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Abstract: Subdivision schemes are extensively used in scientific and practical applications to produce
continuous geometrical shapes in an iterative manner. We construct a numerical algorithm to
estimate subdivision depth between the limit curves/surfaces and their control polygons after
k-fold subdivisions. In this paper, the proposed numerical algorithm for subdivision depths of
binary subdivision curves and surfaces are obtained after some modification of the results given by
Mustafa et al in 2006. This algorithm is very useful for implementation of the parametrization.
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1. Introduction

Computer Aided Geometric Design (CAGD) foremost deals with curves/surfaces and its
computational aspects. Subdivision schemes (SSs) have achieved much popularity in the past few
years because of its competitive generation of curves/surfaces, and this magnificence lies in its
implementation along with its mathematical formulation. Here we provide an overview of CAGD,
subdivision and some other related concepts. The term CAGD was first suggested by Riesenfeld
and Barnhill [1] in 1974 and the initial work was performed in the 1960’s. “Computational Geometry
for Design and Manufacture” was the first book on CAGD authored by Faux and Pratt [2] in 1979.
Subdivision is the most remarkable field for the purpose of modeling in CAGD, and is described as
“the act or process of dividing something into smaller parts”. A small number of papers have been
published in the field of SSs for error dominance.

Huawei et al. [3] performed error (distance) estimations for the Doo–Sabin scheme. After this,
Mustafa et al. [4–7] estimated error bounds for binary, non-stationary binary, ternary and quaternary
SSs. Mustafa et al. computed error bounds for tensor product volumetric models and

√
3 subdivision

surfaces [8,9]. They also computed triangular surfaces subdivision depths [10]. However, Mustafa
and Hashmi [11] determined subdivision depth computation for n-ary subdivision curves/surfaces
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by using the first forward difference technique. Moncayo and Amat [12] estimated error bounds for
the class of SSs based on the two-scale refinement equation. The authors in [4–11] imposed these
conditions to find their results. But, it has been observed that all SSs do not satisfy the imposed
condition. Amat et al. [12] relaxed the condition in [4] for estimating the error bounds of binary SSs
for curve designing. In this paper, we relax the conditions in the work of [5–11] and generalize the
work of [12] to estimating error bounds and subdivision depths of binary SSs for curve and regular
surface design.

However, as of yet, no one has found a numerical algorithm to estimate error bounds and
subdivision depths of parametric SSs for curve and regular surface design. This motivates us to present
a novel numerical algorithm for estimating the subdivision depth of binary subdivision schemes.
This paper introduces not only a numerical algorithm for parametric SSs, but also the estimation
for the non-parametric SSs. This novel technique has lesser computational cost than numerous
other techniques.

Now we present some preliminaries. In the case of the curve: Let { f k
i ; i ∈ Z} be a sequence of

points in RN, where N ≥ 2 and k be the non-negative integer which indicates the SS level. A generalized
univariate binary SS [13] is illustrated in the following as

f k+1
2i =

t
∑

m=0
a0,m f k

i+m,

f k+1
2i+1 =

t
∑

m=0
a1,m f k

i+m,
(1)

with necessary condition of the convergence

t

∑
m=0

a0,m =
t

∑
m=0

a1,m = 1. (2)

By [4], we have

b0,m =
m

∑
l=0

(a0,l − a1,l) ,

b1,m = a0,m − b0,m, (3)

such that
t

∑
m=0
|b0,m| < 1 and

t

∑
m=0
|b1,m| < 1.

We introduce the coefficients for m = 0, 1, . . . , t, such that{
d2m = b0,m,

d2m+1 = b1,m.
(4)

In the case of the surface: The points { f k
i,j; i, j ∈ Z} represents a sequence in RN, N ≥ 2 and is

described as 

f k+1
2i,2j =

t
∑

p=0

t
∑

q=0
a0,pa0,q f k

i+p,j+q,

f k+1
2i,2j+1 =

t
∑

p=0

t
∑

q=0
a0,pa1,q f k

i+p,j+q,

f k+1
2i+1,2j =

t
∑

p=0

t
∑

q=0
a1,pa0,q f k

i+p,j+q,

f k+1
2i+1,2j+1 =

t
∑

p=0

t
∑

q=0
a1,pa1,q f k

i+p,j+q,

(5)
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with the condition

t

∑
p=0

a0,p =
t

∑
p=0

a1,p =
t

∑
q=0

a0,q =
t

∑
q=0

a1,q = 1. (6)

