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Abstract: Recent advancements in software-defined networking (SDN) make it possible to 
overcome the management challenges of traditional networks by logically centralizing the control 
plane and decoupling it from the forwarding plane. Through a symmetric and centralized 
controller, SDN can prevent security breaches, but it can also bring in new threats and 
vulnerabilities. The central controller can be a single point of failure. Hence, flow-based anomaly 
detection system in OpenFlow Controller can secure SDN to a great extent. In this research, we 
investigated two different approaches of flow-based intrusion detection system in OpenFlow 
Controller. The first of which is based on machine-learning algorithm where NSL-KDD dataset with 
feature selection ensures the accuracy of 82% with random forest classifier using the gain ratio 
feature selection evaluator. In the later phase, the second approach is combined with a deep neural 
network (DNN)-based intrusion detection system based on gated recurrent unit-long short-term 
memory (GRU-LSTM) where we used a suitable ANOVA F-Test and recursive feature elimination 
selection method to boost classifier output and achieve an accuracy of 88%. Substantial experiments 
with comparative analysis clearly show that, deep learning would be a better choice for intrusion 
detection in OpenFlow Controller. 

Keywords: software-defined networking; random forest; gain ratio; GRU-LSTM; ANOVA F-test; 
OpenFlow Controller; machine learning  

 

1. Introduction 

Current Internet protocol (IP) networks are increasingly more multifaceted and harder to 
manage, and this is a tendency that it is going to be more accused with new emerging paradigms of 
services such as virtualized cloud computing, big data applications, data center services or 
multimedia content delivery. With the aim of reversing this situation, a symmetric, dynamic, and 
accessible network architecture, namely software-defined networking (SDN) [1] paradigm, was 
proposed as a solution to build a more flexible network infrastructure with programmable devices, 
where new protocols and policies can be implemented via software without needing any hardware 
modification. The SDN paradigm proposes to separate the control and data planes of “legacy” 
networks for the sake of flexibility. In this way, the data plane is located in the SDN-enabled 
forwarding devices (i.e., SDN switches), while the control plane is logically centralized in new entities 
called SDN controllers. Thus, the different planes in SDN create different layers of abstraction and, 
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thereby, provide an unprecedented level of flexibility. The design of the SDN paradigm enables the 
performance of a fine-grained management of the network, taking advantage of decision-making 
from the global perspective of the network in the controller. However, to be successful in current 
dynamic environments, traffic monitoring becomes a cornerstone in SDN given that management 
applications often need to make use of accurate and timely traffic measurements. Forwarding 
components like switches, routers, etc., are elements of the data plane and the controller is the only 
element of the control plane. Decoupling of the network control and forwarding functions, and direct 
programmability of the network give network managers enough control over the network. 
Separation of the routing and forwarding activities of networking components (e.g., switches, 
routers, etc.) from the data plane, makes the administration and management of the network 
straightforward because the control plane now only has to handle logical network topology-related 
information, traffic routing, and so forth while the data plane only needs to manage the network 
traffic using the configuration provided by the control unit. The SDN paradigm was the outcome of 
some works of the research world that suggested the necessity of building programmable networks 
as a practical way to experiment with new protocols in production networks. From its inception, it 
has gained lots of attention from academia and industry. It is supported by giants of the Internet 
world like Google, Cisco, HP, Juniper or NEC and by standardization organizations like the Open 
Network Foundation (ONF) or the Internet Engineering Task Force (IETF), so one can state that this 
network paradigm has a lot of potential to succeed. The proposal of the OpenFlow protocol [2] in 
2008 was its major driver. In that text, they talk about the commonly held belief that the network 
infrastructure was “ossified”. Thus, they proposed OpenFlow as a protocol for the communication 
between the forwarding and control planes in order to decouple logically and physically these two 
planes. OpenFlow [3] allows to dynamically define the forwarding state of the network from the SDN 
controller by installing in the switches sets of flow entries. These flow entries are stored in flow tables 
in the switches and determine their behavior. Moreover, the significant contribution of SDN has 
already been demonstrated by some of the well-established tech giants like Google B4 [4] and Huawei 
carrier network [5]. Some other examples of SDN controller software that open source communities 
are currently using include NOX [6], Ryu [7], Beacon [8], Open Daylight [9], and Floodlight [10]. 
Apart from its advancements in usability, SDN is also associated with various security matters 
regarding data control and application interface [11]. As security is the key concern for any new 
paradigm, a collaborative work between academia and industry is significantly imperative in this 
regard. However, the primary concern of resolving malicious attacks by detecting attack processes 
rapidly from the network is by using network intrusion detection systems (NIDS). They protect a 
network from being affected by malicious data. Network intrusion detection systems (NIDS) are 
developed to detect malicious activities including distributed denial-of-service (DDoS) attacks, virus, 
worm, and anomaly patterns [12]. A common approach for intrusion detection is detecting anomalies 
in network traffic, however, network threats are evolving at an unprecedented rate. There are several 
success factors like anomaly detection speed, accuracy, robustness, and reliability that are considered 
as the prime success issues for NIDS. Generally, two categories (signature and anomaly-based) of the 
intrusion detection approach are normally used to protect any network from malicious content. 
Signature-based detection is the way to detect packets that have a signature in the network traffic 
corresponding to the rules established in the IDS. Therefore, detecting new and unknown intrusion 
is not feasible in this type of intrusion detection system. In anomaly-based detection, it will not find 
attacks using one-to-one correspondence, like signature-based detection; this detection uses the 
tendency of the attack traffic to determine whether an attack has occurred or not.  

