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Abstract: In this paper, we introduce a new univariate version of the Lomax model as well as a simple
type copula-based construction via Morgenstern family and via Clayton copula for introducing a new
bivariate and a multivariate type extension of the new model. The new density has a strong physical
interpretation and can be a symmetric function and unimodal with a heavy tail with positive skewness.
The new failure rate function can be “upside-down”, “decreasing” with many different shapes and
“decreasing-constant”. Some mathematical and statistical properties of the new model are derived.
The model parameters are estimated using different estimation methods. For comparing the estimation
methods, Markov Chain Monte Carlo (MCMC) simulations are performed. The applicability of the
new model is illustrated via four real data applications, these data sets are symmetric and right
skewed. We constructed a modified Chi-Square goodness-of-fit test based on Nikulin-Rao-Robson
test in the case of complete and censored sample for the new model. Different simulation studies are

performed along applications on real data for validation propose.

Keywords: Lomax distribution; physical interpretation; moments; Nikulin-Rao-Robson statistic;
different method of estimation; validation

1. Introduction and Motivation

The Lomax (Lx) or Pareto type II (Pa II) statistical model was originally pioneered for modeling
failure data in business by [1]. The probability density function (PDF) and cumulative distribution
function (CDF) of the two parameter Lx with parameters a, and a3 are, respectively, given by:

an z —ap-1

Six(z a2, a3)l50 = a(l + Z) 1)
and:
z Taz
Gix(zag,a3)l;>0 =1-(1+ a—3) , )
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where ap > 0 (shape parameter) and a3 > 0 (scale parameter). It is easy to reduce the model in (2) to
a one parameter model by letting a3 = 1. The Lx model was derived as a heavy tailed alternative
statistical model to the standard gamma (Gam), standard Weibull (W) and standard exponential (Exp)
models. The Lx model is a special case of Pearson type VI (Pear—VI) model and it is a mixture of the
standard Exp and standard Gam random variables (rvs). Further, the above two parameter Lx model
is a special case from the well-known Burr type XII (B (XII)) model, so several properties of the Lx
model can be easily obtained from the B (XII) model (for more details about the relation between the
Lx model and the B (XII) model see [2-8]).

Many generalizations of the Lx model were recently proposed and studied such as the
exponentiated Lx (ExpLx) and Marshall—Olkin extended Lx (MOExLx) by [9,10], beta Lx (BLx)
and gamma Lx (GamLx) by [11,12], the Weibull Lx (WLx) and transmuted WLx (TWLx) by [13,14],
Weibull Generalized Lx (WGLx) and odd Lindley Lx (OLiLx) by [15,16], Zografos-Balakrishnan Lx
(ZBLx) by [17], Poisson—Topp Leone Lx (PTLLx) by [18], Burr XII Lx (BXIILx) by [19], and the two
parameter Topp Leone Lx (2PTLLx) by [20], among others.

In this work, we first introduce a new univariate version of the Lomax model called the Topp
Leone Lx (TLLx) model as well as a simple type copula-based construction via Morgenstern family
and via Clayton copula for introducing a new bivariate and multivariate type extension of the
TLLx model. Second, we study some mathematical properties of the TLLx model such as moments,
incomplete moments and quantile function. Third, we estimate the model parameters via different
estimation methods such as maximum likelihood method, maximum product spacing method, method
of least square and weighted least square estimation, method of percentile estimation, method of
Cramer-Von-Mises estimation and method of Anderson-Darling. For comparing the estimation
methods, MCMC simulations are performed. The simulation results are listed in Tables 1-3.

The proposed TLLx model has only three parameters. However, all other competitive models
have at least three parameters. The model with a smaller number of parameters is favorable especially
if it gives a better fit. The TLLx model has this advantage and this is illustrated in Tables 9-12. The TLLx
model has the lowest (best) value of the used criteria. So, it is recommended to use the TLLx model
instead of all other competitive models.

In the applied fields, especially in the field of modeling, the TLLx model could be useful in the
following cases:

(1) Modeling the right skewed data sets especially the right skewed heavy tail data sets.

(2) Modeling the right skewed and symmetric data sets especially in case of modeling a certain data
for the first time ever.

(3) In physics and reliability analysis, the TLLx model can be applied in modeling the breaking stress
data. As shown in Tables 5 and 9, the TLLx model showed its superiority against the standard
Burr XII, the Marshall-Olkin Burr XII, the Topp Leone Burr XII, the Zografos-Balakrishnan Burr
XII, the five parameters beta Burr XII, the beta Burr XII, the beta exponentiated Burr XII, the five
parameters Kumaraswamy Burr XII and Kumaraswamy Burr XII distributions.

(4) In survival analysis, the new model can be chosen in modeling the survival times data.
As illustrated in Tables 6 and 10, the new model showed its superiority against all competitive
models as mentioned in Table 4.

(5) Ineconometrics, the new model can be used in modeling the taxes revenue data. From Tables 7
and 11 we note that the new model showed its superiority against many well-known
competitive models.

(6) Inthe medicine field, our new model can be applied in modeling the acute myelogenous leukemia
data. The new model showed its superiority against many competitive models such as the
standard Burr XII, the Marshall-Olkin Burr XII, the Topp Leone Burr XII, the Zografos-Balakrishnan
Burr XII, the five parameters beta Burr XII, the beta Burr XII, the beta exponentiated Burr XII,
the five parameters Kumaraswamy Burr XII and Kumaraswamy Burr XII models as shown in
Tables 8 and 12.
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2. The New Model and Simple Type Copula-Based Construction
2.1. The New TLLx and Its Max-Mini Physical Interpretation.
Using the Topp-Leone G family originally proposed by [21] with following PDF:
fri-c(z) = 2118(2)[G(2)] " [1 - G(2)][2- G(2)]

We propose and study a new model called the Topp-Leone-Lx (TLLx). The PDF of the TLLx with
parameters Q) = (a1, az, a3) is given by:

@ z  —2a-1 z 2]t
friix(z,Q) = 2a1—=(1+ —) 1-(1+—) , ®)
as a3 as
and integrating (3) we have the new CDF as:
z 2m|M
Frix(z, Q) = |1-(1+ Oé_a) (4)

The TLLx distribution has a very important physical interpretation. Suppose a system has a;
systems. All are systems working in parallel and each system has only two sub-systems working in
series. Let Z; ;) denote a variable of interest for the j" sub-system associated with the i system.
Suppose Z; ;) are independent and identical random variables (IIDRVs) with CDF (2) (GLx(z; a2, a3)].
The variable Z; ;) of interest for the system will be:

Z= max (minZa )
which can be called the “max-mini” physical interpretation. It is not difficult to show that the CDF of Z
is (4). Figure 1 gives some plots of the TLLx PDF and HRF for selected parameter values. From Figure 1
(left panel), we note that the new PDF can be unimodal function with a heavy tail to the right (positive
skewness). From Figure 1 (right panel), we note that the new hazard rate function (HRF) can be
“upside-down” failure rate (0 = 2, ap = 5, a3 = 3), “decreasing” failure rate (0; = 1,02 = 1,a3 = 1)
with many different shapes and “decreasing-constant” failure rate (¢ = 1,a2 = 1, a3 = 6).

— a2 a2=5 335 . —a=2 a2=5 a3
g | = =1 a?=1 a3=6 o~ — :Lf ﬁj ZLE
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Figure 1. Plots of the TLLx PDF and HREF for selected parameter values.

