

Symmetry 2020, 12, 7; doi:10.3390/sym12010007 www.mdpi.com/journal/symmetry

Article

Effects of Machine Learning Approach in Flow-Based
Anomaly Detection on Software-Defined
Networking †
Samrat Kumar Dey 1,* and Md. Mahbubur Rahman 2

1 Department of Computer Science and Engineering, Dhaka International University (DIU), Dhaka-1205,
Bangladesh

2 Department of Computer Science and Engineering, Military Institute of Science and Technology (MIST),
Dhaka-1216, Bangladesh; mahbubucse@yahoo.com

* Correspondence: sopnil.samrat@gmail.com; Tel.: +88-01823-26-79937
† This paper is an extended version of our paper published in 2018 IEEE 4th International Conference on

Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh,
13–15 September 2018; pp. 416–421.

Received: 9 November 2019; Accepted: 10 December 2019; Published: 18 December 2019

Abstract: Recent advancements in software-defined networking (SDN) make it possible to
overcome the management challenges of traditional networks by logically centralizing the control
plane and decoupling it from the forwarding plane. Through a symmetric and centralized
controller, SDN can prevent security breaches, but it can also bring in new threats and
vulnerabilities. The central controller can be a single point of failure. Hence, flow-based anomaly
detection system in OpenFlow Controller can secure SDN to a great extent. In this research, we
investigated two different approaches of flow-based intrusion detection system in OpenFlow
Controller. The first of which is based on machine-learning algorithm where NSL-KDD dataset with
feature selection ensures the accuracy of 82% with random forest classifier using the gain ratio
feature selection evaluator. In the later phase, the second approach is combined with a deep neural
network (DNN)-based intrusion detection system based on gated recurrent unit-long short-term
memory (GRU-LSTM) where we used a suitable ANOVA F-Test and recursive feature elimination
selection method to boost classifier output and achieve an accuracy of 88%. Substantial experiments
with comparative analysis clearly show that, deep learning would be a better choice for intrusion
detection in OpenFlow Controller.

Keywords: software-defined networking; random forest; gain ratio; GRU-LSTM; ANOVA F-test;
OpenFlow Controller; machine learning

1. Introduction

Current Internet protocol (IP) networks are increasingly more multifaceted and harder to
manage, and this is a tendency that it is going to be more accused with new emerging paradigms of
services such as virtualized cloud computing, big data applications, data center services or
multimedia content delivery. With the aim of reversing this situation, a symmetric, dynamic, and
accessible network architecture, namely software-defined networking (SDN) [1] paradigm, was
proposed as a solution to build a more flexible network infrastructure with programmable devices,
where new protocols and policies can be implemented via software without needing any hardware
modification. The SDN paradigm proposes to separate the control and data planes of “legacy”
networks for the sake of flexibility. In this way, the data plane is located in the SDN-enabled
forwarding devices (i.e., SDN switches), while the control plane is logically centralized in new entities
called SDN controllers. Thus, the different planes in SDN create different layers of abstraction and,

Symmetry 2020, 12, 7 2 of 22

thereby, provide an unprecedented level of flexibility. The design of the SDN paradigm enables the
performance of a fine-grained management of the network, taking advantage of decision-making
from the global perspective of the network in the controller. However, to be successful in current
dynamic environments, traffic monitoring becomes a cornerstone in SDN given that management
applications often need to make use of accurate and timely traffic measurements. Forwarding
components like switches, routers, etc., are elements of the data plane and the controller is the only
element of the control plane. Decoupling of the network control and forwarding functions, and direct
programmability of the network give network managers enough control over the network.
Separation of the routing and forwarding activities of networking components (e.g., switches,
routers, etc.) from the data plane, makes the administration and management of the network
straightforward because the control plane now only has to handle logical network topology-related
information, traffic routing, and so forth while the data plane only needs to manage the network
traffic using the configuration provided by the control unit. The SDN paradigm was the outcome of
some works of the research world that suggested the necessity of building programmable networks
as a practical way to experiment with new protocols in production networks. From its inception, it
has gained lots of attention from academia and industry. It is supported by giants of the Internet
world like Google, Cisco, HP, Juniper or NEC and by standardization organizations like the Open
Network Foundation (ONF) or the Internet Engineering Task Force (IETF), so one can state that this
network paradigm has a lot of potential to succeed. The proposal of the OpenFlow protocol [2] in
2008 was its major driver. In that text, they talk about the commonly held belief that the network
infrastructure was “ossified”. Thus, they proposed OpenFlow as a protocol for the communication
between the forwarding and control planes in order to decouple logically and physically these two
planes. OpenFlow [3] allows to dynamically define the forwarding state of the network from the SDN
controller by installing in the switches sets of flow entries. These flow entries are stored in flow tables
in the switches and determine their behavior. Moreover, the significant contribution of SDN has
already been demonstrated by some of the well-established tech giants like Google B4 [4] and Huawei
carrier network [5]. Some other examples of SDN controller software that open source communities
are currently using include NOX [6], Ryu [7], Beacon [8], Open Daylight [9], and Floodlight [10].
Apart from its advancements in usability, SDN is also associated with various security matters
regarding data control and application interface [11]. As security is the key concern for any new
paradigm, a collaborative work between academia and industry is significantly imperative in this
regard. However, the primary concern of resolving malicious attacks by detecting attack processes
rapidly from the network is by using network intrusion detection systems (NIDS). They protect a
network from being affected by malicious data. Network intrusion detection systems (NIDS) are
developed to detect malicious activities including distributed denial-of-service (DDoS) attacks, virus,
worm, and anomaly patterns [12]. A common approach for intrusion detection is detecting anomalies
in network traffic, however, network threats are evolving at an unprecedented rate. There are several
success factors like anomaly detection speed, accuracy, robustness, and reliability that are considered
as the prime success issues for NIDS. Generally, two categories (signature and anomaly-based) of the
intrusion detection approach are normally used to protect any network from malicious content.
Signature-based detection is the way to detect packets that have a signature in the network traffic
corresponding to the rules established in the IDS. Therefore, detecting new and unknown intrusion
is not feasible in this type of intrusion detection system. In anomaly-based detection, it will not find
attacks using one-to-one correspondence, like signature-based detection; this detection uses the
tendency of the attack traffic to determine whether an attack has occurred or not.

Subsequently, new and unidentified intrusion can be identified successfully in the anomaly-
based approach. When the anomaly-based intrusion detection system is integrated with flow-based
traffic monitoring, which it normally is, it only needs to inspect packet headers. A direct implication
is that the flow-based intrusion detection system needs to deal with moderate amount of data.
Nowadays in many areas of computer science (CS) and information technology (IT) such as, object
detection, natural language processing (NLP), image processing (IP), speech recognition (SR), face
detection (FD), machine learning (ML), and deep learning (DL) are being used effectively. Several

Symmetry 2020, 12, 7 3 of 22

intrusion detection methods leveraging machine learning and deep learning are also achieving
success gradually. In order to improve detection accuracy and minimize the low false alarm rate,
machine learning (ML) techniques are employed to develop NIDS. Due to its advance features other
than machine learning, nowadays the deep learning (DL) approach has also been used extensively in
the tracks of anomaly detection [12]. This paper will explore the effects of a flow-based anomaly
detection system using both Machine learning and deep learning approach in software-defined
networking because of the nature of flow-based traffic analysis of software-defined networking
(SDN).