By [4], we have
t

∑
p=0
|a0,p|

t

∑
q=0
|b0,q| < 1 ,

t

∑
p=0
|a0,p|

t

∑
q=0
|b1,q| < 1,

t

∑
p=0
|a1,p|

t

∑
q=0
|b0,q| < 1 ,

t

∑
p=0
|a1,p|

t

∑
q=0
|b1,q| < 1,

where b0,q and b1,q for q = 0, 1, . . . , t are defined in (3). We introduce the coefficients ( fn)n∈N , (dn)n∈N
for r, s = 0, 1, . . . , t, such that 

f2r = a0,t−r

f2r+1 = a1,t−r r = 0, ..., t.

d2s = b0,t−s

d2s+1 = b1,t−s, s = 0, ..., t.

(7)

2. Preliminaries Results

Here we present some preliminary notations and results. Readers are referred to [12] for
more details.

2.1. Univariate Case

Let (un)n≥0 be the finite length vector and (dn)n≥0 = (dn)
2N−1
n=0 with dn = 0 for n ≥ 2N. The one

time convolution product of u = (un)n≥0 and d = (dn)n≥0 for binary subdivision curves is given by

(u(0) ? d)j =
[j/2]

∑
n=0

undj−2n. (8)

Similarly, we have the following reformulation for k0 convolutions

((. . . (((u(0) ? d)(0)) ? d)(0) ? . . . ? d)(0) ? d)j =
[j/2k0 ]

∑
m=0

umC[k0]
m,j , (9)

with 
C[1]

m,j = Am,j = dj−2m,

C[k0]
m,j =

[j/2k0−1]

∑
n=2m

Am,nC[k0−1]
n,j , k0 ≥ 2.

(10)

Hence by (9), we get

‖((. . . (((u(0) ? d)(0)) ? d)(0) ? . . . ? d)(0) ? d)‖∞ ≤ ‖u‖∞ max
j

{ [j/2k0 ]

∑
m=0

|C[k0]
m,j |

}
, (11)

and

sup
j

{ [j/2k0 ]

∑
m=0

|C[k0]
m,j |

}
= sup

j∈Σ(k0,N)

{ [j/2k0 ]

∑
m=0

|C[k0]
m,j |

}
, (12)
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where

Σ(k0, N) = {Ω(k0, N)− 2k0 + 1, Ω(k0, N)− 2k0 + 2, . . . , Ω(k0, N)}, (13)

and

Ω(k0, N) = (2k0 − 1)(2N − 1). (14)

Lemma 1. The associated constant of k0-th convolution with coefficients d = (d0, d1, . . . , d2N−1) for binary
subdivision curves is defined as

Dk0 = sup
j∈Σ(k0,N)

{ [j/2k0 ]

∑
m=0

|C[k0]
m,j |

}
. (15)

2.2. Bivariate Case

Let (un)n≥0 be a vector and (dn)n≥0 = (dn)
2N−1
n=0 , ( fn)n≥0 = ( fn)

2N−1
n=0 with dn = fn = 0 for

n ≥ 2N. The convolution product of u = (un)n≥0, d = (dn)n≥0 and f = ( fn)n≥0 for binary subdivision
surfaces is given by

uk0
i,j =

(
uk0−1;0 ∗ f d

)
i,j
=

[i/2]

∑
m=0

[j/2]

∑
n=0

uk0−1
m,n dj−2n fi−2m. (16)

Similarly, we get the following reformulation of k0 convolutions for surface case

uk0
i,j = (. . . (((uk0−1;0 ∗ f d) ∗ f d) ∗ . . . ∗ f d) ∗ f d)i,j =

[i/2k0 ]

∑
m=0

[j/2k0 ]

∑
n=0

u0
m,nC[k0,d]

n,j C[k0, f ]
m,i , (17)

with 
C[k0,d]

n,j =
[j/2k0−1]