The applicability and flexibility of the TLLx model given in (3) and (4) are illustrated via four real
data applications. The results of the four applications which established the superiority of the TLLx
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model are listed in Tables 5-12. The corresponding figures of the four applications are presented in
Figures 1-5.

For validating the TLLx model in applications and simulation, a new modified Chi-Square (Chi-S)
(x?) goodness-of-fit (GOF) test based on Nikulin-Rao-Robson (N-R-R) GOF test is used in the case of
complete and censored data (general and right case) for the TLLx model.

The simulation results are listed in Tables 13-16. The different estimation methods are used for
estimation of the model parameters and for assessing the finite sample behavior of the estimates.
However, new goodness-of-fit test is used for validation of whether a certain model is suitable to fit a
certain data set.

2.2. Copula via Morgenstern Gamily

First, we consider CDF for Morgenstern family of two rvs (Z1, Z) which has the following form:

Fa(z1,22)lgn<1) = F1(z){A[1 = F1(z1)][1 = Fa(22)] + 1}F2(22)
where:

2
b

_sz]bl
3

_ I R _ 1y
Fi(z1) = F(Q,,I)(Zﬂ - [1 (1+ a3) } , and Fp(z2) = F@,}’)(Zz) = [1 (1+
and Qa,, = (a1, a2, 3) and th = (b1, by, b3), then we have a seven-dimension parameter model.

2.3. Copula Via Clayton Copula

2.3.1. The Bivariate Extension

The bivariate extension via clayton copula can be considered as a weighted version of the clayton
copula, which is of the form:

__1
C(u(2),2(Y)|(6y459)50) = [1(2) ") o(y) ") _q] T

where 61 and 6, are the clayton copula parameters. This is indeed a valid copula. Next, let us assume
that Z ~ TLLx (Q ah) and Y ~ TLLx ( Q, ). Then, setting:

[ z —20(2 *
u(z) = ug () = |1-(1+ =) ],h—LZ&
—h | a3
and
[ Y —2a, 1"
o) = vy, 0) = [1- 1+ L) ],thZ&

the associated CDF of bivariate TLLx type distribution is:

[ (1+£ )Zaz]“l}—(61+62) -5t

{
H(z y) = ( +{[1 (142 >—za2r1}‘(5l+5z) )

-1
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2.3.2. The Multivariate Extension

A straightforward d-dimensional extension from the above will be:

1
d o 17 (01+02) IRIERD)

. ag | TN
T R T I

Qi
) 3i

Further future works could be done for studying the bivariate and the multivariate extensions of
the TLLx model.

3. Some Properties

In this section, we investigate some mathematical properties of the TLLX model including the
ordinary and incomplete moments (which are useful in deriving the mean deviations, Bonferroni curve,
Lorenz curve and many other applications in econometrics and insurance), and quantile function and
moment of the reversed residual life (RRL) which is useful in reliability analysis. Established algebraic
expansions to determine some structural properties of this model can be more efficient than computing
those directly by numerical integration of its PDFE.

Let Z be a rv having the TLLx model in (3). The transformation t =1 — (1+ 0%3)_0‘2 can be used

alongwith the binomial expansion to get the 7 moment of Z as:

r
’ r W=7
1. (2)] 20 = alaga;)(—l)w( o JBlan 1+ 5) )

where: )
B @) = [ o 1-0) e,
0

is the complete beta function. The first three moments can be obtain by taking r = 1, 2 and 3 in (5)
as follows:

1 4 1
Hi,z(zﬂ 20,51 = 0l10é3[B(0(1, 1- Eaz ) — a_l}’

- 1 1 _
Haz (a1 = 0‘10‘%[3(0‘1/ 1-a') + a 2B(ay, 1~ Eazl)],
and:
B(ay,1-3a3")
Hé,z(zﬂ 2a,>3 = alag +3B(a1,1- %a;l) ,
—3B(a1,1 - 0(_1) -1

2 ]

and the variance of the new model can be expressed as:

1
Var(Z) = am%[B(al, 1-ay') —a1B* (e, 1- Eagl)].

The " incomplete moment (1 ,(t)) can be derived as:

t r
, _ . o, IV w—7r
#r,z(t)|2a2>r—£ZfTLLx(Z/Q)dZ—ala;;wZ_a( P, )Be(an, 1+ 20m

),

where:

q
Bq(Clz C2)| 0<g<l = f a)Cl_l (1 _w)Cz—ldt.
0



Symmetry 2020, 12, 57 6 of 26

Moreover, in terms of the hypergeometric function 2F; [-] we can write:

( C2+1) q61+m
m!(Cq + m)

By (C1, G2l 0<qger = &g {2F1[C1, 1= Cos 1+ Casq)) = Z
m=0

The quantile function (QF) can be written as:

L
Zq=a3|(1-q") -1|0<q<1

The expression of z; can be used in simulating the TLLx model. The median of the TLLx model
can be obtained at q = 0.5. The n" moment of RRL of any continuous v is defined by:

Q[m](’l') = E[(T —Z)m |Z§'r, T,>O,m:1,2,_..] - 1% LT (’l’ —z)mdF(Z).

Then the m™ moment of RRL of Z can be expressed as:

U -

).

261(2

4. Different Methods of Estimation
4.1. Maximum Likelihood Estimation (MLE)
The log-likelihood function (¢, (€2)) for Q can be given by:
tn(Q) = mlog2 +mlogay + mlogag —mlogas
—(2a2 +1) Z log(1+ —= X i m) )

-2
Han=1) . logl1- (14 “’>> "
h=1

where z(, . ;) is the random variable which follow the TLLx but when we are dealing with a random
sample of size m, and h refer to the summation index. The above ¢, (Q) can be numerically maximized.
The components of the score vector U(Q)) where:

ot d d d T
uQ) = 0~ (Efm(g), Efm(g), E&”@) ,
are given by:
Il (Q) Z(h:m) "2
e mal + Z log[ (1+ = ) ,
85 m lO 1 4 him) h:m
:9”( = ma;" Zlo ))+2(a1—1) st m ) ’
a; [(1+ ’“"”) 2—1]
and:
00, (O u Z(h:m - 2(“ - 1)61{22 im
805_) :—aﬂ+(2a2+1)22(h—)_ z Al 2ap+1 e Z0 . ’
3 3 = (af +asz. ) = a%[(l—k(ha—‘;'”) —(1+(ha—'3m))]

respectively.
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4.2. Maximum Product Spacing Estimator

Let Dy (a1, a,a3) be the uniform spacings of a random sample (RS) from the TLLx model
defined by:

Dy(ay, a2,a3) = F(z(y . m) | a1,@2,03) = F(Z(4—1 .y | 01, 02, @3) | (4=12,...m)

where, F(zg .y | 01, 2, 23) = 0 and F(Z(m+1 ) lar,ap,a3) = 1.

Clearly
m+1

Z Dh(al,acz,ag,) =1.

h=1

The MPSEs of a1, ap and a3 are obtained by maximizing:

m+1

p—— hZ; log[Dy (a1, a2, a3)),

with respect to a1, az and as.

