Convergence

In this section, we suggest the local convergence study of solver (2). Therefore, we adopt some
scalar functions ∆0, ∆, w0, w, w1 that are non-decreasing continuous functions from [0, +∞) to
[0, +∞) such that w0(0) = w(0) = 0. We assume

p(ζ) = 1 (5)

has a minimal positive solution r0 and

p(ζ) = w0(ζ) + w1(ζ)ζ
∫ 1

0
∆0(θζ)dθ.

In addition, we describe functions g1, h1, q, and hq on [0, r0) as follows:

g1(ζ) =

∫ 1
0 w
(
(1− θ)ζ

)
dθ

1− w0(ζ)
+

(∫ 1
0 ∆(θζ)dθ

) (∫ 1
0 ∆0(θζ)dθ

)
w1(ζ)ζ(

1− w0(ζ)
)(

1− p(ζ)
) ,

h1(ζ) = g1(ζ)− 1,

q(ζ) =
1
2

[
w0(ζ) + 4

∫ 1

0
∆0(θζ)dθw1(ζ)ζ +

∫ 1

0
∆
(

θ

2
(
1 + g1(ζ)

)
ζ

)
dθ
(

1 + g1(ζ)
)

ζ + w0

(
g1(ζ)ζ

)]
,

and

hq(ζ) = q(ζ)− 1.

We have that h1(0) = hq(0) = −1 < 0 and h1(ζ) → +∞, hq(ζ) → +∞ as ζ → r−0 . By adopting
the intermediate value theorem, we can say that both function h1 and hq have zeros in (0, r0). Call as r1

and rq the smallest such zeros in (0, r0) of the functions h1 and hq, respectively. Further, we represent
functions g2 and h2 on [0, r0) as follows:

g2(ζ) =

1 +
2
∫ 1

0 ∆
(

θg1(ζ)ζ
)

dθ

1− q(ζ)

 g1(ζ),

and

h2(ζ) = g2(ζ)− 1.

We have again that h2(0) = −1 < 0 and h2(ζ)→ +∞ as ζ → r−q . Let us call r2 to be minimal zero
of h2 in (0, rq). Finally, we describe the convergence radius r in the following way:

r = min{r1, r2}. (6)

Then, we have that for each ζ ∈ [0, r)

0 ≤ p(ζ) < 1, (7)
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0 ≤ w0(ζ) < 1, (8)

0 ≤ g1(ζ) < 1, (9)

0 ≤ q(ζ) < 1, (10)

and
0 ≤ g2(ζ) < 1. (11)

The U(λ, ρ) and Ū(λ, ρ) are two open and closed balls, respectively in T1 centered at λ ∈ T1.
Both have the radius ρ > 0.

The local convergence analysis of solver (2) is based on conditions (A):

(A1) Γ : K ⊆ T1 → T2 is a Fréchet-differentiable operator.
(A2) ∆0, ∆, w0, w, w1 : [0, ∞)→ [0, ∞) with w0(0) = w(0) = 0 are non-decreasing continuous functions.
(A3) There exists a zero α ∈ K of Γ such that for every µ ∈ K

Γ(α) = 0, Γ′(α)−1 ∈ L(T2, T1) (12)

and ∥∥∥Γ′(α)−1
(

Γ′(µ)− Γ′(α)
)∥∥∥ ≤ w0(‖µ− α‖). (13)

Set K0 := K∩U(α, r0).
(A4) ∥∥∥Γ′(α)−1(Γ′(µ)− Γ′(ν)

)∥∥∥ ≤ w(‖µ− ν‖), (14)

‖Γ′(µ)‖ ≤ ∆0(‖µ− α‖), (15)∥∥∥Γ′(α)−1Γ′(µ)
∥∥∥ ≤ ∆(‖µ− α‖), (16)∥∥∥Γ′(α)−1Q(µ, ν)

∥∥∥ ≤ w1(‖µ− α‖), for every µ, ν ∈ K0, (17)

and
Ū(α, r) ⊆ K, (18)

where Q(µ, ν) : K×K→ L(T1, T2).
Then, we present the main local convergence result.