∑
s=2n

C[k0−1,d]
n,s C[k0−1,d]

s,j ,

C[k0, f ]
m,i =

[i/2k0−1]

∑
p=2m

C[k0−1, f ]
m,p C[k0−1, f ]

p,i .
(18)

From (17), we have

max
i,j
|uk0

i,j | ≤ max
m,n
|u0

m,n|max
i,j

[i/2k0 ]

∑
m=0

[j/2k0 ]

∑
n=0
|C[k0,d]

n,j ||C
[k0, f ]
m,i |, (19)

and

max
i,j

{ [i/2k0 ]

∑
m=0

[j/2k0 ]

∑
n=0
|C[k0,d]

n,j ||C
[k0, f ]
m,i |

}
= max

i,j∈Σ(k0,N)

{ [i/2k0 ]

∑
m=0

[j/2k0 ]

∑
n=0
|C[k0,d]

n,j ||C
[k0, f ]
m,i |

}
, (20)

where Σ(k0, N) is defined in (13).

Lemma 2. The associated constants of k0-th convolution with coefficients d = (d0, d1, . . . , d2N−1) and
f = ( f0, f1, . . . , f2N−1) for binary subdivision surfaces are defined as

Fk0 = sup
i∈Σ(k0,N)

{ [i/2k0 ]

∑
m=0

|C[k0, f ]
m,i |

}
, (21)

Gk0 = sup
j∈Σ(k0,N)

{ [j/2k0 ]

∑
n=0
|C[k0,d]

n,j |
}

. (22)
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3. Subdivision Depth for Binary Subdivision Curves

Now firstly, the modified technique for finding the error bounds is presented. Secondly, an altered
subdivision depth computation technique based on the proposed error bounds is demonstrated with
the help of tables.

Theorem 1. Consider f 0
i , i ∈ Z to be the control polygon and f k

i to be the values for non-negative integers
recursively described by (1) together with mask condition (2). Suppose Fk denotes the initial at the points { f k

i }.
Then after two successive iterations the error bounds between k and k + 1 stage is

‖Fk+1 − Fk‖∞ ≤ γβDk0 , (23)

where Dk0 , k0 ≥ 1 defined in (15) and β = max
i

∥∥4p0
i

∥∥ ,

γ = max
( t−1

∑
j=0

∣∣ã0,j
∣∣ ,

t−1

∑
j=0

∣∣ã1,j
∣∣ ), ã0,j =

t

∑
i=j+1

a0,i,

ã1,0 =
t

∑
i=1

a1,i −
1
2

, ã1,j =
t

∑
i=j+1

a1,i, j 6= 0.

Theorem 2. Under the same conditions used in Theorem 1, let F∞ be the limit curve associated with the
subdivision process, then ∥∥∥F∞ − Fk

∥∥∥
∞
≤ γβ

( Dk
k0

1− Dk0

)
, (24)

where k0 ≥ 1 be a natural number, such that Dk0 < 1.

Remark 1. In this paper Dk0 for k0 = 1 is equal to δ defined in [4]. Note that in [4], if δ > 1 then the error
bounds can not be computed. But by [12] and by using our technique, we increase the value of k0 until Dk0

becomes less than one.

Theorem 3. Let k be the subdivision depth and let ∇k be the error bound between binary subdivision curve F∞

and its k-level control polygon Fk. For arbitrary ε > 0, if

k ≥ logD−1
k0

(
γχ

ε(1− Dk0)

)
, (25)

then ∇k ≤ ε.

Proof. Let ∇k be the distance between limit curve F∞ and control polygon Fk at the k-th subdivision
level, then

∇k =
∥∥∥F∞ − Fk

∥∥∥
∞
≤ γβ

( Dk
k0

1− Dk0

)
. (26)

To obtain the given error tolerance ε > 0, the subdivision depth k satisfies the following relation,
which is in inequality form as

k ≥ logD−1
k0

(
γχ

ε(1− Dk0)

)
, (27)

then ∇k ≤ ε.
Hence, this completes the proof.
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Application for Univariate Case

Here, we present some numerical examples to compute subdivision depths of binary SSs for
curves. The associated constants Dk0 , k0 ≥ 1 defined in (15) of some binary subdivision curves are
shown in Table 1.