4.3. Method of Least Square (LS) and Weighted Least Square (WLS) Estimation

Let F (z(h m) Q) denote the CDF of TLLx version and let z; < zp <,- -+, < zy be the m ordered
random sample. The least square estimates are obtained by minimizing:

m

2
6(Q) = Z[F(Z(h ) Q) — C(m,h)]
h=1
where ¢, ;) = —h_ Now using CDF of TLLx we get:

m—+1°
m Z(h;m) —20(2 aq 2
fs<9>—2[{1—<1+ ) —c(m,m]

h=1

The LSEs of Ol(q—q,,a,,4;) are obtained by solving non-linear equations:

| Z(: m)  ~202) " —
Z {1 -(1+ a—g) } = Clmp) |1 (Z: m), Q) =0
1L ]

=

= Z(h:m) “20) M ]
Z {1— (1+ ) } = Clmp) [M2(z( m), Q) =0

=1L a3
d:
" ol 2 m) 702 "
Z {1— 1+—=) } = Clmm) [ N3 (2 m), Q) =
=1L 3 ]
where: )
Z(h —2ap\ M7
M(zg:m), Q) = a1{1 -(1+ (a;)) }
2o Z(h:m) —2a2) 17 Z(h: m) ~2ap-1
No(z(h.m), Q) = - alz 2200 m){l -(1+ a—3) } (1+ a—3)
3
and:

Z(h - —2ap) M7 Z(h - —2a3 Z(h -
Aoty ) =21 = (4 T T 2y gy 2
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The WLSESs can be obtained by minimizing:

nm

2
to(Q) = Z w(m,h)[FTLLx (Zh:m) Q) — C(m,h)]
h=1
2
w.rt. the parameters, where w,, ;) = % Then we have:

2

i Z(h:m —202) 1
Lo (Q) - Z w(m,h)[{l - (1 + as ) ) = C(m,h)
h=1

The WLSEs are obtained by solving:

U Z(y oy T202) M
Zw(m,h) {1 -(1+ ) } = Clmp) | M (Z(:m), Q) =0

=1 a3
m z -2\ %
(h:m)
zw(m,h)[{l -(1+ a3m ) } _C(m,h)]AZ(Z(h ) Q) =0,
=1
and:
=z Z(h: my  202) M
Zw(m,h) {1 -(1+ ” ) } = Cmp) |N3(Z(n . m), Q) =0
i1

The term Ay (Q)l(4—1,2,3) is same as defined above.

4.4. Method of Percentile Estimate
For (2), the QF is obtained as:

1 "2,
Zp :043[(1—17“1) " —1]

then the estimate of a1, ap, @3 can be obtained by minimizing:

1 2
m 0% —%
Zz(h:m)—OfS({l_Phl} _1> ’

h=1

w.r.t. a1, ap and a3. The percentile estimates are obtained by solving the following nonlinear equations:

-1/c
i Zgy — —= P s 0
(h) 1— -1/ -1/m 2 T Y
h=1 Py (1_Ph )

and:

respectively, where p, = c(;, ).
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4.5. Method of Cramer-Von-Mises Estimation (CVME)

9 of 26

The CVME method of the parameters is based on the theory of minimum distance estimation.
The CVME of the parameter ay, @y, and a3 are obtained by minimizing the following expression w.r.t.

a1, ap, and a3 respectively:

where:

and:

The CVMEs of the parameters are obtained by solving the following non-linear equations:

m z —26!2 a1
Z[{l -(1+ a—3) } - C(Zm,Zh)]Al(Z(h cm) Q) =0

and:

respectively.

h=1
é[{l ~(1+ 0%)_
hZZHl— (1+ Z('erm) i

1 - 2
levm(Q) = Tom T Z[FTLLX Z(h:m) Q) — C(2m,2h)]
h=1

tevm(Q) =

m

h=

4.6. Methods of Anderson-Darling (ADE)

C2mz2n) =

2h-1

2m

Z(h:m —2a2) M 2
Z[{l -(1+ (a—3)) } - C(Zm,2h)]
1

20{2 ai
) } - C(Zm,Zh)]A3 (Z(h : m)rQ) =0,

The ADEs of the parameters (a1, @, @3) are obtained by minimizing the following function, w.r.t.

a1, ar and az:

The respective estimate of a1, a2, @3 is obtained by solving the following non-linear equations:

and:

g

>
Il

=

1=

=
Il

—_

ngE

=
I

—_

1

= —-mM — =

m

AD(Z(h : m)/allaZ/ a3)

% (2h=1) [Pz, Q))

h=1

+IFriix (Zos 1o - e Q).

(1) (G2 my 1, 02,03) Gz my, @1, @2, @3)
P(Z(h:m)/alla2fa3) F(Z(h:m),O(LOQ,O(g)
Cozgy -y, 01, 2, @ Gz -y, 1,00,

(1) 22 my 21,02,03) Qa2 my, 1,42, 03)
F(Z(h:m)/alr(XZraS) F(z(h:m),al,az,ag)

(1) (20 my 1, 02,03)  Ca(Z(: ), 21,42, 43)
F(Z(h:m)/al/‘XZraS) F(z(h:m),al,az,ag) |

5. Monte Carlo (MC) Simulation Study

In this section, the performances of the computed estimators in previous section are
investigated by conducting Monte Carlo simulations. The simulation has been performed for
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the different variation of the model parameters as well as sample size. In particular, we took four
choices of (2)I(0.5,0.5,0.5), (0.5,1.0,1.5), (1.5,2.0,2.5), (2.0,3.0,3.0) along with ml(,,—10,20,30,50,100,200)
The average means square error (AMSEs) for the considered variations are reported based on the
5000 replications, see Tables 1-3.

Table 1. AMSEs for the parameter .

(a1, a2, a3) MLEs MPSEs LSEs WLSEs PCEs CVMEs ADEs

10 (0.5,05,0.5 0.01008 0.02373 0.02226 0.02094 0.08493 0.01465 0.01563

(1.5,2.0,2.5
(2.0,3.0,3.0

0.04454 0.07543 0.07582 0.05809 0.82964 0.06594 0.05745
0.06072 0.10552 0.10310 0.07926 0.88312 0.08933 0.07856

)
0.5,1.0,1.5) 0.12543 0.33736 0.32246 0.30148 0.72409 0.19723 0.21001
(1.5,2.0,2.5) 0.31371 0.88351 0.82496 0.75896 1.44970 0.49314 0.54576
(2.0,3.0,3.0) 0.44606 1.27362 1.20878 1.10863 1.98901 0.72271 0.79753
20 (0.5,05,0.5) 0.00656 0.01403 0.01283 0.01127 0.08766 0.00938 0.00947
0.5,1.0,1.5) 0.09008 0.21038 0.19087 0.16565 0.78616 0.13265 0.13290
(1.5,2.0,2.5) 0.21962 0.55345 0.49357 0.42714 1.36895 0.33056 0.34406
(2.0,3.0,3.0) 0.31295 0.79229 0.72985 0.61549 1.68717 0.49407 0.50163
30 (0.5,05,0.5) 0.00505 0.01017 0.00928 0.00785 0.09154 0.00717 0.00700
0.5,1.0,1.5) 0.07089 0.15961 0.14230 0.11896 0.84625 0.10387 0.10052
(1.5,2.0,2.5) 0.17007 0.40040 0.36169 0.29692 1.26194 0.26226 0.25534
(2.0,3.0,3.0) 0.25630 0.60591 0.52899 0.43968 1.56832 0.37853 0.37999
50 (0.5,05,0.5) 0.00348 0.00649 0.00589 0.00494 0.09685 0.00477 0.00458
0.5,1.0,1.5) 0.05220 0.10823 0.09792 0.07883 0.88316 0.07578 0.07042
(1.5,2.0,2.5) 0.12082 0.25972 0.23951 0.18924 1.14838 0.18485 0.17351
(2.0,3.0,3.0) 0.18020 0.38860 0.34791 0.27964 1.35617 0.26670 0.25607
100 (0.5,0.5,0.5) 0.00200 0.00337 0.00325 0.00264 0.10417 0.00278 0.00255
0.5,1.0,1.5) 0.03372 0.06235 0.05935 0.04628 0.95364 0.04939 0.04364
(1.5,2.0,2.5) 0.07250 0.13811 0.13465 0.10455 1.00937 0.11050 0.09982
(2.0,3.0,3.0) 0.10942 0.21029 0.19651 0.15155 1.03138 0.16098 0.14656
200 (0.5,0.5,0.5) 0.00110 0.00168 0.00175 0.00139 0.11122 0.00156 0.00138
0.5,1.0,1.5) 0.02063 0.03443 0.03389 0.02589 0.96237 0.02970 0.02537