Subsequently, new and unidentified intrusion can be identified successfully in the anomaly-
based approach. When the anomaly-based intrusion detection system is integrated with flow-based 
traffic monitoring, which it normally is, it only needs to inspect packet headers. A direct implication 
is that the flow-based intrusion detection system needs to deal with moderate amount of data. 
Nowadays in many areas of computer science (CS) and information technology (IT) such as, object 
detection, natural language processing (NLP), image processing (IP), speech recognition (SR), face 
detection (FD), machine learning (ML), and deep learning (DL) are being used effectively. Several 
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intrusion detection methods leveraging machine learning and deep learning are also achieving 
success gradually. In order to improve detection accuracy and minimize the low false alarm rate, 
machine learning (ML) techniques are employed to develop NIDS. Due to its advance features other 
than machine learning, nowadays the deep learning (DL) approach has also been used extensively in 
the tracks of anomaly detection [12]. This paper will explore the effects of a flow-based anomaly 
detection system using both Machine learning and deep learning approach in software-defined 
networking because of the nature of flow-based traffic analysis of software-defined networking 
(SDN).  

We examined the benchmark NSL-KDD dataset for predicting likely attacks types including DoS 
(denial-of-service) attacks, probe (probing attack), R2L (root to local) attacks, and U2R (user to root) 
attack. Some of the most efficient classification models including random forest, projective adaptive 
resonance theory (PART), J48, naïve Bayes (NB), radial basis function network (RBFN), decision tree 
(DT), and Bayesian network (BN) were applied in our machine learning-based experiment. Apart 
from this, we also developed a deep neural network model of gated recurrent unit-long short-term 
memory (GRU-LSTM) for the same dataset to compare the detection accuracy. However, in both 
cases, for the performance improvement of the classifier, appropriate feature selection methods and 
pre-processing techniques were employed to ensure the elimination of redundant and irrelevant data 
from the dataset. Moreover, we designed our methodology in such a way so that we could overcome 
the shortcomings of the existing solution to this major problem. Several factors influence the detection 
accuracy of SDN-based intrusion detection systems including appropriate feature selection of 
dataset, amount of data in dataset, proper choice of ML model, training time, cross validation, 
learning rate, and so on. Most of the research in literature lacks the detection of all categories of 
attacks (DoS, Probe, R2L, U2R) in SDN. On the other hand, these existing works have some major 
shortcomings as they evaluated their performance of the model for a specific ML technique for a 
specific attack category. However, we have employed both the machine learning and deep learning 
approach for all sort of attack categories to build a network intrusion detection system and evaluate 
their performance with the support of the NSL-KDD dataset in order to measure the comparative 
strengths and weaknesses of both approaches.  

The remainder of this paper is organized as follows: Section 2 briefly discusses some of the 
relevant work as well as a little background to each of these methods. Section 3 provides an overview 
of the methodology of our research article. We also review both approaches of ML and DL based 
NIDS implementation model. Furthermore, experimental results and research challenges associated 
with applying ML/DL to SDN-based NIDS are discussed. Finally, in Section 5 we conclude the paper 
with future works. 

2. Background and Related Work 

This section focuses on highlighting the related work for network intrusion detection in SDN 
with deep learning and machine learning algorithms. In recent years, flow-based anomaly detection 
classifications have been extensively investigated. Flow-based anomaly detection system, using a 
multi-layer perceptron (MLP) neural network with one hidden layer and gravitational search 
algorithm (GSA) proposed in [13], can classify benign and malicious flows with a high degree of 
accuracy. In [14], the authors introduced a novel concept for an inductive NIDS that uses a one-class 
support vector machine (SVM) for analysis and is trained with malicious network data in contrast to 
other systems which give a low false alarm rate. However, the number of traffic anomaly detection 
algorithms was proposed by authors in [15] by using NOX and OF compliant switches. These 
algorithms are more successful in detecting anomalies in a small office network but not in an ISP. A 
lightweight method for DDoS attack detection based on traffic flow features is presented in [16], in 
which such information is extracted with a very low overhead by taking advantage of a 
programmatic interface provided by the NOX platform. This method produces a high rate of 
detection obtained by flow analysis using self-organizing maps (SOM). Kokila et al. [17] analyzed the 
SVM classifier for DDoS detection and their experiments showed that the SVM classifier gives less 
false positive rates and high classification accuracy as compared to other techniques. In another 
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research, Trung et al. [18] proposed an optimized protection mechanism (OpenFlowSIA) that uses 
SVM classifier along with the authors’ proposed idle—timeout adjustment (IA) algorithm to secure 
and save the network resources under flooding attacks in SDN. A lightweight solution proposed by 
authors in [19] can detect DDoS attacks within the first 250 malicious traffic packets using the entropy 
variation of the destination IP address. A DL model based on stacked autoencoder (SAE) developed 
by Niyaz et al. [20] can detect DDoS multi-vector attacks in SDN. In 2016, Tang et al. [21] applied a 
deep learning approach to the detection of flow-based anomalies in an SDN environment and 
developed a deep neural network (DNN) model for an intrusion detection system and trained the 
model with the NSL-KDD dataset. However, they used only six basic features of the NSL-KDD 
dataset and surprisingly no appropriate feature selection method was employed. In the later phase 
Tang et al. [22] presented a gated recurrent unit recurrent neural network (GRU-RNN) which enabled 
the intrusion detection model and achieved a high degree of accuracy from his previous work; yet 
still the number of features used was limited to only six. Another approach of developing software-
defined network (SDN) controller rules during a DDoS attack was presented by Sen et al. [23]. The 
authors developed a virtual network testbed based on the SDN environment to implement a DDoS 
attack and detect that attack leveraging the machine learning model. In addition, they also prepared 
a network traffic dataset based on SDN to build and test their model of machine learning. A two-level 
machine-learning intrusion detection system in SDN was proposed by Vetriselvi et al. [24]. They built 
an IDS by merging the principal of machine learning and genetic algorithms and dividing it into two 
phases: the former to detect attacks and the latter to categorize them. A detailed study of various 
approaches based on classical ML techniques that were normally used in detecting attacks in SDN 
was provided by Elsayed et al. [25]. They performed their benchmarking experiments on the NSL-
KDD dataset and explained the consequence of using traditional machine-learning based methods.  