Table 1. Associated constants of binary subdivision schemes (SSs).

Scheme/Dk0 D1 = δ D2 D3 D4 D5

2-point scheme [14] 0.50000 0.25000 0.12500 0.06250 0.03125
3-point scheme [15] 1.50000 1.03125 0.83203 0.52685 0.36584
4-point scheme [16] 0.65625 0.36829 0.21610 0.12153 0.06912
4-point scheme [17] 0.80800 0.55800 0.40343 0.28765 0.20595
6-point scheme [18] 0.74200 0.44218 0.28589 0.18321 0.11768

Example 1. Consider the 2-point Chaikin’s binary SS [14]:

pk+1
2i =

3
4

pk
i +

1
4

pk
i+1,

pk+1
2i+1 =

1
4

pk
i +

3
4

pk
i+1. (28)

Its subdivision depth by Theorem 3 for Dk0 , k0 ≥ 1 (computed in Table 1) are shown in Table 2. From this
table, we see that as k0 increases the subdivision depth decreases. This shows that the sharp depth can be obtained
by using our technique. In other words, we need a smaller number of iterations to get the sharp depth compared
to the technique of [11]. For example, by [11], it needs thirty one iterations for ε = 2.40× 10−11, but using our
technique, it needs only six iterations corresponding to D5, which are shown in Figure 1a.

Table 2. Subdivision depth of 2-point binary subdivision curve.

Dk0 /ε 0.0008 0.00002 7.87 × 10−7 2.46 × 10−8 7.69 × 10−10 2.40 × 10−11

D1 = δ 6 11 16 21 26 31
D2 3 5 8 10 13 15
D3 1 3 5 7 8 10
D4 1 3 4 5 6 8
D5 1 2 3 4 5 6

Example 2. Consider the 3-point approximating SS [15]:

f k+1
2i =

1
2

f k
i+1 +

1
2

f k
i+2,

f k+1
2i+1 =

1
8

f k
i +

3
4

f k
i+1 +

1
8

f k
i+2. (29)

From Table 3, D1 > 1 and D2 > 1, so error bounds cannot be computed by [4]. Consequently, it is not
possible to compute subdivision depths. In this case, we increase the value of k0 until Dk0 < 1. The subdivision
depths of the 3-point scheme are shown in Table 3 at different values of error tolerance. It is also demonstrated
with the help of Figure 1b.

Table 3. Subdivision depth of 3-point binary subdivision curve.

Dk0 /ε 0.0086 0.0031 0.0011 0.0004 0.0001 5.67 × 10−5 2.07 × 10−5

D3 19 25 30 36 41 47 52
D4 4 5 7 9 10 12 13
D5 2 3 4 5 6 7 8
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Example 3. The initial polygon have values f k
i , k ≥ 1 by following the 4-point approximating binary SS [14]

with subdivision mask

(a0,0, a0,1, a0,2, a0,3) =

(
− 7

128
,

105
128

,
35
128

,− 5
128

)
,

(a1,0, a1,1, a1,2, a1,3) =

(
− 5

128
,

35
128

,
105
128

,− 7
128

)
. (30)

Its subdivision depths by using Theorem 3 are given in Table 4. The comparison of the first and fifth
convolution results is shown in Figure 1c.

Table 4. Subdivision depth of 4-point binary subdivision curve.

Dk0 /ε 0.0092 0.0006 4.43 × 10−5 3.06 × 10−6 2.11 × 10−7 1.46 × 10−8

D1 9 16 21 28 34 40
D2 3 6 8 11 14 16
D3 2 4 5 7 9 11
D4 1 3 4 5 6 8
D5 1 2 3 4 5 6

Example 4. Consider f 0
i = fi, i ∈ Z denotes the initial polygon with values f k

i , k ≥ 1, which can be expressed
recursively by the 4-point interpolating binary SS [17] with weights

(a0,0, a0,1, a0,2, a0,3) = (0, 1, 0, 0) ,

(a1,0, a1,1, a1,2, a1,3) =

(
−w,

1
2
+ w,

1
2
+ w,−w

)
. (31)

Its subdivision depths are given in Table 5. It is also illustrated with the help of the graph given in Figure 1d.