)

)

Table 2. AMSEs for the parameter a;.

(0.5,1.0,1.5
(1.5,2.0,2.5
(2.0,3.0,3.0

0.02063 0.03443 0.03389 0.02589 0.96237 0.02970 0.02537
0.04454 0.07543 0.07582 0.05809 0.82964 0.06594 0.05745
0.06072 0.10552 0.10310 0.07926 0.88312 0.08933 0.07856

(a1, a2, ar3) MLEs MPSEs LSEs WLSEs PCEs CVMEs ADEs
10 (0.5,0.5,0.5) 0.01008 0.02373 0.02226 0.02094 0.08493 0.01465 0.01563
(0.5,1.0,1.5) 0.12543 0.33736 0.32246 0.30148 0.72409 0.19723 0.21001
(1.5,2.0,2.5) 0.31371 0.88351 0.82496 0.75896 1.44970 0.49314 0.54576
(2.0, 3.0, 3.0 0.44606 1.27362 1.20878 1.10863 1.98901 0.72271 0.79753
20 (0.5,0.5,0.5) 0.00656 0.01403 0.01283 0.01127 0.08766 0.00938 0.00947
(0.5,1.0,1.5) 0.09008 0.21038 0.19087 0.16565 0.78616 0.13265 0.13290
(1.5,2.0,2.5) 0.21962 0.55345 0.49357 0.42714 1.36895 0.33056 0.34406
(2.0, 3.0, 3.0 0.31295 0.79229 0.72985 0.61549 1.68717 0.49407 0.50163
30 (0.5,0.5,0.5) 0.00310 0.00973 0.00617 0.00541 0.03391 0.00372 0.00411
(0.5,1.0,1.5) 0.00211 0.00596 0.00408 0.00346 0.03379 0.00251 0.00271
(1.5,2.0,2.5) 0.01259 0.04065 0.02628 0.02189 0.18025 0.01574 0.01740
(2.0, 3.0, 3.0) 0.02034 0.06606 0.04764 0.04031 0.25969 0.02922 0.03113
50 (0.5,0.5,0.5) 0.00348 0.00649 0.00589 0.00494 0.09685 0.00477 0.00458
(0.5,1.0,1.5) 0.05220 0.10823 0.09792 0.07883 0.88316 0.07578 0.07042
(1.5,2.0,2.5) 0.12082 0.25972 0.23951 0.18924 1.14838 0.18485 0.17351
(2.0, 3.0, 3.0) 0.18020 0.38860 0.34791 0.27964 1.35617 0.26670 0.25607
100 (0.5,0.5,0.5) 0.00200 0.00337 0.00325 0.00264 0.10417 0.00278 0.00255
(0.5,1.0,1.5) 0.03372 0.06235 0.05935 0.04628 0.95364 0.04939 0.04364
(1.5,2.0,2.5) 0.07250 0.13811 0.13465 0.10455 1.00937 0.11050 0.09982
(2.0, 3.0, 3.0) 0.10942 0.21029 0.19651 0.15155 1.03138 0.16098 0.14656
200 (0.5,0.5,0.5) 0.00110 0.00168 0.00175 0.00139 0.11122 0.00156 0.00138
)
)
)
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Table 3. AMSEs for the parameter as.

(a1, ap, a3) MLEs MPSEs LSEs WLSEs PCEs CVMEs ADEs
10 (0.5,0.5,0.5) 0.02899 0.03970 0.03952 0.03740 0.03441 0.03194 0.03298
(0.5,1.0,1.5) 0.09506 0.15280 0.14193 0.13502 0.14421 0.10672 0.10952
(1.5,2.0,2.5) 0.17018 0.30772 0.29220 0.26216 0.25409 0.20156 0.21130
(2.0, 3.0, 3.0 0.30178 0.55647 0.53308 0.47841 0.47647 0.37621 0.38825
20 (0.5,0.5,0.5) 0.01983 0.02496 0.02624 0.02317 0.03391 0.02238 0.02192
(0.5,1.0,1.5) 0.07009 0.10725 0.09527 0.08593 0.15301 0.07609 0.07597
(1.5,2.0,2.5) 0.10424 0.17000 0.17015 0.14293 0.18852 0.12805 0.12322
(2.0, 3.0, 3.0 0.19277 0.32047 0.32465 0.26435 0.29089 0.24730 0.23534
30 (0.5,0.5,0.5) 0.01514 0.01881 0.01943 0.01704 0.03608 0.01682 0.01634
(0.5,1.0,1.5) 0.05347 0.08219 0.07351 0.06428 0.16222 0.06034 0.05831
(1.5,2.0,2.5) 0.07844 0.12492 0.12754 0.10453 0.11256 0.10095 0.09520
(2.0, 3.0, 3.0 0.14207 0.23859 0.22324 0.18213 0.19632 0.17281 0.16806
50 (0.5,0.5,0.5) 0.01079 0.01282 0.01392 0.01215 0.03652 0.01249 0.01181
(0.5,1.0,1.5) 0.03868 0.05793 0.05255 0.04467 0.17758 0.04428 0.04107
(1.5,2.0,2.5) 0.05110 0.07930 0.07936 0.06485 0.08187 0.06582 0.06055
(2.0, 3.0, 3.0) 0.09797 0.14978 0.15032 0.12041 0.12336 0.12232 0.11570
100 (0.5,0.5,0.5) 0.00637 0.00736 0.00807 0.00693 0.03740 0.00735 0.00682
(0.5,1.0,1.5) 0.02404 0.03556 0.03319 0.02708 0.19998 0.02912 0.02582
(1.5,2.0,2.5) 0.02939 0.04134 0.04466 0.03594 0.04724 0.03853 0.03429
(2.0, 3.0, 3.0) 0.05767 0.08263 0.08567 0.06715 0.06137 0.07373 0.06656
200 (0.5,0.5,0.5) 0.00369 0.00411 0.00478 0.00404 0.04363 0.00448 0.00402
(0.5,1.0,1.5) 0.01561 0.02174 0.01984 0.01600 0.20472 0.01807 0.01582
(1.5,2.0,2.5) 0.01690 0.02250 0.02390 0.01878 0.02330 0.02163 0.01860
(2.0, 3.0, 3.0) 0.02660 0.03690 0.03807 0.02961 0.03066 0.03412 0.02953

From these extensive simulation study, it has been noticed that all the estimators satisfy the

property of consistency as m increases in all the considered setup. Among the employed different
methods of estimation, maximum likelihood estimation method is more efficient for all the parameters.
The following trends have been observed:

6. Modeling Real Data

R(Q),,

| < R(Q)y, < R(Q),y < R(Q) < RQ), <R(Q),,, <R(Q)

—/pc*

Four real and different data sets are modeled and analyzed to illustrate the importance, potentiality
and flexibility of the TLLx model. We compare the TLLx distribution with the following models listed

in Table 4:

Table 4. The fitted models.