However, in very recent times two different approaches of the feature selection-based intrusion 
detection model proposed by Dey in [26,27] were employed using both deep learning and machine 
learning approaches for finding higher accuracy in terms of intrusion detection. Apart from that, Dey 
[28] also showed the performance analysis of SDN-based intrusion detection model for various 
machine leaning based classifiers with different feature selection approaches. 

3. Materials and Methods  

In this section of the article, we will briefly discuss our research methodology. We will start with 
machine learning-based classification model approach with different feature selection methods and 
the evaluation procedure. Deep learning-based model development will also be discussed in this 
section in order to capture a translucent comparative idea regarding these two approaches. 

3.1. Proposed Classification Model of Machine Learning  

Here, we represent our designed machine learning (ML)-based model. A two-layer-based hybrid 
classification architecture is shown in Figure. 1. The top layer, based on certain influential selection 
methods of features, removes unrelated and inconsistent features and provides the selected features 
to the next layer. The next layer then uses some fruitful and mostly symmetrical machine learning 
algorithms to categorize the abridged dataset. Then, the model is further trained and tested using a 
10-fold technique of cross-validation. Furthermore, we used various accurate measures to evaluate 
model performance. 



Symmetry 2020, 12, 7 5 of 22 

 

 

Figure 1. Machine learning based multi-layer classification model [27]. Abbreviations: NSL-KDD; 
PART: projective adaptive resonance theory; DT: decision tree; RBFN: radial basis function network; 
TP: true positive; FP: false positive; MCC: Matthews correlation coefficient; MAE: mean absolute 
error. Reprint with permission [27]; 2019, IEEE. 

3.2. Machine Learning Approach 

According to [29] the general idea behind most of the machine learning framework is that by 
training using an example set of training data, the program learns to perform a task. This training 
enables the distributed computer and controller system to perform similar tasks where the system is 
confronted with entirely new datasets that have not been previously encountered. Therefore, 
machine learning can be used for flow-based anomaly detection system to automatically build a 
predictive model based on the training dataset. To solve numerous classification and prediction 
problems machine learning algorithms are used [30]. A complete flow chart of the anomaly detection 
mechanism in OpenFlow controller is shown in Figure 2. 
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Figure 2. Flow diagram of anomaly detection using the machine learning approach [27]. Reprint 

with permission [27]; 2019, IEEE. 

3.3. Overview of NSL-KDD Dataset 

It is by no means straightforward to select a precise dataset to establish and evaluate a model. 
Our aim was to select a small, noise-free, accurate, symmetrical, and redundancy-free set of data. In 
the past, countless forms of datasets have been used for different anomaly detection systems; some 
are self-made while others are accessible to the public. Among other things, KDD-99 is a publicly 
accessible dataset that is most commonly used and embraced. According to the authors of [31] KDD-
99 is essentially free to download, but the entire database is massive enough to increase the cost of 
intrusion detection computing intensively. In contrast, the authors of [32] show that usually only 10% 
of the dataset is used. However, there is plenty of extraneous information in the training dataset to 
which there are similar records in the test dataset. As a consequence, the system’s learning process is 
sometimes interrupted. Nevertheless, NSL-KDD is considered a simplified version of KDD-99 that 
eliminates redundancies between the training dataset and test dataset. Tavallace et al. [31] proposed 
the flow-based anomaly detection NSL-KDD dataset for intrusion detection. Moreover, for their own 
research projects, most researchers use the dataset of NSL-KDD. In NSL-KDD, there are 41 features 
that include both standard patterns and patterns of attack. Table 1 summarizes the overall 
functionality of the NSL-KDD dataset.  

Table 1. Features and attributes position of NSL-KDD dataset [27]. Reprint with permission [27]; 
2019, IEEE. 

Type Features Attributes Position 
Nominal protocol type, service and flag 2, 3, 4 

Numeric 
duration, src bytes, st bytes, wrong fragment, urgent, hot, 
num failed logins, num compromised, num root, num file 

creations, num shells, num access files, num outbound 

1, 5, 6, 8, 9, 10, 11, 13, 
16, 17, 18, 19, 20, 23, 
24, 25, 26, 27, 28, 29, 
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cmds, count srv count, serror rate, srv serror rate, rerror rate, 
srv rerror rate, same srv rate, diff srv rate, srv diff host rate, 
dst host count, dst host srv count, dst host same srv rate, dst 
host diff srv rate, dst host same src port rate, dst host srv diff 

host rate, dst host serror rate, dst host srv serror rate, dst 
host rerror rate and dst host srv rerror rate 

30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 40, 41 

Binary 
land, logged in, root shell, su attempted, is host login and is 

guest login 
7, 12, 14, 15, 21, 22 

3.4. Selection of Features for Machine Learning Approach 

In the presence of redundant features and attributes in the intrusion dataset, the reliability of 
anomaly detection decreases. Therefore, it can be a research task to establish methods for the correct 
selection of features that can sort out dissimilar attributes. Selection of features is the process used to 
pick appropriate features and delete irrelevant features from the dataset to complete a given task [33]. 
In addition, reducing the number of redundant, unnecessary, and noisy features will lead to an 
improved design by accelerating a data-mining algorithm with an improvement in accuracy of 
learning [34]. Using info gain, gain ratio, CFS subset evaluation, symmetric uncertainty, and the Chi-
squared test, we refined NSL-KDD dataset features. Table 2 displays attribute collection procedures 
for different evaluators and their different search strategies. 