Table 5. Subdivision depth of 4-point binary subdivision curve.

Dk0 /ε 0.0259 0.0053 0.00109 0.0002 4.66 × 10−5 9.59 × 10−6 1.97 × 10−6

D1 14 21 29 36 44 51 59
D2 4 6 9 12 15 17 20
D3 2 4 6 7 9 11 12
D4 1 3 4 5 6 8 9
D5 1 2 3 4 5 6 7

Example 5. Given the initial polygon f 0
i = fi, i ∈ Z with values f k

i , k ≥ 1 can be expressed recursively by the
6-point interpolating binary SS [18] as

(a0,0, a0,1, a0,2, a0,3, a0,4, a0,5) = (0, 0, 1, 0, 0, 0) , (32)

(a1,0, a1,1, a1,2, a1,3, a1,4, a1,5) =

(
w,− 1

16
− 3w,

9
16

+ 2w,
9
16

+ 2w,− 1
16
− 3w, w

)
.

In Table 6, subdivision depths are presented and its performance is shown in Figure 1e.

Table 6. Subdivision depth of 6-point binary subdivision curve.

Dk0 /ε 0.0266 0.0031 0.0003 4.35 × 10−5 5.12 × 10−6 6.02 × 10−7 7.09 × 10−8

D1 11 18 26 33 40 47 54
D2 3 6 8 11 14 16 19
D3 2 4 5 7 9 10 12
D4 1 3 4 5 6 8 9
D5 1 2 3 4 5 6 7
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(a) 2-point approximating SS (b) 3-point approximating SS

(c) 4-point approximating SS (d) 4-point interpolating SS

(e) 6-point interpolating SS

Figure 1. The performance of different subdivision schemes for univariate case. Here k presents the
subdivision depth (level of subdivision process) obtained after user-specified error tolerance.

4. Subdivision Depth for Binary Subdivision Surfaces

In the following section, firstly we calculate error bounds for subdivision surfaces. Secondly,
we use these error bounds to compute subdivision depths.

Theorem 4. Consider f 0
i,j, i, j ∈ Z to be the initial polygon and f k

i,j to be the values for all non-negative integers

recursively given in (5) along with the condition (6). Also let Fk be the representation of the polygon at the
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points f k
i,j. Then the error bounds of two successive refinements between the level k and k + 1 by using the same

technique given in [4] is

‖Fk+1 − Fk‖∞ ≤ (ηβ1 + τβ2 + ξβ3) Fk0 Gk0 , (33)

where Fk0 , Gk0 , k0 ≥ 1 defined in (21) and (22), βt = maxi,j ‖40,t
i,j ‖, t = 1,2,3,