Theorem 1. Under the conditions (A) sequence {µτ} obtained for µ0 ∈ U(α, r)− {α} by solver (2) exists,
remains in U(α, r) for all τ = 0, 1, 2, . . . and converges to α, so that

‖ντ − α‖ ≤ g1

(
‖µτ − α‖

)
‖µτ − α‖ ≤ ‖µτ − α‖ < r (19)

and
‖λτ − α‖ ≤ g2

(
‖µτ − α‖

)
‖µτ − α‖ ≤ ‖µτ − α‖. (20)

Furthermore, if ∫ 1

0
w0(θR)dθ < 1, for R ≥ r, (21)

then α is the unique root of Γ(µ) = 0 in K1 := K∩ Ū(α, R).

Proof. We select the mathematical induction to show expressions (19)–(21) are well defined in U(α, r).
Further, they converge to required zero α. Adopting hypothesis µ0 ∈ U(α, r)− {α}, (5)–(7) and (13),
we obtain ∥∥∥Γ′(α)−1

(
Γ′(µ0)− Γ′(α)

)∥∥∥ ≤ w0(‖µ0 − α‖) < w0(r) < 1. (22)
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From the expression (22) and the Banach Lemma on inverse operators [1,2] that ∆′(x0)
−1 ∈

L(T2, T1), ν0, λ0 are well defined and∥∥∥Γ′(µ0)
−1Γ′(α)

∥∥∥ ≤ 1
1− w0(‖µ0 − α‖) . (23)

To show that ν0 exists, it suffices to show that A−1
0 ∈ L(T2, T1). Using (5), (6), (8), (13) and (15),

we get in turn that∥∥∥Γ′(µ)−1
(

A0 − Γ′(α)
)∥∥∥ ≤ ∥∥∥Γ′(α)−1

(
Γ′(µ0)− Γ′(α)

)∥∥∥+ ‖Γ(µ0)‖
∥∥∥Γ′(α)−1Q(µ0)

∥∥∥
≤ w(‖µ0 − α‖) +

∫ 1

0
∆0

(
θ‖µ0 − α‖

)
dθw1(‖µ0 − α‖)‖µ0 − α‖

= p(‖µ0 − α‖) < p(r) < 1,

(24)

so A−1
0 ∈ L(T2, T1) is well defined and∥∥∥A−1

0 Γ′(α)
∥∥∥ ≤ 1

1− p(‖µ0 − α‖) . (25)

By the definition of A0 and the first substep of (2), we can write

ν0 − α = µ0 − α− Γ′0(µ0)
−1Γ(µ0) +

(
Γ′0(µ0)

−1 − A−1
0

)
Γ(µ0)

= Γ′0(µ0)
−1Γ′(α)

∫ 1

0
Γ′(α)−1

(
Γ′
(
α + θ(µ0 − α)

)
− Γ′(µ0)

)
(µ0 − α)dθ

+ Γ′(µ0)
−1Γ′(α)Γ′(α)−1

(
A0 − Γ′(µ0)

)
A−1

0 Γ′(α)Γ′(α)−1Γ(µ0).

(26)

We also have by (16)

Γ(µ0) = Γ(µ0)− Γ(α) =
∫ 1

0
Γ′
(

α + θ(µ0 − α)
)

dθ(µ0 − α),

so∥∥∥Γ′(α)−1Γ(µ0)
∥∥∥ =

∥∥∥ ∫ 1

0
Γ′(α)−1Γ′

(
α + θ(µ0 − α)

)
dθ(µ0 − α)

∥∥∥ ≤ ∫ 1

0
∆
(

θ‖µ0 − α‖
)

dθ‖µ0 − α‖.