Table 2. Feature selection with different evaluator and search method [27]. Reprint with permission 
[27]; 2019, IEEE. 

Evaluator Search Selected Attributes 
Info Gain Ranker 5,6,3,4,33,35,34,40,41,23,30,29,12,27,28:15 
Gain Ratio Ranker 28,12,41,27,4,6,5,30,29,40,3,25,26,39,34:15 
CFS Subset Evaluator Best First 5,6,12,25,28,30,31,37,41:9 
Symmetric Uncertainty Ranker 6,5,4,41,28,12,27,30,3,40,29,34,35,33,37:15 
Chi-Squared Test Ranker 5,6,3,33,35,34,4,40,23,12,41,30,29,27,37:15 

3.5. Random Forest Classifier (RF) 

For supervised learning tasks, the random forest classifier is known as an ensemble machine 
learning technique. Each individual tree spouts a class prediction in the random forest, and the class 
with the most votes becomes the prediction of the system. Breiman initially suggested this algorithm 
in which the author identified the benefits of random forest [35]. There are several advantages for 
which it produces higher accuracy in model classification. Figure 3 shows how the random forest 
algorithm works with the dataset. Initially, it follows four steps: firstly, it selects random samples 
from a given dataset. It then creates a decision tree for each test and gets a predictive result and then 
holds a vote for each predicted outcome. Ultimately, with the most votes, it picks the predictive 
outcome as the final forecast. 
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Figure 3. Working procedure of random forest algorithm. 

3.6. Evaluation Metrics 

Accuracy (AC), precision (P), recall (R), F-measure (F), false alarm rate (FAR), and Matthews 
correlation coefficient (MCC) measure the performance of the intrusion detection rate taking into 
account the performance metrics derived from the confusion matrix to calculate the value of these 
evaluation metrics. The confusion matrix illustrates the performance of the algorithm according to 
Table 3. 

Table 3. Tabular form of a confusion matrix. 

 Predicted as Normal Predicted as Attack 

Normal Class (Actually) True Positive (TP) False Positive (FP) 

Attack Class (Actually) False Negative (FN) True Negative (TN) 

A good intrusion detection scheme involves a high rate of accuracy and high detection rate with 
a very low false alarm rate. The false alarm rate is directly proportional to the miss classification rate. 
A brief discussion and calculating formula 170 for the metrics that are used to evaluate the model are 
given below: 

Accuracy (AC): Shows the category proportion over all N cases that were correct. 

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

Precision (P): Demonstrates the percentage of intrusion detection system in the network that 
detects intrusion that is intrusion. The higher the value of P, the lower the rate of false alarm. 

𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

Recall (R): Illustrates the proportion of positive examples properly classified. We are looking for 
a high R value. 

𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

F-measure (F): It provides an improved measure of accuracy by providing a balance between 
accuracy and recall. We are looking for a high F-measure value. 

𝐹𝐹 =
2

1
𝑇𝑇 + 1

𝑅𝑅
  

Matthews correlation coefficient (MCC): It returns a binary value of −1 to 1. 
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𝑀𝑀𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
  

3.7. Deep Learning Approach 

In this segment, we will briefly discuss our proposed network intrusion detection system for the 
combined gated recurrent unit-long short-term memory (GRU-LSTM). An appropriate ANOVA F-
test and recursive feature elimination (RFE) (ANOVA F-RFE) selection method was also applied to 
improve classifier performance. Moreover, in this section we will also discuss RNN, GRU, LSTM, 
ANOVA F-RFE method, and the proposed algorithm for detecting attack patterns in a DL model. 

3.7.1. Recurrent Neural Network (RNN) 

Recurrent neural network (RNN) [36] is a type of artificial neural network which has the 
capability of learning from previous time-steps. RNNs are extended forms of typical feed-forward 
neural networks (FNNs) [37]. But, in contrast with FNNs, RNNs use their internal state while 
processing sequential data. Using the internal state, here, refers to the fact that, the RNN takes 
advantage of previous computations for output. As they carry out the same task for each element in 
the sequence, they are called recurrent. The structure of a simple RNN is depicted in Figure 3. 

 

Figure 3. Structure of a plain recurrent neural network (RNN) [26]. Reprint with permission [26]; 
2019, IEEE. 

In the above figure, xt is input and ot is output; st is considered as hidden state; f indicates 
nonlinear function, such as tanh or ReLU; st is calculated using the previous hidden state and the input 
at the current step: st = f(Uxt + Wst−1). To calculate the initial hidden state, s−1, is required which is 
initialized 185 to zero by default. Hidden sates of RNN are computed as: 

𝑆𝑆𝑡𝑡 = 𝑓𝑓�𝑈𝑈𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑆𝑆𝑡𝑡−1�,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 𝑇𝑇, … ,1 (1) 

A gradient-based algorithm, namely backpropagation through time (BPTT), is generally applied 
for training the RNN. RNN training is considerably faster using BPTT algorithm than other existing 
optimization techniques. However, the RNN model with backpropagation has a significant 
drawback, called the vanishing gradient problem. It happens when the gradient is so small that it 
seems vanished. Consequently, it prevents the value of weight from changing, and in some cases, 
stops further training. According to [38], the vanishing gradient problem prevents the RNN from 
being accurate. To solve these problems, more powerful combined models like long short-term 
memory (LSTM) [39] and gated recurrent units (GRUs) [40] were suggested. 

3.7.2. Long Short-Term Memory (LSTM) RNN 
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A deep neural network was developed in time and an FNN was built for each time-step. Then, 
weights and biases for each hidden layer were updated by the gradient rule. These updates minimize 
the loss between the expected and actual outputs. But, when the time-steps are more than 5–10, 
standard RNNs do not perform better. Weights fluctuate due to the prolonged back-propagation 
vanishing or blowing up error signals, making the network performance poor. Accordingly, 
researchers suggested the long short-term memory (LSTM) network to address this fading gradient 
problem. LSTM bridges the time gaps and uses a gating mechanism to deal with long-term 
dependencies. Figure 4 shows the LSTM structure. 