4k,1
i,j = pk

i+1,j − pk
i,j, 4k,2

i,j = pk
i,j+1 − pk

i,j, 4k,3
i,j = pk

i+1,j+1 − pk
i,j+1,

and η, τ and ξ are defined by

η1 = |a0,0|
( t

∑
r=1
|a0,r|+

t−1

∑
q=1

∣∣ã0,q
∣∣ ), η2 = |a0,0|

( t

∑
r=1
|a1,r|+

t−1

∑
q=1

∣∣ã1,q
∣∣ )+

1
2

,

η3 = |a1,0|
( t

∑
r=1
|a0,r|+

t−1

∑
q=1

∣∣ã0,q
∣∣ ), η4 = |a1,0|

( t

∑
r=1
|a1,r|+

t−1

∑
q=1

∣∣ã1,q
∣∣ )+

1
4

,

τ1 =
t

∑
r=1
|a0,r|+

t

∑
m=0
|a0,m|

t−1

∑
q=1

∣∣ã0,q
∣∣ , τ2 =

t

∑
r=1
|a0,r|+

t

∑
m=0
|a1,m|

t−1

∑
q=1

∣∣ã0,q
∣∣ ,

τ3 =
t

∑
r=1
|a1,r|+

t

∑
m=0
|a0,m|

t−1

∑
q=1

∣∣ã1,q
∣∣+ 1

2
, τ4 =

t

∑
r=1
|a1,r|+

t

∑
m=0
|a1,m|

t−1

∑
q=1

∣∣ã1,q
∣∣+ 1

2
,

ξ1 =
t

∑
r=1
|a0,r|

( t

∑
r=1
|a0,r|+

t−1

∑
q=1

∣∣ã0,q
∣∣ ), ξ2 =

t

∑
r=1
|a0,r|

( t

∑
r=1
|a1,r|+

t−1

∑
q=1

∣∣ã1,q
∣∣ ),

ξ3 =
t

∑
r=1
|a1,r|

( t

∑
r=1
|a0,r|+

t−1

∑
q=1

∣∣ã0,q
∣∣ ), ξ4 =

t

∑
r=1
|a1,r|

( t

∑
r=1
|a1,r|+

t−1

∑
q=1

∣∣ã1,q
∣∣ )+

1
4

.

Finally,

η = max{ηt; t = 1, 2, 3, 4}, τ = max{τt; t = 1, 2, 3, 4}, ξ = max{ξt; t = 1, 2, 3, 4}.

Theorem 5. Under the same circumstances used in Theorem 4. Let F∞ be the limit surface associated with the
subdivision process. Then

‖F∞ − Fk‖∞ ≤ (ηβ1 + τβ2 + ξβ3)

(
(Fk0 Gk0)

k

1− Fk0 Gk0

)
, (34)

where k0 ≥ 1 is a natural number, such that Fk0 Gk0 < 1.

Remark 2. Again F1G1 is also equal to δ which is defined in [4].

Theorem 6. Let k be the subdivision depth and let ∇k be the error bound between binary subdivision surface
F∞ and its k-level control polygon Fk. For arbitrary ε > 0, if

k ≥ log
(Fk0

Gk0
)−1

(
ψ

ε(1− Fk0 Gk0)

)
, (35)

then ∇k ≤ ε.
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Proof. Let∇k denote the distance between limit curve F∞ and initial curve (polygon) Fk at the k-th
level. Then

∇k = ‖F∞ − Fk‖∞ ≤ (ηβ1 + τβ2 + ξβ3)

(
(Fk0 Gk0)

k

1− Fk0 Gk0

)
. (36)

To obtain given error tolerance ε > 0 the subdivision depth k satisfies the following inequality:

k ≥ log
(Fk0

Gk0
)−1

(
ψ

ε(1− Fk0 Gk0)

)
, (37)

then ∇k ≤ ε.
This completes the proof.

Application for Bivariate Case

Here, we present some numerical examples to compute subdivision depths for subdivision
surfaces. The associated constants Fk0 Gk0 , k0 ≥ 1 for some binary subdivision surfaces by using (21)
and (22) are shown in Table 7. We see that the values of Fk0 Gk0 decrease with the increase of k0. This is
the advantage of our approach.

Table 7. Associated constants of binary SSs.

Scheme/ Fk0 Dk0 F1G1 = δ F2G2 F3G3 F4G4 F5G5

2-point scheme [14] 0.50000 0.25000 0.12500 0.06250 0.03125
3-point scheme [15] 1.50000 1.00000 0.81250 0.60937 0.47265
4-point scheme [16] 0.77930 0.40902 0.20020 0.09959 0.04953
4-point scheme [17] 0.84500 0.43741 0.22635 0.11557 0.05801
6-point scheme [18] 0.89780 0.45218 0.23205 0.11764 0.05902

Example 6. Given the initial polygon F0
i,j = Fi,j, i, j ∈ Z and the values Fk

i,j, k ≥ 1 be described recursively by
the tensor product of (28), then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 by using Theorem 35 are shown in
Table 8 and the comparison of the first and fifth convolution result is shown in Figure 2a.

Table 8. Subdivision depth of 2-point binary subdivision surface.