(27)

In view of (2), (5), (6), (9), (14), (15), (22) and (24), we obtain

‖ν0 − α‖ ≤
∥∥∥Γ′(µ0)

−1Γ′(α)
∥∥∥ ∥∥∥∥∫ 1

0
Γ′(α)−1(Γ′(α + θ(µ0 − α))− Γ′(µ0))(µ0 − α)dθ

∥∥∥∥
+
∥∥∥Γ′(µ0)

−1Γ′(α)
∥∥∥∥∥∥Γ′(µ0)

−1
(

A0 − Γ′(µ0)
)∥∥∥∥∥∥A−1

0 Γ′(α)
∥∥∥∥∥∥Γ′(α)−1Γ(µ0)

∥∥∥
≤

∫ 1
0 w
(
(1− θ)‖µ0 − α‖

)
dθ‖µ0 − α‖

1− w0(‖µ0 − α‖)

+

∫ 1
0 ∆0

(
θ‖µ0 − α‖

)
dθ
∫ 1

0 ∆
(

θ‖µ0 − α‖
)

dθw1

(
‖µ0 − α‖

)
‖µ0 − α‖2

(1− w0(‖µ0 − α‖))(1− p(‖µ0 − α‖))
= g1(‖µ0 − α‖)‖µ0 − α‖ ≤ ‖µ0 − α‖ < r,

(28)

which illustrates (22) for τ = 0 and ν0 ∈ U(α, r).
Next, we have to prove that B−1

0 ∈ L(T2, T1). By (5), (6), (10), (13), (15), (16) and (28), we get
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∥∥∥(2Γ′(α)
)−1

(B0 − 2Γ′(α))
∥∥∥ ≤ 1

2

[∥∥∥Γ′(α)−1
(

Γ′(µ0)− Γ′(α)
)∥∥∥+ 4

∥∥∥Γ′(α)−1Q(µ0)
∥∥∥‖Γ(µ0)‖

+ 2
∥∥∥∥Γ′(α)−1Γ′

(
µ0 + ν0

2

)∥∥∥∥+ ∥∥∥Γ′(α)−1
(

Γ′(ν0)− Γ′(α)
)∥∥∥]

≤ 1
2

[
w0(‖µ0 − α‖) + 4

∫ 1

0
∆0(θ‖µ0 − α‖)dθw1(‖µ0 − α‖)‖µ0 − α‖

+
∫ 1

0
∆
(

θ

2
(‖µ0 − α‖+ ‖ν0 − α‖)

)
dθ
(
‖µ0 − α‖+ ‖ν0 − α‖

)
+ w0(‖µ0 − α‖)

]
≤ q(‖µ0 − α‖) < q(r) < 1.

(29)

Hence, B−1
0 ∈ L(T2, T1) is valid by solver (2), and

‖B−1
0 Γ′(α)‖ ≤ 1

2(1− q(‖µ0 − α‖)) . (30)

Then, by the last sub step of solver (2), (5), (6), (11), (15), (28) and (30), we have in turn that

‖µ1 − α‖ ≤ ‖ν0 − α‖+ 4
∥∥∥B−1

0 Γ′(α)
∥∥∥∥∥∥Γ′(α)−1Γ(ν0)

∥∥∥
≤ g1(‖µ0 − α‖)‖µ0 − α‖+

2
∫ 1

0 ∆
(

θ‖ν0 − α‖
)

dθg1(‖µ0 − α‖)‖µ0 − α‖
1− q(‖µ0 − α‖)

= g2(‖µ0 − α‖)‖µ0 − α‖ ≤ ‖µ0 − α‖ < r,

(31)

which illustrates (20) for τ = 0 and λ0 ∈ U(α, r). By restoring µ0, ν0, µ1 by µσ, νσ, µσ+1 in the
succeeding estimates, we attain (19) and (20). Then, in view of the estimates