We examined the benchmark NSL-KDD dataset for predicting likely attacks types including DoS
(denial-of-service) attacks, probe (probing attack), R2L (root to local) attacks, and U2R (user to root)
attack. Some of the most efficient classification models including random forest, projective adaptive
resonance theory (PART), J48, naïve Bayes (NB), radial basis function network (RBFN), decision tree
(DT), and Bayesian network (BN) were applied in our machine learning-based experiment. Apart
from this, we also developed a deep neural network model of gated recurrent unit-long short-term
memory (GRU-LSTM) for the same dataset to compare the detection accuracy. However, in both
cases, for the performance improvement of the classifier, appropriate feature selection methods and
pre-processing techniques were employed to ensure the elimination of redundant and irrelevant data
from the dataset. Moreover, we designed our methodology in such a way so that we could overcome
the shortcomings of the existing solution to this major problem. Several factors influence the detection
accuracy of SDN-based intrusion detection systems including appropriate feature selection of
dataset, amount of data in dataset, proper choice of ML model, training time, cross validation,
learning rate, and so on. Most of the research in literature lacks the detection of all categories of
attacks (DoS, Probe, R2L, U2R) in SDN. On the other hand, these existing works have some major
shortcomings as they evaluated their performance of the model for a specific ML technique for a
specific attack category. However, we have employed both the machine learning and deep learning
approach for all sort of attack categories to build a network intrusion detection system and evaluate
their performance with the support of the NSL-KDD dataset in order to measure the comparative
strengths and weaknesses of both approaches.

The remainder of this paper is organized as follows: Section 2 briefly discusses some of the
relevant work as well as a little background to each of these methods. Section 3 provides an overview
of the methodology of our research article. We also review both approaches of ML and DL based
NIDS implementation model. Furthermore, experimental results and research challenges associated
with applying ML/DL to SDN-based NIDS are discussed. Finally, in Section 5 we conclude the paper
with future works.

2. Background and Related Work

This section focuses on highlighting the related work for network intrusion detection in SDN
with deep learning and machine learning algorithms. In recent years, flow-based anomaly detection
classifications have been extensively investigated. Flow-based anomaly detection system, using a
multi-layer perceptron (MLP) neural network with one hidden layer and gravitational search
algorithm (GSA) proposed in [13], can classify benign and malicious flows with a high degree of
accuracy. In [14], the authors introduced a novel concept for an inductive NIDS that uses a one-class
support vector machine (SVM) for analysis and is trained with malicious network data in contrast to
other systems which give a low false alarm rate. However, the number of traffic anomaly detection
algorithms was proposed by authors in [15] by using NOX and OF compliant switches. These
algorithms are more successful in detecting anomalies in a small office network but not in an ISP. A
lightweight method for DDoS attack detection based on traffic flow features is presented in [16], in
which such information is extracted with a very low overhead by taking advantage of a
programmatic interface provided by the NOX platform. This method produces a high rate of
detection obtained by flow analysis using self-organizing maps (SOM). Kokila et al. [17] analyzed the
SVM classifier for DDoS detection and their experiments showed that the SVM classifier gives less
false positive rates and high classification accuracy as compared to other techniques. In another

Symmetry 2020, 12, 7 4 of 22

research, Trung et al. [18] proposed an optimized protection mechanism (OpenFlowSIA) that uses
SVM classifier along with the authors’ proposed idle—timeout adjustment (IA) algorithm to secure
and save the network resources under flooding attacks in SDN. A lightweight solution proposed by
authors in [19] can detect DDoS attacks within the first 250 malicious traffic packets using the entropy
variation of the destination IP address. A DL model based on stacked autoencoder (SAE) developed
by Niyaz et al. [20] can detect DDoS multi-vector attacks in SDN. In 2016, Tang et al. [21] applied a
deep learning approach to the detection of flow-based anomalies in an SDN environment and
developed a deep neural network (DNN) model for an intrusion detection system and trained the
model with the NSL-KDD dataset. However, they used only six basic features of the NSL-KDD
dataset and surprisingly no appropriate feature selection method was employed. In the later phase
Tang et al. [22] presented a gated recurrent unit recurrent neural network (GRU-RNN) which enabled
the intrusion detection model and achieved a high degree of accuracy from his previous work; yet
still the number of features used was limited to only six. Another approach of developing software-
defined network (SDN) controller rules during a DDoS attack was presented by Sen et al. [23]. The
authors developed a virtual network testbed based on the SDN environment to implement a DDoS
attack and detect that attack leveraging the machine learning model. In addition, they also prepared
a network traffic dataset based on SDN to build and test their model of machine learning. A two-level
machine-learning intrusion detection system in SDN was proposed by Vetriselvi et al. [24]. They built
an IDS by merging the principal of machine learning and genetic algorithms and dividing it into two
phases: the former to detect attacks and the latter to categorize them. A detailed study of various
approaches based on classical ML techniques that were normally used in detecting attacks in SDN
was provided by Elsayed et al. [25]. They performed their benchmarking experiments on the NSL-
KDD dataset and explained the consequence of using traditional machine-learning based methods.

However, in very recent times two different approaches of the feature selection-based intrusion
detection model proposed by Dey in [26,27] were employed using both deep learning and machine
learning approaches for finding higher accuracy in terms of intrusion detection. Apart from that, Dey
[28] also showed the performance analysis of SDN-based intrusion detection model for various
machine leaning based classifiers with different feature selection approaches.

3. Materials and Methods

In this section of the article, we will briefly discuss our research methodology. We will start with
machine learning-based classification model approach with different feature selection methods and
the evaluation procedure. Deep learning-based model development will also be discussed in this
section in order to capture a translucent comparative idea regarding these two approaches.

3.1. Proposed Classification Model of Machine Learning

Here, we represent our designed machine learning (ML)-based model. A two-layer-based hybrid
classification architecture is shown in Figure. 1. The top layer, based on certain influential selection
methods of features, removes unrelated and inconsistent features and provides the selected features
to the next layer. The next layer then uses some fruitful and mostly symmetrical machine learning
algorithms to categorize the abridged dataset. Then, the model is further trained and tested using a
10-fold technique of cross-validation. Furthermore, we used various accurate measures to evaluate
model performance.

Symmetry 2020, 12, 7 5 of 22

Figure 1. Machine learning based multi-layer classification model [27]. Abbreviations: NSL-KDD;
PART: projective adaptive resonance theory; DT: decision tree; RBFN: radial basis function network;
TP: true positive; FP: false positive; MCC: Matthews correlation coefficient; MAE: mean absolute
error. Reprint with permission [27]; 2019, IEEE.

3.2. Machine Learning Approach

According to [29] the general idea behind most of the machine learning framework is that by
training using an example set of training data, the program learns to perform a task. This training
enables the distributed computer and controller system to perform similar tasks where the system is
confronted with entirely new datasets that have not been previously encountered. Therefore,
machine learning can be used for flow-based anomaly detection system to automatically build a
predictive model based on the training dataset. To solve numerous classification and prediction
problems machine learning algorithms are used [30]. A complete flow chart of the anomaly detection
mechanism in OpenFlow controller is shown in Figure 2.