 
Figure 4. Simple structure of a long short-term memory (LSTM) unit [26]. Reprint with permission 

[26]; 2019, IEEE. 

3.7.3. Gated Recurrent Unit (GRU) 

A gated recurrent unit (GRU) is an LSTM’s lighter version. The reduced complexity in a GRU’s 
structure is achieved by decreasing the architectural gates. GRU uses both the update gate and the 
reset gate to solve the vanishing gradient problem of a regular RNN. In essence, these are two vectors 
that determine what information should be passed on to the output. Since a GRU’s training phase is 
smoother and faster than LSTM, we chose GRU to develop our model [41]. Both the “forget gate” and 
“input gate” in an LSTM are merged into an “update gate” in GRU and the hidden state and cell state 
are combined, resulting in a simpler structure as shown in Figure 5. 

 

Figure 5. Single layer gated recurrent unit (GRU) [26]. Reprint with permission [26]; 2019, IEEE. 

The following relationship can be obtained from Figure 5. 
Update gate 𝑧𝑧𝑡𝑡  =  𝜎𝜎�𝑊𝑊(𝑧𝑧)𝑥𝑥𝑡𝑡  +  𝑈𝑈(𝑧𝑧)ℎ𝑡𝑡−1� (2) 

Candidate activation ℎ𝑡𝑡�  =  tanh(𝑊𝑊𝑥𝑥𝑡𝑡  +  𝑓𝑓𝑡𝑡 ⊙ 𝑈𝑈ℎ𝑡𝑡−1) (3) 

Reset gate 𝑓𝑓𝑡𝑡  =  𝜎𝜎(𝑊𝑊(𝑟𝑟)𝑥𝑥𝑡𝑡  +  𝑈𝑈(𝑟𝑟)ℎ𝑡𝑡−1 (4) 
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Activation function ℎ𝑡𝑡  =  𝑧𝑧𝑡𝑡 ⊙ ℎ𝑡𝑡−1  +  (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡′  (5) 

3.7.4. Multi-Layer GRU RNN 

The performance of the algorithm depends heavily on the numerous deep neural network 
architectures. A deep structure called multi-layer RNN is designed stacking various RNN layers 
(plain RNN, LSTM, GRU). In each hidden layer, an RNN that uses GRU cells is called GRU-RNN. In 
addition to back-propagation through time, in the multilayer structure, network input is passed 
through multiple GRU layers. In [42], multilayered RNNs have been shown to learn from the various 
time lengths of input sequences. Multi-layered RNNs share the hyper parameters, weights, and 
biases across the layers to achieve optimized efficiency. 

3.7.5. Overview of Scikit-Learn 

During experiment, we used scikit-learn which is a python-based machine learning library for 
data mining and data analysis [43]. Most machine learning algorithm data must be stored in either a 
two-dimensional (2D) array or matrix form. Such 2D form data can be effectively processed in scikit-
learn. Figure 6 shows the representation of the scikit-learn data, where N samples and D features are 
present. 

 

 

Figure 6. Data representation in scikit-learn. 

3.7.6. Appropriate Feature Selection for Deep Learning Approach 

Feature selection mechanism is a required process to get rid of the irrelevant and extraneous 
data from the dataset. According to [43], feature selection is a process of deriving a subset of relevant 
features from the complete feature set without decaying presentation. An intrusion dataset 
containing superfluous attributes often prevents detection from being accurate. Numerous reasons 
were analyzed to show why restricting the features is obligatory. Irrelevant features increase 
computation time without contributing to classifier improvement and sometimes incorrectly indicate 
correlation between feature and desired class. In our experiment, we have used a univariate feature 
selection with analysis of variance (ANOVA) F-test. ANOVA is used to determine whether the means 
of some groups are different using the F-test which statistically checks the equality of means. Each 
feature is individually analyzed which calculates the strength of feature–labels relationship. The 
percentile of the highest scores-based feature selection is performed by the SelectPercentile method 
(sklearn.feature selection). Upon finding a subset, recursive feature elimination (RFE) is applied. RFE 
also builds a model where features are left aside, and it repeats the process until all features are 
eliminated in the dataset. By using the weight of a classifier, feature ranking is developed. After 
applying both ANOVA F-test and RFE, the selected features are shown in Table 4. The attack groups 
in the NSL-KDD dataset are divided into four types, namely DoS, Probe, R2L, and U2R, according to 
Table 4. 
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• DoS: Denial-of-service is considered a major category of attack which reduces the capacity of the 
victim, thereby rendering it unable to handle valid requests. Syn flooding is an example of a DoS 
attack.  

• Probing: In this process, attackers gain information about the remote victim by surveillance and 
other probing attacks like port scanning. 

• U2R: Unauthorized access to local super user (root) privileges is a type of attack by which an 
attacker logs into a victim system using a standard account and tries to obtain root/admin 
privileges by exploiting some vulnerability in the victim.  

• R2L: Unauthorized access from a remote machine, the attacker enters a remote machine and 
gains the local access of the victim’s machine. For example, the guessing of the password. 

Table 4. Selected features after applying analysis of variance (ANOVA) F-test and recursive feature 
elimination (RFE) [26]. Reprint with permission [26]; 2019, IEEE. 