Model Appreciation
Bxu Bxu
Marshall—Olkin-BXH MOBXH
Topp-Leone-Bxy TLBxr
Zografos-Balakrishnan-Byqy ZBBx
Five Parameters beta- FBBxq1
Five Parameters beta-Bx; FBByxqp
Beta—BXH BBXH
B exponentiated-Bxy BEBxq
Kumaraswamy-Bx KumBxqp
FKum—BXH FKumBXH

The observations of the four data sets are given in Appendix A. First, we sketch the total time test
(TTT) plot (see [21]) for all real data sets in Figure 1. These plots indicate that the empirical HRFs of data
sets L, II, I1I are increasing and bathtub for data set IV. Then, we consider the following GOF statistics:

The Akaike Information Criterion (A_IC),
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Bayesian_IC (B_IC),
Hannan-Quinn_IC (HQ_IC), and
Consistent Akaike_IC (CA_IC).

The lowest values of these Criterion refer to the best model. Tables 5-8 give the MLEs, standard
errors (SEs), confidence intervals (Cls) for the data sets I, II, IIl and IV, respectively. Tables 9-12 give the
B_IC, A_IC, CA_IC and HQ_IC, respectively. Based on the values in Tables 9-12 and Figures 2-5, the
TLLx model provides the best fit in the four applications with smallest values for the above-mentioned
criterion. The TLLx model has only three parameters. However, all other competitive models have at
least three parameters. The model with a smaller number of parameters is favorable especially if it
gives a better fit. The TLLx model has this advantage and this is illustrated in Tables 9-12. The TLLx
model has the lowest value of the following criteria B_IC, A_IC, CA_IC and HQ_IC. From Table 9 the
TLLx model has:

B_IC = 306, A_IC = 298, CA_IC = 299 and HQ_IC = 302.
From Table 10 the TLLx model has
B_IC =212, A_IC = 205, CA_IC = 206 and HQ_IC = 208.
From Table 11 the TLLx model has
B_IC =389, A_IC = 383, CA_IC = 383 and HQ_IC = 385.
From Table 12 the TLLx model has
B_IC = 314, A_IC = 313, CA_IC = 318 and HQ_IC = 315.

Table 5. MLEs, SEs, CIs for the data set I.

Model Estimates
Bxar (a1, 8) 5.941,0.187
(1.279), (0.044)
(3.43, 8.45), (0.10, 0.27)
MOBxi (v, B, 7) 1.192, 4.834, 838.73

(0.952), (4.896), (229.34)
(0, 3.06), (0, 14.43), (389.22, 1288.24)

TLBxu(a1, B,7) 1.350, 1.061, 13.728
(0.378), (0.384), (8.400)
(0.61,2.09), (0.31, 1.81), (0, 30.19)
KumBxp (A, 6, a, B) 48.103, 79.516, 0.351, 2.730

(19.348), (58.186), (0.098), (1.077)
(10.18, 86.03), (0, 193.56), (0.16, 0.54), (0.62, 4.84)
BBxu (A, 0, o, B) 359.683, 260.097, 0.175, 1.123
(57.941), (132.213), (0.013), (0.243)
(246.1, 473.2), (0.96, 519.2), (0.14, 0.20), (0.65, 1.6)
BEBxi (M, 6, o, 8,7) 0.381, 11.949, 0.937, 33.402, 1.705
(0.078), (4.635), (0.267), (6.287), (0.478)
(0.23,0.53), (2.86, 21), (0.41, 1.5), (21, 45), (0.8, 2.6)
FBBxi (A, 0, o, B,7) 0.421, 0.834, 6.111, 1.674, 3.450
(0.011), (0.943), (2.314), (0.226), (1.957)
(0.4,0.44), (0,2.7), (1.57,10.7), (1.23, 2.1), (0, 7)
FKumBxp(A, 0, o, B,7) 0.542,4.223,5.313,0.411, 4.152
(0.137), (1.882), (2.318), (0.497), (1.995)
(0.3,0.8), (0.53,7.9), (0.9, 9), (0, 1.7), (0.2, 8)
TLLx(a1, a0, a3) 8.07, 1.369 x e®, 2.65 x e®
(0.796), (0.000), (22.57)
(9.7, 6.5), -, (1023, 1114)
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Table 6. MLEs, SEs, CIs for the data set II.

Model Estimates
BXH(al,ﬁ) 3.102, 0.465
(0.538), (0.077)
(2.05, 4.16), (0.31, 0.62)
MOBxq(a1,8,7) 2.259,1.533, 6.760
(0.864), (0.907), (4.587)
(0.57,3.95), (0, 3.31), (0, 15.75)
TLBxm (a1, 8,7) 2.393, 0.458, 1.796
(0.907), (0.244), (0.915)
(0.62,4.17), (0, 0.94), (0.002, 3.59)
KumBxpi (A, 6, «, B) 14.105,7.424,0.525,2.274

(10.805), (11.850), (0.279), (0.990)
(0, 35.28), (0, 30.65), (0, 1.07), (0.33, 4.21)
BBxu (), 6, , B) 2.555, 6.058,1.800,0.294,
(1.859), (10.391), (0.955), (0.466)
(0, 6.28), (0, 26.42), (0, 3.67), (0, 1.21)
BEBxu(A, 6, o, 8, 7) 1.876,2.991, 1.780, 1.341, 0.572
(0.094), (1.731), (0.702), (0.816), (0.325)
(1.7,2.06), (0, 6.4), (0.40, 3.2), (0, 2.9), (0, 1.21)
FBBxi1(A, 6, &, B,7) 0.621,0.549,3.838, 1.381, 1.665
(0.541), (1.011), (2.785), (2.312), (0.436)
(0,1.7), (0, 2.5), (0, 9.3), (0, 5.9), (0.8, 4.5)
FKumByx (A, 6, %, B, ) 0.558, 0.308, 3.999, 2.131, 1.475
(0.442), (0.314), (2.082), (1.833), (0.361)
(0,1.4), (0, 0.9), (0, 3.1), (0, 5.7), (0.76, 2.2)
TLLx(ar1, a2, av3) 3.595, 12.08, 21.248
(1.006), (28.25), (54.22)
(1.6, 5.6), (0, 68), (0, 129)

Table 7. MLEs, SEs, CIs for the data set III.