Symmetry 2020, 12, 7 6 of 22

Figure 2. Flow diagram of anomaly detection using the machine learning approach [27]. Reprint

with permission [27]; 2019, IEEE.

3.3. Overview of NSL-KDD Dataset

It is by no means straightforward to select a precise dataset to establish and evaluate a model.
Our aim was to select a small, noise-free, accurate, symmetrical, and redundancy-free set of data. In
the past, countless forms of datasets have been used for different anomaly detection systems; some
are self-made while others are accessible to the public. Among other things, KDD-99 is a publicly
accessible dataset that is most commonly used and embraced. According to the authors of [31] KDD-
99 is essentially free to download, but the entire database is massive enough to increase the cost of
intrusion detection computing intensively. In contrast, the authors of [32] show that usually only 10%
of the dataset is used. However, there is plenty of extraneous information in the training dataset to
which there are similar records in the test dataset. As a consequence, the system’s learning process is
sometimes interrupted. Nevertheless, NSL-KDD is considered a simplified version of KDD-99 that
eliminates redundancies between the training dataset and test dataset. Tavallace et al. [31] proposed
the flow-based anomaly detection NSL-KDD dataset for intrusion detection. Moreover, for their own
research projects, most researchers use the dataset of NSL-KDD. In NSL-KDD, there are 41 features
that include both standard patterns and patterns of attack. Table 1 summarizes the overall
functionality of the NSL-KDD dataset.

Table 1. Features and attributes position of NSL-KDD dataset [27]. Reprint with permission [27];
2019, IEEE.

Type Features Attributes Position
Nominal protocol type, service and flag 2, 3, 4

Numeric
duration, src bytes, st bytes, wrong fragment, urgent, hot,
num failed logins, num compromised, num root, num file

creations, num shells, num access files, num outbound

1, 5, 6, 8, 9, 10, 11, 13,
16, 17, 18, 19, 20, 23,
24, 25, 26, 27, 28, 29,

Symmetry 2020, 12, 7 7 of 22

cmds, count srv count, serror rate, srv serror rate, rerror rate,
srv rerror rate, same srv rate, diff srv rate, srv diff host rate,
dst host count, dst host srv count, dst host same srv rate, dst
host diff srv rate, dst host same src port rate, dst host srv diff

host rate, dst host serror rate, dst host srv serror rate, dst
host rerror rate and dst host srv rerror rate

30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41

Binary
land, logged in, root shell, su attempted, is host login and is

guest login
7, 12, 14, 15, 21, 22

3.4. Selection of Features for Machine Learning Approach

In the presence of redundant features and attributes in the intrusion dataset, the reliability of
anomaly detection decreases. Therefore, it can be a research task to establish methods for the correct
selection of features that can sort out dissimilar attributes. Selection of features is the process used to
pick appropriate features and delete irrelevant features from the dataset to complete a given task [33].
In addition, reducing the number of redundant, unnecessary, and noisy features will lead to an
improved design by accelerating a data-mining algorithm with an improvement in accuracy of
learning [34]. Using info gain, gain ratio, CFS subset evaluation, symmetric uncertainty, and the Chi-
squared test, we refined NSL-KDD dataset features. Table 2 displays attribute collection procedures
for different evaluators and their different search strategies.

Table 2. Feature selection with different evaluator and search method [27]. Reprint with permission
[27]; 2019, IEEE.

Evaluator Search Selected Attributes
Info Gain Ranker 5,6,3,4,33,35,34,40,41,23,30,29,12,27,28:15
Gain Ratio Ranker 28,12,41,27,4,6,5,30,29,40,3,25,26,39,34:15
CFS Subset Evaluator Best First 5,6,12,25,28,30,31,37,41:9
Symmetric Uncertainty Ranker 6,5,4,41,28,12,27,30,3,40,29,34,35,33,37:15
Chi-Squared Test Ranker 5,6,3,33,35,34,4,40,23,12,41,30,29,27,37:15

3.5. Random Forest Classifier (RF)

For supervised learning tasks, the random forest classifier is known as an ensemble machine
learning technique. Each individual tree spouts a class prediction in the random forest, and the class
with the most votes becomes the prediction of the system. Breiman initially suggested this algorithm
in which the author identified the benefits of random forest [35]. There are several advantages for
which it produces higher accuracy in model classification. Figure 3 shows how the random forest
algorithm works with the dataset. Initially, it follows four steps: firstly, it selects random samples
from a given dataset. It then creates a decision tree for each test and gets a predictive result and then
holds a vote for each predicted outcome. Ultimately, with the most votes, it picks the predictive
outcome as the final forecast.

Symmetry 2020, 12, 7 8 of 22

Figure 3. Working procedure of random forest algorithm.

3.6. Evaluation Metrics

Accuracy (AC), precision (P), recall (R), F-measure (F), false alarm rate (FAR), and Matthews
correlation coefficient (MCC) measure the performance of the intrusion detection rate taking into
account the performance metrics derived from the confusion matrix to calculate the value of these
evaluation metrics. The confusion matrix illustrates the performance of the algorithm according to
Table 3.

Table 3. Tabular form of a confusion matrix.

 Predicted as Normal Predicted as Attack

Normal Class (Actually) True Positive (TP) False Positive (FP)

Attack Class (Actually) False Negative (FN) True Negative (TN)

A good intrusion detection scheme involves a high rate of accuracy and high detection rate with
a very low false alarm rate. The false alarm rate is directly proportional to the miss classification rate.
A brief discussion and calculating formula 170 for the metrics that are used to evaluate the model are
given below:

Accuracy (AC): Shows the category proportion over all N cases that were correct.

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

Precision (P): Demonstrates the percentage of intrusion detection system in the network that
detects intrusion that is intrusion. The higher the value of P, the lower the rate of false alarm.

𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

Recall (R): Illustrates the proportion of positive examples properly classified. We are looking for
a high R value.

𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

F-measure (F): It provides an improved measure of accuracy by providing a balance between
accuracy and recall. We are looking for a high F-measure value.

𝐹𝐹 =
2

1
𝑇𝑇 + 1

𝑅𝑅

Matthews correlation coefficient (MCC): It returns a binary value of −1 to 1.

Symmetry 2020, 12, 7 9 of 22

𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

3.7. Deep Learning Approach

In this segment, we will briefly discuss our proposed network intrusion detection system for the
combined gated recurrent unit-long short-term memory (GRU-LSTM). An appropriate ANOVA F-
test and recursive feature elimination (RFE) (ANOVA F-RFE) selection method was also applied to
improve classifier performance. Moreover, in this section we will also discuss RNN, GRU, LSTM,
ANOVA F-RFE method, and the proposed algorithm for detecting attack patterns in a DL model.

3.7.1. Recurrent Neural Network (RNN)

Recurrent neural network (RNN) [36] is a type of artificial neural network which has the
capability of learning from previous time-steps. RNNs are extended forms of typical feed-forward
neural networks (FNNs) [37]. But, in contrast with FNNs, RNNs use their internal state while
processing sequential data. Using the internal state, here, refers to the fact that, the RNN takes
advantage of previous computations for output. As they carry out the same task for each element in
the sequence, they are called recurrent. The structure of a simple RNN is depicted in Figure 3.