Attack 
Category 

Selected Features 

Denial-of-
Service 
(DoS) 

(1, ’flag SF’), (2, ’dst host serror rate’), (3, ’same srv rate’), (4, ’count’), (5, ’dst host 
srv count’), (6,’dst host same srv rate’), (7, ’logged in’), (8, ’dst host count’), (9, 
’serror rate’), (10, ’dst host srv serror rate’), (11,’srv serror rate’), (12, ’service 

http’), (13, ’flag S0’) 

Probe 

(1, ’service private’), (2, ’service eco i’), (3,dst host srv count’), (4, ’dst host same 
src port rate’), (5, ’dst host srv rerror rate’), (6, ’dst host diff srv rate’), (7, ’dst host 
srv diff host rate’), (8, ’dst host rerror rate’), (9, ’logged in’), (10, ’srv rerror rate’), 

(11,’Protocol type icmp’), (12, ’rerror rate’), (13, ’flag SF’) 

Root to 
Local (R2L) 

(1, ’src bytes’), (2, ’hot’), (3, ’dst host same src port rate’), (4,’dst host srv count’), 
(5, ’dst host srv diff host rate’), (6, ’dst bytes’), (7, ’service ftp data’), (8, ’num failed 

logins’), (9, ’is guest login’), (10, ’service imap4’), (11, ’service ftp’), (12,’flag 
RSTO’), (13, ’service http’) 

User to Root 
(U2R) 

(1, ’hot’), (2, ’dst host srv count’), (3, ’dst host count’), (4,’num file creations’), 
(5,’root shell’),(6,’dst host same src port rate’),(7,’dst host srv diff host rate’), (8, 

’service ftp data’), (9,’service telnet’), (10, ’num shells’), (11, ’urgent’), (12,’service 
http’), (13, ’srv diff host rate’) 

3.8. Designed Algorithm and Proposed SDN-Based Anomaly Detection Architecture 

Normally the controller unit’s OpenFlow switches are managed by the SDN controller. 
Whenever required, the SDN controller is able to request all network data. Therefore, for both 
machine learning and deep learning methods, we implemented our proposed section of intrusion 
detection in the SDN controller, as illustrated in Figure 7. Our suggested approach for the ML-based 
classification model is summarized in the following algorithm. 

Algorithm 1: Machine learning-based anomaly class detector for software-defined networking 
(SDN) attacks 
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Figure 7. Proposed flow-based anomaly detection architecture in SDN [28]. Reprint with permission 

[28]; 2019, Springer. 

To request network data, a request message for OpenFlow stats will be sent to all OpenFlow 
switches from the controller. An OpenFlow stats reply message with all available data is sent back to 
the controller by the OpenFlow switch as a controller request for all available statistics. Figure 8 
clearly describes how the OpenFlow switch handles the incoming packet and responds by using the 
Open Flow protocol according to the availability of data in the flow table. One of the SDN’s noticeable 
behaviors is that its centralized controller can take full network opportunities to assess and associate 
network feedback. Thus, when a network anomaly is discovered and recognized, the OpenFlow 
protocol can effectively alleviate an intrusion via flow table adjustment. Algorithm 2 summarizes our 
suggested solution to the deep learning-based classification system. 
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Figure 8. Diagram of handling incoming packets in OpenFlow switch [26]. Reprint with permission 

[26]; 2019, IEEE. 

Algorithm 2: Deep learning-based anomaly class detector for SDN attacks. 

 

4. Experimental Results  

4.1. Experimental Results of Machine Learning Approach 

To carry out the experiments, we used the WEKA [44] environment and the NSL-KDD dataset. 
The system consists of a 6 GB hard processor and an Intel(R) Core(TM) Processor(s) i5-2410 M CPU 
@ 2.30 GHz, 2301 MHz, Dual Core(s) and four Logical Processor(s). WEKA’s trouble-free heap size 
was increased to load and analyze the dataset. The NSL-KDD dataset was used to train and test each 
of the selected 285 features. We used a 10-fold cross-validation approach in our experiment to 
successfully conduct the experiment. By dividing the training set into 10 subsets, we tested each 
subset when the model was trained on the other nine subsets. Each subset, however, is processed as 
test data only once; the process therefore repeats up to 10 times. For simplicity, only results of the 
higher accuracy classifier obtained with different method of selection of features were mentioned in 
Table 5. 

Table 5. Random forest classifier showing the highest accuracy with gain ratio feature selection. 

Feature Selection 
Method 

Classifier 
Techniques 

Accuracy 
TP 

Rate 
FP 

Rate 
Evaluation Criteria F-

Measure 
MCC MAE 

Precision Recall FAR 
Info Gain Random Forest 79.360 0.794 0.163 0.846 0.794 0.341 0.792 0.641 0.229 

CFS Subset PART 79.249 0.792 0.167 0.839 0.792 0.333 0.791 0.633 0.264 
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Gain Ratio Random Forest 81.946 0.819 0.143 0.860 0.819 0.297 0.819 0.681 0.232 
Symmetric 
Uncertainty 

Random Forest 80.708 0.807 0.153 0.853 0.807 0.317 0.806 0.661 0.221 

Chi-squared Random Forest 80.132 0.801 0.157 0.850 0.801 0.328 0.800 0.653 0.222 

Table 6 represents the results of an entire classifier with different feature selection method. 
Different results of accuracy (AC), true positive rate (TPR), false positive rate (FPR), precision (P), 
recall (R), false alarm rate (FAR), F-measure, Matthews correlation coefficient (MCC), and mean 
absolute error (MAE) of specific classifiers are shown based on the test. The Table uses different color 
combinations to understand the highest accuracy of specific classifier techniques with numerous 
methods of features selection. In addition, only the highest results obtained from different classifiers 
are shown in terms of the selection of features. The best performance accuracy for each individual 
feature selection methods is indicated by each colored classifier technique. The following colored 
relation of IG-RF, CFS-PART, GR-RF, SU-RF, CST-RF shows the best classifier methods in terms of 
higher accuracy and lower false alarm rate. Our initial goal, however, was to achieve high accuracy, 
recall, and low false alarm frequency and MCC. We accomplished that successfully in our 
experiment. From the experimental data, random forest with gain ratio feature selection method 
exhibits the highest accuracy of 81.946% which is illustrated from our experimental results. We 
plotted the accuracy value of ML-based models in Figures 9 and 10. After analyzing these results, we 
found that the info gain feature selection approach produced a higher accuracy of 79.36% with 
random forest classifier whereas PART shows an accuracy of 79.249% with CFS subset evaluator. 
However, the rest of the feature selection methods illustrate an accuracy value of more than 80% with 
RF and PART, respectively. Among all of them, random forest with gain ratio selection method 
produced the highest accuracy of nearly 82% (~81.946%). 