Model Estimates
Bxm (a1, B) 5.615, 0.072
(15.048), (0.194)
(0,35.11), (0, 0.45)
MOBx (a1, B,7) 8.017, 0.419, 70.359

(22.083), (0.312), (63.831)
(0,51.29), (0, 1.03), (0, 195.47)
TLBxy(a1,B,7) 91.320, 0.012, 141.073
(15.071), (0.002), (70.028)
(61.78, 120.86) (0.008, 0.02) (3.82, 278.33)
KumBy (A, 9, o, B) 18.130, 6.857, 10.694, 0.081
(3.689), (1.035), (1.166), (0.012)
(10.89, 25.36), (4.83, 8.89), (8.41, 12.98), (0.06, 0.10)
BBxu (A, O, o, B) 26.725, 9.756, 27.364, 0.020
(9.465), (2.781), (12.351), (0.007)
(8.17,45.27), (4.31, 15.21), (3.16, 51.57), (0.006, 0.03)
BEBxi (A, 6, &, B,7) 2.924,2.911, 3.270, 12.486, 0.371
(0.564), (0.549), (1.251), (6.938), (0.788)
(1.82,4.03), (1.83, 3.99), (0.82, 5.72), (0, 26.08), (0, 1.92)
FBBxui (A, 6, o, B,7) 30.441, 0.584, 1.089, 5.166, 7.862
(91.745), (1.064), (1.021), (8.268), (15.036)
(0, 210.26), (0, 2.67), (0, 3.09), (0, 21.37), (0, 37.33)
FKumBx1 (A, 6, o, B,7) 12.878, 1.225, 1.665, 1.411, 3.732
(3.442), (0.131), (0.034), (0.088), (1.172)
(6.13,19.62), (0.97, 1.48), (1.56, 1.73), (1.24, 1.58), (1.43, 6.03)
TLLx(ay, a2, a3) 33.197, 1.706391, 5.24
(48.93), (0.765), (7.148)
(0, 129), (0.3, 3.1), (0, 19)
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Table 8.

MLEs, SEs, CIs for the data set I'V.

Model

Estimates

Bxir (a1, B)

MOBx (a1, 8,7)

TLBxu (a1, 8,7)

KumByxqg (7\, 0,, 5)

BBXH (7\1 0,, ﬁ)

BEBxi (A, 6, %, 8,7)

FBBxir(A, 6, o, B, 7)

FKumByxp (A, 0, «, B,7)

TLLx(aq, v, @3)

58.711, 0.006
(42.382), (0.004)

(0, 141.78), (0, 0.01)
11.838, 0.078, 12.251
(4.368), (0.013), (7.770)

(0, 141.78), (0, 0.01), (0, 27.48)
0.281,1.882, 50.215
(0.288), (2.402), (176.50)

(0, 0.85), (0, 6.59), (0, 396.16)
9.201, 36.428, 0.242, 0.941
(10.060), (35.650), (0.167), (1.045)
(0, 28.912), (0, 106.30), (0, 0.57), (0, 2.99)
96.104, 52.121, 0.104, 1.227
(41.201), (33.490), (0.023), (0.326)

(15.4, 176.8), (0, 117.8), (0.6, 0.15), (0.59, 1.9)
0.087,5.007, 1.561, 31.270, 0.318
(0.077), (3.851), (0.012), (12.940), (0.034)
(0,0.3), (0, 12.6), (1.5, 1.6), (5.9, 56.6), (0.3,0.4)
15.194, 32.048, 0.233, 0.581, 21.855
(11.58), (9.867), (0.091), (0.067), (35.548)
(0,37.8), (12.7, 51.4), (0.05, 0.4), (0.45, 0.7), (0, 91.5)
14.732, 15.285, 0.293, 0.839, 0.034
(12.390), (18.868), (0.215), (0.854), (0.075)
(0,39.02), (0, 52.27), (0, 0.71), (0, 2.51), (0, 0.18)
0.687, 61.7, 6391.98
(0.147), (31.83), (2858.9)

0.4, 1), (0, 123), (674, 12,110)

Table 9. A_IC, B_IC, CA_IC and HQ _IC for data I.

Model A_IC, B_IC, CA_IC
Byt 210, 214, 210, 211
MO-Byqr 210, 217, 210, 212
TL-Bxq 212,219, 212, 215
KumByj 209, 218, 209, 212
BBy 210, 220, 211, 214
BEByx 212,224,213, 217
FBByq 207,218,208, 211
FKumByg 207,218,207, 211
TLLx 205, 212, 206, 208

Table 10. A_IC, B_IC, CA_IC and HQ_IC for data II.

Model A_IC, B_IC, CA_IC
Bxu 210, 214, 210, 211
MO-Byq; 210, 217, 210, 212
TL-Byy 212,219,212, 215
KumBy 209, 218, 209, 212
BBy 210, 220, 211, 214
BEByq 212,224,213, 217
FBByq1 207, 218, 208, 211
FKumByg 207, 218, 207, 211
TLLx 205, 212, 206, 208

14 of 26
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Table 11. A_IC, B_IC, CA_IC and HQ_IC for data III.

Model

A_IC,B_IC, CA_IC

Bxut
MO-Bxq
TL-Bxn
KumBXH
BBxn
BEBxn
FBBxn
FKumBXH
TLLx

518, 523, 519, 520
386, 392, 386, 388
387,390, 388, 390
386, 394, 386, 389
387,397, 388, 391
386, 394, 386, 389
387,397, 388, 391
387,397, 388, 391
383, 389, 383, 385

Table 12. A_IC, B_IC, CA_IC and HQ _IC for data IV.

Model

A_IC,B_IC, CA_IC

Bxur
MO-Bxq
TL-Bxn
KumBXH
BBxn
BEBxn
FBBxn
FKumBXH
TLLx

328,331, 329, 329
316, 320.01, 316, 317
316,321, 317, 318
317,323, 319, 319
316, 322, 318, 318
318, 325, 320, 320
318 325, 320, 320
318, 325, 320, 320
313, 314, 318, 315
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Figure 2. The TTT plots for all data sets.
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Figure 3. EPDF, P-P plot, EHRF, ECDF and Kaplan-Meier survival plot for data set I.

Figure 4. EPDF, P-P plot, EHRF, ECDF and Kaplan-Meier survival plot for data set II.
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Figure 5. EPDF, P-P plot, EHRF, ECDF and Kaplan-Meier survival plot for data set III.

Figure 6. EPDF, P-P plot, EHRF, ECDF and Kaplan-Meier survival plot for data set IV.

So, it is recommended to use the TLLx model instead of all other competitive models.
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The bold values in Tables 9-12 show that the new TLLx model is the best model among all other

competitive models.
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Figure 3 shows that the TLLx model has a very adequate fitting to the empirical function for the
data set I, Figure 4 shows that the TLLx model has a very adequate fitting to the empirical function
for the data set II, Figure 5 shows that the TLLx model has a very adequate fitting to the empirical
function for the data set III, Figure 6 shows that the TLLx model has a very adequate fitting to the
empirical function for the data set I'V.

7. Assessing the Performance of the Maximum Likelihood Estimations: Case of Complete Data

Using Barzilai-Borwein (BB) algorithm, we simulate the TLLx model where sample sizes are
m = 30, m = 100, m = 250, m = 400, and parameter values a1 = 0.7, ap = 2.6, a3 = 1.9. The averages
of the simulated values (AVs) of the estimators &1, & and &3 and their corresponding MSEs are
presented in Table 13 which indicates that when m increases the MSEs decreases and decay to zero.