Figure 3. Structure of a plain recurrent neural network (RNN) [26]. Reprint with permission [26];
2019, IEEE.

In the above figure, xt is input and ot is output; st is considered as hidden state; f indicates
nonlinear function, such as tanh or ReLU; st is calculated using the previous hidden state and the input
at the current step: st = f(Uxt + Wst−1). To calculate the initial hidden state, s−1, is required which is
initialized 185 to zero by default. Hidden sates of RNN are computed as:

𝑆𝑆𝑡𝑡 = 𝑓𝑓�𝑈𝑈𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑆𝑆𝑡𝑡−1�,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 𝑇𝑇, … ,1 (1)

A gradient-based algorithm, namely backpropagation through time (BPTT), is generally applied
for training the RNN. RNN training is considerably faster using BPTT algorithm than other existing
optimization techniques. However, the RNN model with backpropagation has a significant
drawback, called the vanishing gradient problem. It happens when the gradient is so small that it
seems vanished. Consequently, it prevents the value of weight from changing, and in some cases,
stops further training. According to [38], the vanishing gradient problem prevents the RNN from
being accurate. To solve these problems, more powerful combined models like long short-term
memory (LSTM) [39] and gated recurrent units (GRUs) [40] were suggested.

3.7.2. Long Short-Term Memory (LSTM) RNN

Symmetry 2020, 12, 7 10 of 22

A deep neural network was developed in time and an FNN was built for each time-step. Then,
weights and biases for each hidden layer were updated by the gradient rule. These updates minimize
the loss between the expected and actual outputs. But, when the time-steps are more than 5–10,
standard RNNs do not perform better. Weights fluctuate due to the prolonged back-propagation
vanishing or blowing up error signals, making the network performance poor. Accordingly,
researchers suggested the long short-term memory (LSTM) network to address this fading gradient
problem. LSTM bridges the time gaps and uses a gating mechanism to deal with long-term
dependencies. Figure 4 shows the LSTM structure.

Figure 4. Simple structure of a long short-term memory (LSTM) unit [26]. Reprint with permission

[26]; 2019, IEEE.

3.7.3. Gated Recurrent Unit (GRU)

A gated recurrent unit (GRU) is an LSTM’s lighter version. The reduced complexity in a GRU’s
structure is achieved by decreasing the architectural gates. GRU uses both the update gate and the
reset gate to solve the vanishing gradient problem of a regular RNN. In essence, these are two vectors
that determine what information should be passed on to the output. Since a GRU’s training phase is
smoother and faster than LSTM, we chose GRU to develop our model [41]. Both the “forget gate” and
“input gate” in an LSTM are merged into an “update gate” in GRU and the hidden state and cell state
are combined, resulting in a simpler structure as shown in Figure 5.

Figure 5. Single layer gated recurrent unit (GRU) [26]. Reprint with permission [26]; 2019, IEEE.

The following relationship can be obtained from Figure 5.
Update gate 𝑧𝑧𝑡𝑡 = 𝜎𝜎�𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑧𝑧)ℎ𝑡𝑡−1� (2)

Candidate activation ℎ𝑡𝑡� = tanh(𝑊𝑊𝑥𝑥𝑡𝑡 + 𝑓𝑓𝑡𝑡 ⊙ 𝑈𝑈ℎ𝑡𝑡−1) (3)

Reset gate 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡 + 𝑈𝑈(𝑟𝑟)ℎ𝑡𝑡−1 (4)

Symmetry 2020, 12, 7 11 of 22

Activation function ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ⊙ ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡′ (5)

3.7.4. Multi-Layer GRU RNN

The performance of the algorithm depends heavily on the numerous deep neural network
architectures. A deep structure called multi-layer RNN is designed stacking various RNN layers
(plain RNN, LSTM, GRU). In each hidden layer, an RNN that uses GRU cells is called GRU-RNN. In
addition to back-propagation through time, in the multilayer structure, network input is passed
through multiple GRU layers. In [42], multilayered RNNs have been shown to learn from the various
time lengths of input sequences. Multi-layered RNNs share the hyper parameters, weights, and
biases across the layers to achieve optimized efficiency.

3.7.5. Overview of Scikit-Learn

During experiment, we used scikit-learn which is a python-based machine learning library for
data mining and data analysis [43]. Most machine learning algorithm data must be stored in either a
two-dimensional (2D) array or matrix form. Such 2D form data can be effectively processed in scikit-
learn. Figure 6 shows the representation of the scikit-learn data, where N samples and D features are
present.

Figure 6. Data representation in scikit-learn.

3.7.6. Appropriate Feature Selection for Deep Learning Approach

Feature selection mechanism is a required process to get rid of the irrelevant and extraneous
data from the dataset. According to [43], feature selection is a process of deriving a subset of relevant
features from the complete feature set without decaying presentation. An intrusion dataset
containing superfluous attributes often prevents detection from being accurate. Numerous reasons
were analyzed to show why restricting the features is obligatory. Irrelevant features increase
computation time without contributing to classifier improvement and sometimes incorrectly indicate
correlation between feature and desired class. In our experiment, we have used a univariate feature
selection with analysis of variance (ANOVA) F-test. ANOVA is used to determine whether the means
of some groups are different using the F-test which statistically checks the equality of means. Each
feature is individually analyzed which calculates the strength of feature–labels relationship. The
percentile of the highest scores-based feature selection is performed by the SelectPercentile method
(sklearn.feature selection). Upon finding a subset, recursive feature elimination (RFE) is applied. RFE
also builds a model where features are left aside, and it repeats the process until all features are
eliminated in the dataset. By using the weight of a classifier, feature ranking is developed. After
applying both ANOVA F-test and RFE, the selected features are shown in Table 4. The attack groups
in the NSL-KDD dataset are divided into four types, namely DoS, Probe, R2L, and U2R, according to
Table 4.

Symmetry 2020, 12, 7 12 of 22

• DoS: Denial-of-service is considered a major category of attack which reduces the capacity of the
victim, thereby rendering it unable to handle valid requests. Syn flooding is an example of a DoS
attack.

• Probing: In this process, attackers gain information about the remote victim by surveillance and
other probing attacks like port scanning.

• U2R: Unauthorized access to local super user (root) privileges is a type of attack by which an
attacker logs into a victim system using a standard account and tries to obtain root/admin
privileges by exploiting some vulnerability in the victim.

• R2L: Unauthorized access from a remote machine, the attacker enters a remote machine and
gains the local access of the victim’s machine. For example, the guessing of the password.

Table 4. Selected features after applying analysis of variance (ANOVA) F-test and recursive feature
elimination (RFE) [26]. Reprint with permission [26]; 2019, IEEE.