‖µσ+1 − α‖ ≤ c‖µσ − α‖ < r, c = g2(‖µ0 − α‖) ∈ [0, 1), (32)

that attain lim
σ→∞

µσ = α and µσ+1 ∈ U(α, r). Finally, the uniqueness of solution is required. Therefore,

we assume that ν∗ ∈ D1 with Γ(ν∗) = 0 and Q =
∫ 1

0 Γ′(α + θ(α− ν∗))dθ.
By adopting (9) and (16), we yield∥∥∥Γ′(α)−1

(
Q− Γ′(α)

)∥∥∥ ≤ ‖ ∫ 1
0 w0

(
θ‖ν∗ − α‖

)
dθ

≤
∫ 1

0 w0(θR)dθ < 1.
(33)

So, Q is invertible in view of

0 = Γ(α)− Γ(ν∗) = Q(α− ν∗), (34)

that yields α = ν∗.

Remark 1. (a) It is straightforward from the expression of (14) that we can drop the hypothesis (16) and restore as

∆(ζ) = 1 + w0(ζ) or ∆(ζ) = 1 + w0(r0), (35)

since, ∥∥∥Γ′(α)−1
[(

Γ′(µ)− Γ′(α)
)
+ Γ′(α)

]∥∥∥ ≤ 1 +
∥∥∥Γ′(α)−1

(
Γ′(µ)− Γ′(α)

)∥∥∥
≤ 1 + w0(‖µ− α‖)
= 1 + w0(ζ) for ‖µ− α‖ ≤ r0.

(36)

(b) We can choose
r0 = w−1

0 (1), (37)
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instead of (5) provided the function w0 is strictly increasing.
(c) If w0, w, ∆ are constants functions, then we have

r1 =
2

2w0 + w
(38)

and
r ≤ r1. (39)

The r1 stands for the radius of the following Newton’s solver

µτ+1 = µτ − Γ′(µτ)
−1Γ(µτ). (40)

Rheindoldt [22] and Traub [5] also suggested convergence radius instead of r1

rTR =
2

3w1
, (41)

and by Argyros [1,2]

rA =
2

2w0 + w1
, (42)

where w1 is a Lipschitz parameter for (10) on K. Hence, we have

w ≤ w1, w0 ≤ w1, (43)

so
rTR ≤ rA ≤ r1 (44)

and
rTR
rA
→ 1

3
as

w0

w
→ 0. (45)

The convergence radius q suggested by Dennis and Schabel [1] is smaller than the radius rDS

q < rSD =
1

2w1
< rTR. (46)

However, q can not be calculated by the Lipschitz conditions.
(d) By adopting conditions on the ninth-order derivative of operator Γ, the order of convergence of solver (2)

was provided by Shah et al. [20]. But, we assume hypotheses only on first-order derivative of operator Γ.
For obtaining the computational order of convergence (COC), we adopted expressions (3) and (4).

(e) Assume [1,2] satisfying the autonomous differential equation

Γ′(µ) = P
(

Γ(µ)
)

(47)

where P is a given and continuous operator. Then, Γ′(α) = P
(

Γ(α)
)
= P(0), our results apply. But,

without knowledge of α and choose Γ(µ) = eµ − 1. Hence, we select P(µ) = µ + 1.

3. Numerical Experimentation

Here, we illustrate the theoretical consequences suggested in Section 2. Next, we choose Q = I in
the first four examples.

Example 1. Let T1 = T2 = H and H = C[0, 1]. We study the mixed Hammerstein-like equation [6,23],
defined by
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µ(s) = 1 +
∫ 1

0
G(s, ζ)

(
µ(ζ)

3
2 +

µ(ζ)2

2

)
dζ (48)

where

Γ(s, ζ) =

{
(1− s)ζ, ζ ≤ s,

s(1− ζ), s ≤ ζ,
(49)

defined in [0, 1]× [0, 1]. The solution α(s) = 0 is the same as zero of (1), where Γ : H → H, given as:

Γ(µ)(s) = µ(s)−
∫ ζ

0
G(s, ζ)

(
µ(ζ)

3
2 +

µ(ζ)2

2

)
dζ. (50)

But ∥∥∥∥∫ ζ

0
G(s, ζ)dζ

∥∥∥∥ ≤ 1
8

. (51)

Then, we have that

Γ′(µ)ν(s) = ν(s)−
∫ ζ

0
G(s, ζ)

(
3
2

µ(ζ)
1
2 + µ(ζ)

)
dζ,

and since Γ′(α(s)) = I, ∥∥∥Γ′(α)−1(Γ′(µ)− Γ′(ν)
)∥∥∥ ≤ 1

8

[
3
2
‖µ− ν‖

1
2 + ‖µ− ν‖

]
. (52)

Therefore, we can choose

w0(ζ) = w(ζ) =
1
8

[
3
2

ζ
1
2 + ζ

]
.

Hence, by Remark 2.2(a), we can set

∆0(ζ) = ∆(ζ) = 1 + w0(ζ) and w1(ζ) = 1.

But, theorems in [20] can not be utilized to solve this problem because Γ′ is not Lipschitz. Notice though
that our theorems can be utilized. We have the following radii for Example 1:

r1 = 0.321768, rq = 0.284919, r2 = 0.119079,

so
r = 0.119079.

Example 2. Consider, setting T1 = T2 = R3 and Ω = Ω(0, 1). Then, for w = (µ, ν, λ)T define a function
Γ : Ω→ R3 as follows:

Γ(w) =

(
eµ − 1,

e− 1
2

ν2 + ν, λ

)T
. (53)

Then, we obtain

Γ′(w) =

eµ 0 0
0 (e− 1)ν + 1 0
0 0 1

 .

Hence, for µ = (0, 0, 0)T we can choose w0(ζ) = (e − 1)ζ, w(ζ) = e
1

e−1 ζ, ∆0(ζ) = ∆(ζ) = e
1

e−1 ,
and w1(ζ) = 1. By adopting these functions and parameters, we obtain the following radii for Example 2:

r1 = 0.121854, rq = 0.134127, r2 = 0.0370321,
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so
r = 0.0370321.

Example 3. Let us choose that T1 = T2 = H, facilitated by the max norm. In addition, we consider
B(x) = Γ′′(µ) and K = Ū(0, 1) for every µ ∈ K. Choose a function Γ on K

Γ(ϕ)(µ) = φ(µ)− 5
∫ 1

0
µθϕ(θ)3dθ, (54)

which yields

Γ′(ϕ(ξ))(µ) = ξ(µ)− 15
∫ 1

0
µθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω. (55)

Then, we have that w0(ζ) = 7.5ζ, w(ζ) = 15ζ and ∆0(ζ) = ∆(ζ) = 2, and w1(ζ) = 1. We have the
following radii for Example 3:

r1 = 0.0453881, rq = 0.0587713, r2 = 0.0133343,

so
r = 0.0133343.

Example 4. By the academic problem that we considered in the introduction. We can choose w0(ζ) = w(ζ) =

96.662907ζ and ∆0(ζ) = 6, ∆(ζ) = 2, and w1(ζ) =
1
3 . By adopting these functions and parameters, we yield

the following radii, for Example 4:

r1 = 0.00641476, rq = 0.00741294, r2 = 0.00247724,

so
r = 0.00247724.

4. Concluding Assertions

We first generalized solver (2) from functions on the real line to Banach space valued operators.
Then, we presented a local convergence analysis in this setting and by using generalized-continuity
conditions. Our analysis uses only the first derivative appearing in the solver. In the special case of
the real line, derivatives up to the order seven were used. Notice that these high order derivatives do
not appear in the solver (2) and also limit the applicability of the solver, as we saw in the introduction.
Hence, the applicability of solver (2) has been significantly extended. Numerical examples and
applications complete the paper.
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