Table 13. AVs and MSE, M = 10,000.

m =30 100 250 400
aq 0.7427 0.7259 0.7206 0.7094
MSE 0.04821 0.03751 0.03049 0.00756
dy 2.6413 2.6284 2.6143 2.6081
MSE 0.04661 0.0304 0.0031 0.0015
3 1.9304 1.9262 1.9187 1.9071
MSE 0.04445 0.0181 0.0043 0.0010

8. Assessing the Performance of the Maximum Likelihood Estimations: Case of Censored Data

8.1. The Maximum Likelihood Estimation (MLE)

For I (an individual); Yy is the lifetime and €[] is the censorship time, where Y and €[A]
are independent rvs. Consider a data set of m independent observations and let Thl(h=1,2...m) =

min (Y, €[h]).

Censorship case is assumed to be non-informative one, which means that the distribution of €[/]
does not depend in any way on the unknown parameters of Y. The likelihood function in the case of
censored data can be written as:

m
H ® Th/ STLLX(T}ZI Q)/' (Y(h) = 1{Y[h] §€[h]})
h=1

where StLix(Th, Q) = 1 = Friix (T, Q). In our case, let Y, be a rv distributed with the vector of
parameters (), so the likelihood function, L(t,Q2), reduces to:

—2a5-1 Y
2a1a005 (1+T") 2 ®

m

h=1 x{l B [1 —(1+ %)—Zaz]ﬂl}—l

and the logL function is given:

I(1,Q) = rIn(2aa2a3") — (2a2 + 1) Z Yyln(l+ ZTZ)
e =1) £ vf1- 1+ ”) 0]
_ )ln{ [1 2“3] 1}+ 5 ln{l—[l—(1+ %)‘Zas]al},

h=1
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and then:
I(7,Q) = rllog(2a1) — log(a3) + log(az)]

~Qaa+1) T in(1+ )+ (a-1) T 1=+ 27
(hed) (he) __al 3
_ Z ln{l—[l—(1+ Th)—Zaz }
(hed) -‘al
+ Y ln{l—[l_(l_i_;_h)—z(xz }/
(hee€) 3 ]

where  refers to the number of failures, € and ¢ denote the sets of censored and uncensored observations,
respectively. The MLE Q) of Q can be obtained by solving the following system:

ArQ)
aaz az

-2 ¥ In(1+3)
(heg)

) —2a,791-1
201 (1+32) azlog(1+@)[l—(1+%) “2]

+ Y T
(heo) l—[l—(l.t,_%) 2 2] 1

-2 _2a,791~1
2 (14 ) og1+ B 1=+ )7
B Z T, \—2ap a = 0,
(h€€) 1_[1_(14’@) ]

n —2ap-1

M) _ 1, 20714 32)
==Z—-(2a,+1 In(1+ =) - -1 R I —

Jas 2 ( %) )(hg(p) ( ag ) (al )(}E@h) aS[l—(1+;—’;) 205

~2ap 79171

_ 20{1&2’[;[(1+%)_2a2_1[1—(1+%)
(heg) a§{1—[1—(1+7—’1)_2“2] 1}
2LY2 -1 3 —2ap a1
iy e
o A T
The Markov chain MC (MCMC) and the BB algorithm can be used in this regard.

-1
20(]()(2T],(1+

=0.

8.2. Simulations: Right Censored Case

Consider m = 30, 100, 250, 400 and a1 = 0.75, ap = 2.45 and a3 = 1.5. The AVs of the MLEs &7,
&y, @3 and their MSEs are calculated and listed in Table 14. From Table 14, we can see that the mean
MSEs decreases and decay to zero which confirms the convergence property of the MLEs.

Table 14. AVs and MSEs and M = 10,000.

m =30 100 250 400
dy 0.75548 0.75322 0.75176 0.75012
MSE 0.0030 0.0018 0.0006 0.0002
0%} 246123 2.45812 2.45318 2.45103
MSE 0.01814 0.00216 0.00203 0.0002
a3 1.4856 1.4879 1.4964 1.5027
MSE 0.0021 0.0012 0.0007 0.0004

9. The Modified GOF Test
9.1. The N-R-R GOF Test

For testing H 0] where Y1, Y, -+, Yy is a RS from a parametric model Fo (1), we have:

Hy : P{Y) <t} =Fq(1), T€R, Q= (0,,0,,,0Q),
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Reference [22] and then Reference [23] proposed the N-R-R (Y?) statistic for this purpose. Let
Y1,Y2,-++, Y be grouped in r sub-intervals Iy, I, - - - , I as:

I = ]a(K—l);a(K)] | (k=1,2, 1)/

which are mutually disjoint. The limits a(.) of the intervals I, are calculated such that:

pe(Q) = f " s,
A(x-1)

(

So:
K

Ay = F_l(?)|(1<:1,2,-~,r—1)'
Let the vector frequencies be:

T
U = (1/[1,1/12,"' ,T/lr) s
where:

Uy =
h

The N-R-R statistic (Y2((),,)) can be derived as:

m
Layete) l(x=1,...r)-
=1

A

(e

A A -1
Q,),

YA(Q,,) = xn(Q,,) + mTH Q) (HQ,,) - J(Q,))

where I( Qm) is the estimated Fisher information matrix (FIM), where:

_mmp(Q) m—mpp(Q) w—mp(Q) T
Vp Q) mpp(Q) T Jmp(Q)

and J(Q) is the FIM but for grouped data which can be defined as J(Q)) = B(Q)TB(Q), where:

Xm(Q)

1 9}%@)]

B(Q) =|— — l(he1 2 )

(_) |:‘/ﬁh (9[1 rXs (r=12,00m)
then:

Q) = (h(Q),L(Q),...,15(Q)",
with: .

_y i 9
(Q) Z o anPh(_)|(k=1,2 5)r

where Y? ~ )(f_l Chi-Square with D.F. = r — 1.

9.2. N-R-R Statistic for the TLLx Model

To test Hjp) that a certain RS belongs to the TLLx model, we calculate the N-R-R (Y?) statistic of
N = 10,000 simulated samples m = 30, 50, 100, 250 and m = 400. V¥ ¢ = 0.02, 0.05, 0.01, 0.1, the average
numbers of the non-rejection times of Hyg) is calculated when Y? < x2(r — 1) in Table 15 from which we
note that the calculated ¢, are close to initial ¢;, which means that the proposed GOF test is suited to
the TLLx model.
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Table 15. Empirical levels and the theoretical ¢,

0.02 0.05 0.01 0.1
n =230 0.9829 0.9525 0.9931 0.9027
50 0.9821 0.9520 0.9919 0.9015
100 0.9817 0.9513 0.9911 0.9011
250 0.9810 0.9506 0.9906 0.9006
400 0.9804 0.9501 0.9905 0.9002

10. Applications to Real Data

Strengths of Glass Fibers

The strengths data (see [24]) are fitted by TLLx model. Using the BB algorithm, the have
a1 = 4.2578, &, = 1.2406, &3 = 1.00897 and the estimated FIM I(Qm) expressed as:

0.1005487 0.0345872  9.254871
1(Q,,) = 0 13.52489  78.254901
0 0 215.85473

and then the N-R-R statistic:
Y? = 11.13254 and x§ o5 (7 - 1) = 12.59159

which confirms that strengths data can be modeled by TLLx model.