Attack
Category

Selected Features

Denial-of-
Service
(DoS)

(1, ’flag SF’), (2, ’dst host serror rate’), (3, ’same srv rate’), (4, ’count’), (5, ’dst host
srv count’), (6,’dst host same srv rate’), (7, ’logged in’), (8, ’dst host count’), (9,
’serror rate’), (10, ’dst host srv serror rate’), (11,’srv serror rate’), (12, ’service

http’), (13, ’flag S0’)

Probe

(1, ’service private’), (2, ’service eco i’), (3,dst host srv count’), (4, ’dst host same
src port rate’), (5, ’dst host srv rerror rate’), (6, ’dst host diff srv rate’), (7, ’dst host
srv diff host rate’), (8, ’dst host rerror rate’), (9, ’logged in’), (10, ’srv rerror rate’),

(11,’Protocol type icmp’), (12, ’rerror rate’), (13, ’flag SF’)

Root to
Local (R2L)

(1, ’src bytes’), (2, ’hot’), (3, ’dst host same src port rate’), (4,’dst host srv count’),
(5, ’dst host srv diff host rate’), (6, ’dst bytes’), (7, ’service ftp data’), (8, ’num failed

logins’), (9, ’is guest login’), (10, ’service imap4’), (11, ’service ftp’), (12,’flag
RSTO’), (13, ’service http’)

User to Root
(U2R)

(1, ’hot’), (2, ’dst host srv count’), (3, ’dst host count’), (4,’num file creations’),
(5,’root shell’),(6,’dst host same src port rate’),(7,’dst host srv diff host rate’), (8,

’service ftp data’), (9,’service telnet’), (10, ’num shells’), (11, ’urgent’), (12,’service
http’), (13, ’srv diff host rate’)

3.8. Designed Algorithm and Proposed SDN-Based Anomaly Detection Architecture

Normally the controller unit’s OpenFlow switches are managed by the SDN controller.
Whenever required, the SDN controller is able to request all network data. Therefore, for both
machine learning and deep learning methods, we implemented our proposed section of intrusion
detection in the SDN controller, as illustrated in Figure 7. Our suggested approach for the ML-based
classification model is summarized in the following algorithm.

Algorithm 1: Machine learning-based anomaly class detector for software-defined networking
(SDN) attacks

Symmetry 2020, 12, 7 13 of 22

Figure 7. Proposed flow-based anomaly detection architecture in SDN [28]. Reprint with permission

[28]; 2019, Springer.

To request network data, a request message for OpenFlow stats will be sent to all OpenFlow
switches from the controller. An OpenFlow stats reply message with all available data is sent back to
the controller by the OpenFlow switch as a controller request for all available statistics. Figure 8
clearly describes how the OpenFlow switch handles the incoming packet and responds by using the
Open Flow protocol according to the availability of data in the flow table. One of the SDN’s noticeable
behaviors is that its centralized controller can take full network opportunities to assess and associate
network feedback. Thus, when a network anomaly is discovered and recognized, the OpenFlow
protocol can effectively alleviate an intrusion via flow table adjustment. Algorithm 2 summarizes our
suggested solution to the deep learning-based classification system.

Symmetry 2020, 12, 7 14 of 22

Figure 8. Diagram of handling incoming packets in OpenFlow switch [26]. Reprint with permission

[26]; 2019, IEEE.

Algorithm 2: Deep learning-based anomaly class detector for SDN attacks.

4. Experimental Results

4.1. Experimental Results of Machine Learning Approach

To carry out the experiments, we used the WEKA [44] environment and the NSL-KDD dataset.
The system consists of a 6 GB hard processor and an Intel(R) Core(TM) Processor(s) i5-2410 M CPU
@ 2.30 GHz, 2301 MHz, Dual Core(s) and four Logical Processor(s). WEKA’s trouble-free heap size
was increased to load and analyze the dataset. The NSL-KDD dataset was used to train and test each
of the selected 285 features. We used a 10-fold cross-validation approach in our experiment to
successfully conduct the experiment. By dividing the training set into 10 subsets, we tested each
subset when the model was trained on the other nine subsets. Each subset, however, is processed as
test data only once; the process therefore repeats up to 10 times. For simplicity, only results of the
higher accuracy classifier obtained with different method of selection of features were mentioned in
Table 5.

Table 5. Random forest classifier showing the highest accuracy with gain ratio feature selection.

Feature Selection
Method

Classifier
Techniques

Accuracy
TP

Rate
FP

Rate
Evaluation Criteria F-

Measure
MCC MAE

Precision Recall FAR
Info Gain Random Forest 79.360 0.794 0.163 0.846 0.794 0.341 0.792 0.641 0.229

CFS Subset PART 79.249 0.792 0.167 0.839 0.792 0.333 0.791 0.633 0.264

Symmetry 2020, 12, 7 15 of 22

Gain Ratio Random Forest 81.946 0.819 0.143 0.860 0.819 0.297 0.819 0.681 0.232
Symmetric
Uncertainty

Random Forest 80.708 0.807 0.153 0.853 0.807 0.317 0.806 0.661 0.221

Chi-squared Random Forest 80.132 0.801 0.157 0.850 0.801 0.328 0.800 0.653 0.222

Table 6 represents the results of an entire classifier with different feature selection method.
Different results of accuracy (AC), true positive rate (TPR), false positive rate (FPR), precision (P),
recall (R), false alarm rate (FAR), F-measure, Matthews correlation coefficient (MCC), and mean
absolute error (MAE) of specific classifiers are shown based on the test. The Table uses different color
combinations to understand the highest accuracy of specific classifier techniques with numerous
methods of features selection. In addition, only the highest results obtained from different classifiers
are shown in terms of the selection of features. The best performance accuracy for each individual
feature selection methods is indicated by each colored classifier technique. The following colored
relation of IG-RF, CFS-PART, GR-RF, SU-RF, CST-RF shows the best classifier methods in terms of
higher accuracy and lower false alarm rate. Our initial goal, however, was to achieve high accuracy,
recall, and low false alarm frequency and MCC. We accomplished that successfully in our
experiment. From the experimental data, random forest with gain ratio feature selection method
exhibits the highest accuracy of 81.946% which is illustrated from our experimental results. We
plotted the accuracy value of ML-based models in Figures 9 and 10. After analyzing these results, we
found that the info gain feature selection approach produced a higher accuracy of 79.36% with
random forest classifier whereas PART shows an accuracy of 79.249% with CFS subset evaluator.
However, the rest of the feature selection methods illustrate an accuracy value of more than 80% with
RF and PART, respectively. Among all of them, random forest with gain ratio selection method
produced the highest accuracy of nearly 82% (~81.946%).

Figure 9. Accuracy value of machine learning (ML)-based detection model for info gain, CFS subset,
and gain ratio for all classifier techniques.

Symmetry 2020, 12, 7 16 of 22

Figure 10. Accuracy value of ML-based detection model for symmetric uncertainty and Chi-squared
test for all classifier techniques.

Table 6. Results of all classifiers with different feature selection method.