Fk0 Gk0 /ε 0.0020 0.00006 1.96 × 10−6 6.15 × 10−8 1.92 × 10−9 6.008 × 10−11

F1G1 6 11 16 21 26 31
F2G2 3 5 8 10 13 15
F3G3 2 3 5 7 8 10
F4G4 1 3 4 5 6 8
F5G5 1 2 3 4 5 6

Example 7. Consider the tensor product of the 3-point approximating SS defined in (29). The mask of SS
satisfies Fk0 Gk0 < 1, for k0 ≥ 3. Therefore its subdivision depths can be computed at different values of error
tolerance which are shown in Table 9. Here, the comparison of the third and fifth convolutions is demonstrated in
Figure 2b.

Table 9. Subdivision depth of the 3-point binary subdivision surface.

Fk0 Gk0 /ε 0.2688 0.1270 0.06007 0.0283 0.0134 0.0063 0.0029

F3G3 9 12 16 19 23 27 30
F4G4 2 4 5 7 8 10 11
F5G5 1 2 3 4 5 6 7
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Example 8. Given that f 0
i,j = fi,j, i, j ∈ Z, let the values f k

i,j, k ≥ 1 be described recursively by the tensor
product of (30). Then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 by using Theorem 35 are shown in Table 10
which is illustrated in Figure 2c.

Table 10. Subdivision depth of 4-point binary subdivision surface.

Fk0 Gk0 /ε 0.0192 0.0009 4.72 × 10−5 2.33 × 10−6 1.15 × 10−7 5.73 × 10−9

F1G1 18 30 42 54 66 78
F2G2 4 7 10 14 17 21
F3G3 2 4 6 8 9 11
F4G4 1 3 4 5 7 8
F5G5 1 2 3 4 5 6

Example 9. Consider the initial control polygon f 0
i,j = fi,j, i, j ∈ Z and let the values f k

i,j for all positive integers
be defined recursively by the tensor product of (31). Then the subdivision depths for Fk0 Gk0 , k0 ≥ 1 are shown in
Table 11. It is also presented with the help of the graph in Figure 2d.

Table 11. Subdivision depth of 4-point binary subdivision surface.

Fk0 Gk0 /ε 0.0184 0.00107 6.21 × 10−5 3.6 × 10−6 2.09 × 10−7 1.21 × 10−8

F1G1 28 45 61 78 95 112
F2G2 4 7 11 14 18 21
F3G3 2 4 6 8 10 12
F4G4 1 3 4 5 7 8
F5G5 1 2 3 4 5 6

Example 10. Given the initial control polygon f 0
i,j = fi,j, i, j ∈ Z and that the values f k

i,j, k ≥ 1 can be described
recursively by the tensor product of (32), then in Table 12, subdivision depths for Fk0 Gk0 , k0 ≥ 1 are presented
and a graphical representation is shown in Figure 2e.

Table 12. Subdivision depth of 6-point binary subdivision surface.

Fk0 Gk0 /ε 0.0313 0.0018 0.0001 6.44 × 10−6 3.80 × 10−7 2.24 × 10−8

F1G1 47 73 99 126 152 178
F2G2 4 8 11 15 18 22
F3G3 2 4 6 8 10 12
F4G4 1 3 4 5 7 8
F5G5 1 2 3 4 5 6
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(a) 2-point approximating SS (b) 3-point approximating SS

(c) 4-point approximating SS (d) 4-point interpolating SS

(e) 6-point interpolating SS

Figure 2. Presents the performance of different subdivision schemes for bivariate case. Here k presents
the subdivision depth (level of subdivision process) obtained after user-specified error tolerance.

5. Conclusions

In this paper, the modified version of the numerical algorithm of [4,11,12] have been presented to
compute the subdivision depths of the SSs for curves and surfaces design. Our algorithm can be used
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when the computation techniques of [4,11] fail. Moreover, we a smaller number of iterations to get the
sharp subdivision depth compared to the existing algorithm. The proposed method is an efficient way
of estimating subdivision depths for binary subdivision curves and surfaces.