 
Figure 9. Accuracy value of machine learning (ML)-based detection model for info gain, CFS subset, 
and gain ratio for all classifier techniques. 
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Figure 10. Accuracy value of ML-based detection model for symmetric uncertainty and Chi-squared 
test for all classifier techniques. 

Table 6. Results of all classifiers with different feature selection method. 

Feature 
Selection 
Method 

Classifier 
Technique

s 

Evaluation Criteria 

Accura
cy 

TP 
Rate 

FP 
Rate 

Precis
ion 

Recal
l 

FAR 
F-

Meas
ure 

MC
C 

MA
E 

Info Gain 

J48 78.006 0.781 0.172 0.84 0.781 0.364 0.779 0.623 0.229 
Random 

Forest 79.360 0.794 0.163 0.846 0.794 0.341 0.792 0.641 0.229 

PART 77.102 0.771 0.18 0.835 0.771 0.382 0.768 0.609 0.231 
Naive 
Bayes 

72.068 0.721 0.227 0.789 0.721 0.442 0.715 0.514 0.279 

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197 
RBFN 71.965 0.72 0.228 0.787 0.72 0.441 0.714 0.511 0.299 

Bayes Net 73.203 0.732 0.209 0.816 0.732 0.45 0.725 0.553 0.268 

CFS 
Subset 

Evaluator 

J48 73.984 0.740 0. 203 0.820 0.74 0.436 0.734 0.564 0.267 
Random 

Forest 74.84 0.784 0.197 0.823 0.748 0.42 0.743 0.575 0.345 

PART 79.249 0.792 0.167 0.839 0.792 0.333 0.791 0.633 0.264 
Naive 
Bayes 

74.702 0.747 0.829 0.829 0.747 0.43 0.741 0.58 0.253 

DT 43.075 0.431 0.431 0.186 0.431 1 0.259 0 0.504 
RBFN 71.127 0.711 0.222 0.817 0.711 0.505 0.7 0.533 0.323 

Bayes Net 60.632 0.606 0.298 0.794 0.606 0.691 0.564 0.401 0.447 

Gain Ratio 

J48 81.871 0.819 0.145 0.858 0.819 0.293 0.818 0.677 0.193 
Random 

Forest 81.946 0.819 0.143 0.860 0.819 0.297 0.819 0.681 0.232 

PART 77.905 0.779 0.179 0.835 0.779 0.362 0.777 0.616 0.231 
Naive 
Bayes 

76.242 0.762 0.186 0.832 0.762 0.398 0.758 0.597 0.237 

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197 
RBFN 75.177 0.752 0.193 0.828 0.752 0.419 0.747 0.584 0.272 

Bayes Net 71.517 0.715 0.221 0.812 0.715 0.483 0.705 0.532 — 

Symmetri
c 

Uncertaint
y 

J48 78.927 0.789 0.167 0.842 0.789 0.346 0.787 0.633 0.218 
Random 

Forest 80.708 0.807 0.153 0.853 0.807 0.317 0.806 0.661 0.221 

PART 80.371 0.804 0.157 0.848 0.804 0.318 0.803 0.653 0.221 
Naive 
Bayes 

73.292 0.733 0.21 0.813 0.733 0.444 0.726 0.551 0.266 
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DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197 
RBFN 73.522 0.735 0.209 0.812 0.735 0.438 0.729 0.552 0.288 

Bayes Net 71.562 0.716 0.222 0.808 0.716 0.478 0.706 0.529 0.282 

Chi-
square 

Test 

J48 78.051 0.781 0.173 0.838 0.781 0.363 0.778 0.621 0.229 
Random 

Forest 80.132 0.801 0.157 0.850 0.801 0.328 0.800 0.653 0.222 

PART 77.989 0.78 0.173 0.84 0.78 0.367 0.777 0.622 0.218 
Naive 
Bayes 72.618 0.726 0.224 0.79 0.726 0.43 0.722 0.521 0.273 

DT 72.595 0.726 0.214 0.814 0.726 0.461 0.718 0.545 0.197 
RBFN 70.723 0.707 0.234 0.789 0.707 0.475 0.699 0.502 0.31 

Bayes Net 72.409 0.724 0.215 0.812 0.724 0.463 0.716 0.541 0.275 

4.2. Experimental Results of Deep Learning Approach 

We used Google TensorFlow [45] to carry out the experiments. TensorFlow offers an option for 
viewing the design of the network. The tests were performed with the Ubuntu 16.10 Distribution 
Operating System based on Linux in an atmosphere of Intel i5 3.2 GHz, 16 GB RAM, and NVIDIA 
GTX 1070. We used the tf.train.AdamOptimizer from TensorFlow. Table 7 shows the hyper 
parameter configuration initialization. The learning rate is controlled by Kingma and Ba’s Adam 
algorithm in tf.train.AdamOptimizer. 

Table 7. Set of different hyper parameters. 