Feature
Selection
Method

Classifier
Technique

s

Evaluation Criteria

Accura
cy

TP
Rate

FP
Rate

Precis
ion

Recal
l

FAR
F-

Meas
ure

MC
C

MA
E

Info Gain

J48 78.006 0.781 0.172 0.84 0.781 0.364 0.779 0.623 0.229
Random

Forest 79.360 0.794 0.163 0.846 0.794 0.341 0.792 0.641 0.229

PART 77.102 0.771 0.18 0.835 0.771 0.382 0.768 0.609 0.231
Naive
Bayes

72.068 0.721 0.227 0.789 0.721 0.442 0.715 0.514 0.279

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197
RBFN 71.965 0.72 0.228 0.787 0.72 0.441 0.714 0.511 0.299

Bayes Net 73.203 0.732 0.209 0.816 0.732 0.45 0.725 0.553 0.268

CFS
Subset

Evaluator

J48 73.984 0.740 0. 203 0.820 0.74 0.436 0.734 0.564 0.267
Random

Forest 74.84 0.784 0.197 0.823 0.748 0.42 0.743 0.575 0.345

PART 79.249 0.792 0.167 0.839 0.792 0.333 0.791 0.633 0.264
Naive
Bayes

74.702 0.747 0.829 0.829 0.747 0.43 0.741 0.58 0.253

DT 43.075 0.431 0.431 0.186 0.431 1 0.259 0 0.504
RBFN 71.127 0.711 0.222 0.817 0.711 0.505 0.7 0.533 0.323

Bayes Net 60.632 0.606 0.298 0.794 0.606 0.691 0.564 0.401 0.447

Gain Ratio

J48 81.871 0.819 0.145 0.858 0.819 0.293 0.818 0.677 0.193
Random

Forest 81.946 0.819 0.143 0.860 0.819 0.297 0.819 0.681 0.232

PART 77.905 0.779 0.179 0.835 0.779 0.362 0.777 0.616 0.231
Naive
Bayes

76.242 0.762 0.186 0.832 0.762 0.398 0.758 0.597 0.237

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197
RBFN 75.177 0.752 0.193 0.828 0.752 0.419 0.747 0.584 0.272

Bayes Net 71.517 0.715 0.221 0.812 0.715 0.483 0.705 0.532 —

Symmetri
c

Uncertaint
y

J48 78.927 0.789 0.167 0.842 0.789 0.346 0.787 0.633 0.218
Random

Forest 80.708 0.807 0.153 0.853 0.807 0.317 0.806 0.661 0.221

PART 80.371 0.804 0.157 0.848 0.804 0.318 0.803 0.653 0.221
Naive
Bayes

73.292 0.733 0.21 0.813 0.733 0.444 0.726 0.551 0.266

Symmetry 2020, 12, 7 17 of 22

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197
RBFN 73.522 0.735 0.209 0.812 0.735 0.438 0.729 0.552 0.288

Bayes Net 71.562 0.716 0.222 0.808 0.716 0.478 0.706 0.529 0.282

Chi-
square

Test

J48 78.051 0.781 0.173 0.838 0.781 0.363 0.778 0.621 0.229
Random

Forest 80.132 0.801 0.157 0.850 0.801 0.328 0.800 0.653 0.222

PART 77.989 0.78 0.173 0.84 0.78 0.367 0.777 0.622 0.218
Naive
Bayes 72.618 0.726 0.224 0.79 0.726 0.43 0.722 0.521 0.273

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197
RBFN 70.723 0.707 0.234 0.789 0.707 0.475 0.699 0.502 0.31

Bayes Net 72.409 0.724 0.215 0.812 0.724 0.463 0.716 0.541 0.275

4.2. Experimental Results of Deep Learning Approach

We used Google TensorFlow [45] to carry out the experiments. TensorFlow offers an option for
viewing the design of the network. The tests were performed with the Ubuntu 16.10 Distribution
Operating System based on Linux in an atmosphere of Intel i5 3.2 GHz, 16 GB RAM, and NVIDIA
GTX 1070. We used the tf.train.AdamOptimizer from TensorFlow. Table 7 shows the hyper
parameter configuration initialization. The learning rate is controlled by Kingma and Ba’s Adam
algorithm in tf.train.AdamOptimizer.

Table 7. Set of different hyper parameters.

(a) Hyper parameters
learning rate = 0.001
training epochs = 10
display step = 1 num

layers = 1
(b) Definition of hyper parameters for the model

learning rate = 0.001
number of classes = 2

display step = 100
input features = train X.shape [1] #No of selected features
training cycles = 1000 #No of time-steps to back propagate

time-steps = 5
hidden units = 50 #No of LSTM units in a LSTM hidden layer

The model was developed using Python programming language along with several libraries like
python based numpy, machine learning based scikit-learn, pandas for data visualization, and
TensorFlow for model development. We started our experiments with a lightweight GRU with a
hidden layer and a hidden unit. Ten sets of experiments were performed for each set of hyper
parameters (learning speed, time-steps, hidden layers) and we tuned them to get the optimal results.
Table 8 represents the results of various evaluation metrics like accuracy, precision, recall, false alarm
rate, and F-1 score for each time-step.

Figure 10 illustrates the accuracy values for all time-steps with false alarm rate. At 70 time-steps,
deep learning model of GRU-LSTM produces an accuracy of 87.91% (nearly ~88%) which is higher
than others.

Table 8. Evaluation metrics for all layer ids classifier. FAR: false alarm rate.

Time-Steps Train Accuracy Precision Recall F-1 Score FAR
10 86.632 0.9994 0.99 0.9977 0.0022
20 85.534 0.9943 0.3296 0.9922 0.0077
30 84.510 0.986 0.9952 0.9418 0.05812
40 86.613 0.9996 0.9902 0.9983 0.0016
50 85.434 0.9967 0.9919 0.9865 0.0134

Symmetry 2020, 12, 7 18 of 22

60 72.89 0.8914 0.9935 0.5011 0.4988
70 87.911 0.9981 0.9939 0.9923 0.0076
80 83.243 0.9999 0.9842 0.9997 0.0002
90 83.323 0.9995 0.9859 0.9981 0.0018

100 82.167 0.9937 0.9925 0.974 0.0257

4.3. Comparative Analysis of Two Approaches

In this section, we will briefly discuss the experimental procedures and analyze our results for
further use in the division of intrusion detection. Feature selection is considered a prime component
of this research work. For both approaches we prepared our dataset by applying some fruitful feature
selection algorithms. Researchers from different domains have previously used the NSL-KDD dataset
to detect intrusion, but none of the approaches followed a proper selection approach for their
experiment. In the machine learning approach, we used some well researched machine learning
algorithms like J48, random forest, PART, naïve Bayes, decision tree, radial basis function network
(RBFN), and Bayes net. In order to eliminate the ambiguous data from the dataset, we also employed
some feature selection algorithms like info gain, gain ratio, CFS subset evaluator, symmetric
uncertainty, and Chi-square test. After successful experiments we found that random forest classifier
with fain ratio feature selection approach generates 81.946% accuracy with a very low false alarm rate
of 0.297%. Apart from that, we also developed a GRU-LSTM-based deep learning model with
ANOVA F-test and recursive feature elimination (RFE) selection approach. As our aim is to achieve
a high detection accuracy in terms of different approaches with feature selection methods, we tested
our model with different time-steps and different learning rates. After successful experiments we
observed that with a learning rate of 0.01 and 70 time-steps our model achieved a detection accuracy
of approximately 88%. Complete results for 0.01 learning rate with time-steps (10, 20, 30, ... 90, 100)
are depicted in Table 8. At this point the deep learning approach shows many potential outcomes
compared with the machine learning approach. In our research implementation of the SDN-based
intrusion detection system, the classification model is mainly two-class-based, namely normal and
anomaly. After evaluating both results, we proposed a model of security architecture which detects
flow-based anomaly in an OpenFlow-based controller. From the detailed results, we can derive a
decision that, with a very low false alarm rate of 0.0076%, the ANOVA F-Test and recursive feature
elimination (RFE) methods with GRU-LSTM classifier provide maximum accuracy of 87.911%.
Furthermore, we generated the results using the selected features from the complete NSL-KDD
dataset. Some other approaches from different authors were presented to show the accuracy of the
NSL-KDD dataset deep learning algorithm. Nevertheless, there was no pre-processing of the
database and the correct choice of features for testing and training.