Author Contributions: Conceptualization, F.K. and K.S.N.; Formal analysis, G.M. and D.B.; Methodology, A.G.
and D.B.; Supervision, D.B.; Writing—original draft, A.S., F.K. and G.M.; Writing—review & editing, A.G.
and K.S.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barnhill, R.E.; Riesenfeld, R.F. Computer Aided Geometric Design; Academic Press: New York, NY, USA, 1974.
2. Faux, I.; Pratt, M. Computational Geometry for Design and Manufacture; Ellis Horwood: New York, NY,

USA, 1979.
3. Huawei, W.; Youjiang, G.; Kaihuai, Q. Error estimation for Doo-Sabin surfaces. Prog. Nat. Sci. 2002, 12,

697–700.
4. Mustafa, G.; Chen, F.; Deng, J. Estimating error bounds for binary subdivision curves/surfaces. J. Comput.

Appl. Math. 2006, 193, 596–613. [CrossRef]
5. Mustafa, G.; Hashmi, S.; Faheem, K. Estimating error bounds for non-stationary binary subdivision

curves/surfaces. J. Inf. Comput. Sci. 2007, 2, 179–190.
6. Mustafa, G.; Deng, J. Estimating error bounds for ternary subdivision curve/surfaces. J. Comput. Math. 2007,

25, 473–484.
7. Mustafa, G.; Hashmi, S. Estimating error bounds for quaternary subdivision schemes. J. Math. Anal. Appl.

2009, 358, 159–167.
8. Mustafa, G.; Hashmi, S.; Noshi, N.A. Estimating error bounds for tensor product binary subdivision

volumetric model. Int. J. Comput. Math. 2006, 83, 879–903. [CrossRef]
9. Mustafa, G.; Hashmi, S.; Faheem, K. Error bounds for

√
3 subdivision surfaces. J. Univ. Sci. Technol. China

2009, 39, 1–9.
10. Mustafa, G.; Hashmi, S.; Faheem, K. Subdivision depth for triangular surfaces. Alex. Eng. J. 2016, 55,

1647–1653. [CrossRef]
11. Mustafa, G.; Hashmi, S. Subdivision depth computation for n-ary subdivision curves/surfaces.

J. Vis. Comput. 2010, 26, 841–851. [CrossRef]
12. Moncayo, M.; Amat, S. Error bounds for a class of subdivision schemes based on the two-scale refinement

equation. J. Comput. Appl. Math. 2011, 236, 265–278. [CrossRef]
13. Dyn, N.; Gregory, A.; Levin, D. Analysis of uniform binary subdivision scheme for curve design.

Constr. Approx. 1991, 7, 127–147. [CrossRef]
14. Chaikin, G.M. An algorithm for high speed curve generation. Comput. Graph. Image Process. 1974, 3, 346–349.

[CrossRef]
15. Dyn, N.; Levin, D.; Micchelli, C.A. Using parameters to increase smoothness of curves and surfaces generated

by subdivision. Comput. Aided Geom. Des. 1990, 7, 129–140. [CrossRef]
16. Dyn, N.; Floater, M.S.; Hormann, K. A four-point subdivision scheme with fourth order accuracy and its

extensions. In Mathematical Methods for Curves and Surfaces: Modern Methods in Mathematics; Springer: Troms,
Norway, 2004 ; pp. 145–156.

17. Dyn, N.; Levin, D.; Gregory, J.A. A 4-Point Interpolatory SS for Curve Design. Comput. Aided Geom. Des.
Acad. Press. 1987, 4, 257–268 [CrossRef]

18. Weissman, A. A 6-Point Interpolatory Subdivision Scheme for Curve Design. Master’s Thesis, Tel Aviv
University, Tel Aviv-Yafo, Israel, 1990.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cam.2005.06.030
http://dx.doi.org/10.1080/00207160601117263
http://dx.doi.org/10.1016/j.aej.2016.02.013
http://dx.doi.org/10.1007/s00371-010-0496-0
http://dx.doi.org/10.1016/j.cam.2011.06.031
http://dx.doi.org/10.1007/BF01888150
http://dx.doi.org/10.1016/0146-664X(74)90028-8
http://dx.doi.org/10.1016/0167-8396(90)90025-M
http://dx.doi.org/10.1016/0167-8396(87)90001-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries Results
	Univariate Case
	Bivariate Case

	Subdivision Depth for Binary Subdivision Curves
	Subdivision Depth for Binary Subdivision Surfaces
	Conclusions
	References