(a) Hyper parameters 
learning rate = 0.001 
training epochs = 10 
display step = 1 num 

layers = 1 
(b) Definition of hyper parameters for the model 

learning rate = 0.001 
number of classes = 2 

display step = 100 
input features = train X.shape [1] #No of selected features 
training cycles = 1000 #No of time-steps to back propagate 

time-steps = 5 
hidden units = 50 #No of LSTM units in a LSTM hidden layer 

The model was developed using Python programming language along with several libraries like 
python based numpy, machine learning based scikit-learn, pandas for data visualization, and 
TensorFlow for model development. We started our experiments with a lightweight GRU with a 
hidden layer and a hidden unit. Ten sets of experiments were performed for each set of hyper 
parameters (learning speed, time-steps, hidden layers) and we tuned them to get the optimal results. 
Table 8 represents the results of various evaluation metrics like accuracy, precision, recall, false alarm 
rate, and F-1 score for each time-step. 

Figure 10 illustrates the accuracy values for all time-steps with false alarm rate. At 70 time-steps, 
deep learning model of GRU-LSTM produces an accuracy of 87.91% (nearly ~88%) which is higher 
than others. 

Table 8. Evaluation metrics for all layer ids classifier. FAR: false alarm rate. 

Time-Steps Train Accuracy Precision Recall F-1 Score FAR 
10 86.632 0.9994 0.99 0.9977 0.0022 
20 85.534 0.9943 0.3296 0.9922 0.0077 
30 84.510 0.986 0.9952 0.9418 0.05812 
40 86.613 0.9996 0.9902 0.9983 0.0016 
50 85.434 0.9967 0.9919 0.9865 0.0134 
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60 72.89 0.8914 0.9935 0.5011 0.4988 
70 87.911 0.9981 0.9939 0.9923 0.0076 
80 83.243 0.9999 0.9842 0.9997 0.0002 
90 83.323 0.9995 0.9859 0.9981 0.0018 

100 82.167 0.9937 0.9925 0.974 0.0257 

4.3. Comparative Analysis of Two Approaches 

In this section, we will briefly discuss the experimental procedures and analyze our results for 
further use in the division of intrusion detection. Feature selection is considered a prime component 
of this research work. For both approaches we prepared our dataset by applying some fruitful feature 
selection algorithms. Researchers from different domains have previously used the NSL-KDD dataset 
to detect intrusion, but none of the approaches followed a proper selection approach for their 
experiment. In the machine learning approach, we used some well researched machine learning 
algorithms like J48, random forest, PART, naïve Bayes, decision tree, radial basis function network 
(RBFN), and Bayes net. In order to eliminate the ambiguous data from the dataset, we also employed 
some feature selection algorithms like info gain, gain ratio, CFS subset evaluator, symmetric 
uncertainty, and Chi-square test. After successful experiments we found that random forest classifier 
with fain ratio feature selection approach generates 81.946% accuracy with a very low false alarm rate 
of 0.297%. Apart from that, we also developed a GRU-LSTM-based deep learning model with 
ANOVA F-test and recursive feature elimination (RFE) selection approach. As our aim is to achieve 
a high detection accuracy in terms of different approaches with feature selection methods, we tested 
our model with different time-steps and different learning rates. After successful experiments we 
observed that with a learning rate of 0.01 and 70 time-steps our model achieved a detection accuracy 
of approximately 88%. Complete results for 0.01 learning rate with time-steps (10, 20, 30, ... 90, 100) 
are depicted in Table 8. At this point the deep learning approach shows many potential outcomes 
compared with the machine learning approach. In our research implementation of the SDN-based 
intrusion detection system, the classification model is mainly two-class-based, namely normal and 
anomaly. After evaluating both results, we proposed a model of security architecture which detects 
flow-based anomaly in an OpenFlow-based controller. From the detailed results, we can derive a 
decision that, with a very low false alarm rate of 0.0076%, the ANOVA F-Test and recursive feature 
elimination (RFE) methods with GRU-LSTM classifier provide maximum accuracy of 87.911%. 
Furthermore, we generated the results using the selected features from the complete NSL-KDD 
dataset. Some other approaches from different authors were presented to show the accuracy of the 
NSL-KDD dataset deep learning algorithm. Nevertheless, there was no pre-processing of the 
database and the correct choice of features for testing and training. 

5. Conclusions 

In this research, we have presented two different approaches for predicting the flow-based 
anomaly in software-defined networking. The GRU-LSTM model based on deep learning and the 
random forest (RF) model based on machine learning were designed to detect network interference 
in SDN. In addition, with ANOVA F-Test and RFE feature selection and the gain ratio feature 
selection method, we also developed the best classifier model in terms of different evaluation metrics. 
Although both approaches produce significant experimental results compared with other works, 
both approaches made some effective contribution in the field of intrusion detection for SDN use. It 
is evident from the experimental results that the deep learning approach produces slightly better 
results than the machine learning approach, therefore the use of GRU-LSTM model for flow-based 
anomaly detection is absolutely essential in order to achieve high accuracy and speed up the intrusion 
detection process in SDN. Nonetheless, we plan to implement our proposed model in the near future 
in a real SDN environment with real network traffic. 
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ANOVA Analysis of variance 
BPTT Backpropagation through time (BPTT) 
DDoS Distributed denial-of-service 
DNN Deep neural network 
DoS Denial-of-service 
GRU Gated recurrent unit 
GSA Gravitational search algorithm 
LSTM Long short-term memory 
MLP Multi-layer perceptron 
NIDS Network intrusion detection systems 
OF Open flow 
R2L Root to local 
RFE  Recursive feature elimination 
RNN Recurrent neural network 
SAE Stacked auto encoder 
SDN Software-defined networking 
SOHO Small office/home office 
SVM Support vector machine 
U2R Use to root 
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