5. Conclusions

In this research, we have presented two different approaches for predicting the flow-based
anomaly in software-defined networking. The GRU-LSTM model based on deep learning and the
random forest (RF) model based on machine learning were designed to detect network interference
in SDN. In addition, with ANOVA F-Test and RFE feature selection and the gain ratio feature
selection method, we also developed the best classifier model in terms of different evaluation metrics.
Although both approaches produce significant experimental results compared with other works,
both approaches made some effective contribution in the field of intrusion detection for SDN use. It
is evident from the experimental results that the deep learning approach produces slightly better
results than the machine learning approach, therefore the use of GRU-LSTM model for flow-based
anomaly detection is absolutely essential in order to achieve high accuracy and speed up the intrusion
detection process in SDN. Nonetheless, we plan to implement our proposed model in the near future
in a real SDN environment with real network traffic.

Author Contributions: Conceptualization, S.K.D. and M.M.R.; methodology, S.K.D.; software, S.K.D.;
validation, M.M.R.; investigation, S.K.D; resources, S.K.D.; data curation, S.K.D.; writing—original draft

Symmetry 2020, 12, 7 19 of 22

preparation, S.K.D; writing—review and editing, M.M.R.; visualization, S.K.D.; supervision, M.M.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the Department of Computer Science and Engineering (CSE),
Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka-1216 for providing us with the
opportunity to carry out this research.

Conflicts of Interest: There were no conflicts of interest with the concerned persons or organizations.

Abbreviations
The following abbreviations are used in the manuscript:

ANOVA Analysis of variance
BPTT Backpropagation through time (BPTT)
DDoS Distributed denial-of-service
DNN Deep neural network
DoS Denial-of-service
GRU Gated recurrent unit
GSA Gravitational search algorithm
LSTM Long short-term memory
MLP Multi-layer perceptron
NIDS Network intrusion detection systems
OF Open flow
R2L Root to local
RFE Recursive feature elimination
RNN Recurrent neural network
SAE Stacked auto encoder
SDN Software-defined networking
SOHO Small office/home office
SVM Support vector machine
U2R Use to root

References

1. Software Defined Networking Definition. Available online: https://www.opennetworking.org/sdn-
definition (accessed on 16 May 2017).

2. ONF SDN Evolution. Available online: http://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-
content/uploads/2013/05/TR-535_ONF_SDN_Evolution.pdf (accessed on 25 February 2018).

3. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74,
doi:10.1145/1355734.1355746.

4. Jain, S.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; Singh, A.; Venkata, S.; Wanderer, J.; Zhou, J.; Zhu,
M.; et al. B4: Experience with a globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev.
2013, 43, 3–14, doi:10.1145/2534169.2486019.

5. C. t. Huawei Press Centre and H. Unveil World’s First Commercial Deployment of SDN in Carrier
Networks. Available online: http:://pr.huawei.com/en/news/ hw-332209-sdn.htm (accessed on 28 February
2018).

6. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. Nox: Towards an operating
system for networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110, doi:10.1145/1384609.1384625.

7. Ryu. Available online: http://osrg.github.io/ryu (accessed on 11 March 2018).
8. Erickson, D. The beacon openflow controller. In Proceedings of the Second ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking, (HotSDN ’13), Hong Kong, China, 16 August 2013; ACM,
New York, NY, USA, pp. 13–18, doi:10.1145/2491185.2491189.

9. Opendaylight: A Linux Foundation Collaborative Project. Available online: http://www. opendaylight.org
(accessed on 6 March 2018).

10. Floodlight. Available online: http://www.projectfloodlight.org (accessed on 15 March 2018).

https://www.opennetworking.org/sdn-definition
https://www.opennetworking.org/sdn-definition

Symmetry 2020, 12, 7 20 of 22

11. Kreutz, D.; Ramos, F.M.; Verissimo, P. Towards Secure and Dependable Software-Defined Networks. In
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
(HotSDN ’13), Hong Kong, China, 16 August 2013; ACM: New York, NY, USA, pp. 55–60,
doi:10.1145/2491185.2491199.

12. Sultana, N.; Chilamkurti, N.; Peng, W.; Alhadad, R. Survey on SDN based network intrusion detection
system using machine learning approaches. Peer-to-Peer Netw. Appl. 2019, 12, 493, doi:10.1007/s12083-017-
0630-0.

13. Jadidi, Z.; Muthukkumarasamy, V.; Sithirasenan, E.; Sheikhan, M. Flow-Based Anomaly Detection Using
Neural Network Optimized with Gsa Algorithm. In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems Workshops, Philadelphia, PA, USA, 8–11 July 2013; pp. 76–
81, doi:10.1109/ICDCSW.2013. 40.

14. Winter, P.; Hermann, E.; Zeilinger, M. Inductive Intrusion Detection in Flow-Based Network Data Using
One-Class Support Vector Machines. In Proceedings of the 2011 4th IFIP International Conference on New
Technologies, Mobility and Security, Paris, France, 7–10 February 2011; pp. 1–5,
doi:10.1109/NTMS.2011.5720582.

15. Mehdi, S.A.; Khalid, J.; Khayam, S.A. Revisiting Traffic Anomaly Detection Using Software Defined
Networking. In Lecture Notes in Computer Science, Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection, (RAID’11), Menlo Park, CA, USA, 20–21 September 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 161–180, doi:10.1007/978-3-642-23644-0_9.

16. Braga, R.; Mota, E.; Passito, A. Lightweight Ddos Flooding Attack Detection Using Nox/Openflow. In
Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14 October 2010; pp.
408–415, doi:10.1109/LCN.2010.5735752.

17. Kokila, R.T.; Selvi, S.T.; Govindarajan, K. DDoS Detection and Analysis in SDN-Based Environment Using
Support Vector Machine Classifier. In Proceedings of the 2014 Sixth International Conference on Advanced
Computing (ICoAC), Chennai, India, 17–19 December 2014; pp. 205–210, doi:10.1109/ICoAC.2014.7229711.

18. Phan, T.V.; van Toan, T.; van Tuyen, D.; Huong, T.T.; Thanh, N.H. OpenFlowSIA: An Optimized Protection
Scheme for Software-Defined Networks from Flooding Attacks. In Proceedings of the 2016 IEEE Sixth
International Conference on Communications and Electronics (ICCE), Ha Long, Vietnam, 27–29 July 2016; pp.
13–18, doi:10.1109/CCE.2016.7562606.

19. Mousavi, S.M.; St-Hilaire, M. Early Detection of Ddos Attacks Against Sdn Controllers. In Proceedings of
the 2015 International Conference on Computing, Networking and Communications (ICNC), Garden
Grove, CA, USA, 16–19 Febuary 2015; pp. 77–81.

20. Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based ddos detection system in software-defined
networking (sdn). arXiv 2016, arXiv:1611.07400.

21. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep Learning Approach for Network
Intrusion Detection in Software Defined Networking. In Proceedings of the 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 258–263,
doi:10.1109/WINCOM.2016.7777224.

22. Tang, T.A.; Mhamdi, L.; McLernon, D.; Zaidi, S.A.R.; Ghogho, M. Deep Recurrent Neural Network for
Intrusion Detection in SDN-based Networks. In Proceedings of the 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018; pp. 202–206,
doi:10.1109/NETSOFT.2018.8460090.

23. Sen, S.; Gupta, K.D.; Manjurul Ahsan, M. Leveraging Machine Learning Approach to Setup Software-
Defined Network(SDN) Controller Rules During DDoS Attack. In Algorithms for Intelligent Systems,
Proceedings of the International Joint Conference on Computational Intelligence, Dhaka, Bangladesh, 4 July 2019;
Uddin, M., Bansal, J., Eds.; Springer: Singapore, 2020.

24. Vetriselvi, V.; Shruti, P.S.; Abraham, S. Two-Level Intrusion Detection System in SDN Using Machine
Learning. In ICCCE 2018, Proceedings of the Lecture Notes in Electrical Engineering, Hyderabad, India, 24 January
2018; Kumar, A., Mozar, S., Eds.; Springer: Singapore, 2019; Volume 500

25. Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Machine-Learning Techniques for Detecting Attacks in
SDN. arXiv 2019, arXiv:1910.00817.

26. Dey, S.K.; Rahman, M.M. Flow based anomaly detection in software de-fined networking: A deep learning
approach with feature selection method. In Proceedings of the 2018 4th International Conference on

Symmetry 2020, 12, 7 21 of 22

Electrical Engineering and Information Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15
September 2018; pp. 630–635, doi:10.1109/CEEICT.2018.8628069.

27. Dey, S.K.; Rahman, M.M.; Uddin, M.R. Detection of Flow Based Anomaly in Openflow Controller: Machine
Learning Approach in Software Defined Networking. In Proceedings of the 2018 4th International
Conference on Electrical Engineering and Information Communication Technology (iCEEiCT), Dhaka,
Bangladesh, 13–15 September 2018; pp. 416–421, doi:10.1109/CEEICT.2018.8628105.

28. Dey, S.K.; Uddin, M.R.; Rahman, M.M. Performance Analysis of SDN-Based Intrusion Detection Model
with Feature Selection Approach. In Algorithms for Intelligent Systems, Proceedings of the International
Joint Conference on Computational Intelligence, Dhaka, Bangladesh , 4 July 2019; Uddin, M.S., Bansal, J.C.
Eds.; Springer: Singapore, 2020; pp. 483–494.

29. Louridas, P.; Ebert, C. Machine learning. IEEE Softw. 2016, 33, 110–115, doi:10.1109/MS.2016.114.
30. Khan, G.M.; Khan, S.; Ullah, F. Short-Term Daily Peak Load Forecasting Using Fast Learning Neural

Network. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and
Applications, Cordoba, Spain, 22–24 November 2011; pp. 843–848, doi:10.1109/ISDA.2011.6121762.

31. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A Detailed Analysis of the Kdd Cup 99 Data Set. In
Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and
Defense Applications, (CISDA’09), Piscataway, NJ, USA, 8–10 July 2009; pp. 53–58. Available online:
http://dl.acm.org/citation.cfm?id=1736481.1736489 (accessed on 6 March 2018).

32. Meng, Y. The practice on using machine learning for network anomaly intrusion detection. In Proceedings
of the 2011 International Conference on Machine Learning and Cybernetics, Guilin, China, 10–13 July 2011;
pp. 576–581, Volume 2, doi:10.1109/ICMLC.2011. 6016798.

33. Yang, Y.; Pedersen, J.O. A Comparative Study on Feature Selection in Text Categorization. In Proceedings
of the Fourteenth International Conference on Machine Learning, (ICML ’97), Nashville, Tennessee, USA,
8 July 1997; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, pp. 412–420. Available online:
http://dl.acm.org/citation.cfm?id=645526.657137 (accessed on 5 February 2019).

34. Ingre, B.; Yadav, A. Performance Analysis of Nsl-Kdd Dataset Using Ann. In Proceedings of the 2015
International Conference on Signal Processing and Communication Engineering Systems, Guntur, India,
2–3 January 2015; pp. 92–96, doi:10.1109/SPACES.2015. 7058223.

35. Breiman, L. Machine Learning; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 5–32,
Volume 45, doi:10.1023/A:1010933404324.

36. Mandic, D.P.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and
Stability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.

37. Livieris, I.E. Forecasting Economy-Related Data Utilizing Weight-Constrained Recurrent Neural
Networks. Algorithms 2019, 12, 85.

38. Kolen, J.F.; Kremer, S.C. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies;
IEEE: Piscataway, NJ, USA, 2001. Available online: https://ieeexplore.ieee.org/document/5264952 (accessed
on 12 March 2018). doi:10.1109/9780470544037.ch14

39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780,
doi:10.1162/neco.1997.9.8.1735.

40. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations Using Rnn Encoder Decoder for Statistical Machine Translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; Association for Computational Linguistics: Doha, Qatar, pp. 1724–173. Available online:
https://www.aclweb.org/anthology/D14-1179 (accessed on 22 April 2018). doi:10.3115/v1/D14-1179.

41. Chung, J.; Gu¨lc¸ehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on
sequence modeling, CoRR abs/1412.3555. arXiv 2014, arXiv:1412.3555.

42. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
43. Nkiama, H.; Zainudeen, S.; Saidu, M. A subset feature elimination mechanism for intrusion detection

system. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 148–157, doi:10.14569/IJACSA.2016. 070419.
44. Weka. Available online: https://www.cs.waikato.ac.nz/ml/weka (accessed on 22 March 2018).
45. Tensorflow. Available online: https://github.com/tensorflow (accessed on 30 March 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dl.acm.org/citation.cfm?id=1736481.1736489
http://dl.acm.org/citation.cfm?id=645526.657137
https://ieeexplore.ieee.org/document/5264952
https://www.aclweb.org/anthology/D14-1179

Symmetry 2020, 12, 7 22 of 22

	1. Introduction
	2. Background and Related Work
	3. Materials and Methods
	3.1. Proposed Classification Model of Machine Learning
	3.2. Machine Learning Approach
	3.3. Overview of NSL-KDD Dataset
	3.4. Selection of Features for Machine Learning Approach
	3.5. Random Forest Classifier (RF)
	3.6. Evaluation Metrics
	3.7. Deep Learning Approach
	3.7.1. Recurrent Neural Network (RNN)
	3.7.2. Long Short-Term Memory (LSTM) RNN
	3.7.3. Gated Recurrent Unit (GRU)
	3.7.4. Multi-Layer GRU RNN
	3.7.5. Overview of Scikit-Learn
	3.7.6. Appropriate Feature Selection for Deep Learning Approach

	3.8. Designed Algorithm and Proposed SDN-Based Anomaly Detection Architecture

	4. Experimental Results
	4.1. Experimental Results of Machine Learning Approach
	4.2. Experimental Results of Deep Learning Approach
	4.3. Comparative Analysis of Two Approaches

	5. Conclusions
	References