11. GOF Test for Right Censored Data

In case of right censored data, the approaches proposed by [25,26] are suggested to be used.
Consider:
Hyg : F(1) € Fg = {Fo(7,Q),7 € R, Qe @ c RV},

where Q = (O, Oy, ..., QS)T € O C R’ is an unknown parameter of a certain model and ¥y is a certain
CDF with the support (0, 00). Let [0, 7] be a finite time interval, where r is the maximum time of a
certain study, and divide it into k > s smaller intervals (a(K_l),a(K)] = [, where:

0=< H(O) < a(l) <...< a(k_l) < a(k) = —+-o00.
Then 4y can be given by:

Ex-YI L o, Q) |
-1 =1 (£)r22 . -
m—-h+1 QLA =Yplk=1,...,k

4 =P

where &1 is the inverse of cumulative HRF, Y () is the i" element in the ordered statistics (OS)
(Y(l)/ Y(Z)/ AN /Y(m)) and:

Ex = (m+1—-h)d(

>
=
@>
_|_
2
=3
)
@>
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Usually in real application we fix k. [27] and [28] give some recommendations for the choice of
intervals. The test is based on the vector:

1
Z= (21,20, Z1)", Ze= ﬁ(uk —e)l(k=1.2,...k)"

where e, represents expected numbers of failures and U is the numbers of observed failures in these
intervals. The test statistic for H|p) can be written as:

where:

and

k=1
where:
Pk =m UK, é - |:§ ’ ] 7
(LL) Isxs
=Y T W (&)W,
hZhGIk
Z Y —ln[CID (15, Q) ],
(l’lZ;,EIk
k
Z 72 L, L= 1,.
k=1
" A AT
W= (W, Wy,..., W),
A _1 8
= ZYw Iy (21, Q)]
LL 1z
(£)
% ’ == r - e ’ A - 7
g(u:) (£LL) ,; & Lk
and

8k =m" Z Y(h —lﬂ q’(h)(Th,Q)]-

h ZhEIk

A

Details about the matrices W and I are given in [29] and can easily be derived (see [29]). The limit
distribution for Y2, is Chi-Square model with D.F. = r = rank(}Y)) = tr((¥) " L)
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GOF Test for the TLLx Model in Case of Censored Data

Suppose Hyy) is examined, that is, the failure rate Y ;) follows the TLLx, the survival function is:

“2a, %1
5a(7) :1—[1—(1+i) “2] ,
Q 0
Then:
z —2ap a1
Orirx(T, Q) = —InSq (1) = —ln{l - [1 -1+ a_) ] },
o 3
where:

= ) [o ) AT Q) = 0(ag 1), Q)]

(h: Zp>a
Under such choice of intervals, we have a constant value of e, = %\7’ k.
12. GOF Test for the TLLx Model in Case of Censored Data

12.1. Simulation Study

To test Hjy that a RS has arisen from a TLLx model, we calculate Y2, the N-R-R statistic of
N = 10000 and m = 30, m = 150, m = 250, m = 40, Ye = 0.02, 0.05, 0.01, 0.1 and the mean of the
number of no rejections of Hyg) | (Y7, < x2(r)). Then we present the results of the empirical values and
the corresponding theoretical values in Table 16. From Table 16, we can say that the proposed GOF test
shows that the censored data fit the TLLx model.

Table 16. Empirical levels and the theoretical €,

0.02 0.05 0.01 0.1
n =30 0.9829 0.9519 0.9929 0.9022
150 0.9820 0.9510 0.9917 0.9015
250 0.9810 0.9507 0.9909 0.9008
400 0.9806 0.9504 0.9903 0.9002

12.2. Application to Real Data

Data of aluminum reduction cells

Consider data of aluminum reduction cells of [30] {0.468, 0.838, 0.853, 0.725, 0.965, 1.142, 1.304,
1.139, 1.317, 1.427, 1.554, 1.764, 1.776, 1.990, 2.010, 2.224, 1.658, 2.279%, 2.244*, 2.286*. (* censoring).}
comes from the TLLx model, the MLEs Q are @1 = 2.0058, &, = 1.8457, &3 = 1.8245. Choose number
of classes r = 4, then, the element of Y,Zn are listed in Table 17.

Table 17. Element of an.

e 1.8995 1.8995 1.8995 1.8995
1e -0.8325 0.5487 0.3518 0.03548
e 0.9427 1.2106 1.6672 2.3025
8oy 0.2548 —-0.2925 0.14879 0.12584
U, 4 3 5 8

83, 0.0925 0.03332 —0.8850 0.16005

Where:
Y2, = 9.09548 and X3 o5 (4) = 9.4877 > Y7,

which means that this data can be modeled by the TLLx model.
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13. Conclusions

In this work, we first introduced a new univariate version of the Lomax model called the
TLLx model as well as a simple type copula-based construction via Morgenstern family and via
Clayton copula for introducing a new bivariate and multivariate type extension of the TLLx model.
The new PDF can be unimodal function with a heavy tail to the right (positive skewness). The new
HREF can be “upside-down” failure rate “decreasing” failure rate with many different shapes and
“decreasing-constant” failure rate. Some mathematical properties of the TLLx model are derived.
The model parameters are estimated via different estimation methods such as maximum likelihood
method, maximum product spacing method, method of least square and weighted least square
estimation, method of percentile estimation, method of Cramer-Von-Mises estimation and methods of
Anderson-Darling. The different estimation methods are used for estimation of the model parameters
and assessing of the finite sample behavior of their estimators. For comparing the estimation methods,
MCMC simulations are performed. The applicability and flexibility of the TLLx model is illustrated
via four real data applications. We constructed a modified Chi-Square goodness-of-fit test based
on Nikulin-Rao-Robson test in the case of complete and censored samples for the TLLx model.
Simulation studies are performed using applications on real data. The new goodness-of-fit test is used
for validation.

Author Contributions: A.S.Y.: Software. H.G.: Validation. RM.A.: Conceptualization & Methodology. R.H.:
Conceptualization & Methodology. M.M.A. & H.M.Y.: Writing review, editing & Project administration. All authors
have read and agreed to the published version of the manuscript.
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Appendix A

Data set I (called breaking stress data see [31]): 0.98, 5.56, 2.83, 3.68, 2.00, 3.51, 0.85, 1.61, 3.28, 2.95,
5.08,0.39,1.57, 3.19,4.90, 2.74, 2.73, 2.50, 3.60, 3.11, 2.93, 2.85, 2.77,2.76, 1.73, 2.48, 3.22, 3.70, 3.27, 2.87,
1.47,3.11,4.42,2.81,3.15,1.92,1.84,1.22,2.17,1.61, 2.12, 3.09, 2.97, 4.20, 2.35, 1.41, 1.59, 1.12, 1.69, 2.79,
1.89,1.87,3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70, 2.88, 3.68, 1.08, 3.22, 3.75, 2.96, 2.55, 2.59, 2.97, 1.57,
2.17,4.38,2.03,2.82,2.53,3.31,2.38,1.36, 0.81, 1.17, 1.84, 12.40, 3.15, 2.67,3.31, 2.81, 2.56, 2.17, 4.91, 1.59,
1.18,2.48,2.03, 1.69, 2.43, 3.39, 3.56, 0.80, 2.05, 3.65.

Data set II (called survival times in days and reported by [32]): 0.1, 0.33, 1.08, 1.08, 1.08, 0.44, 0.56,
0.59,0.72,0.74,0.77,2.54,2.78,2.93, 3.27, 3.42,0.92,0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.09, 1.12, 1.13,
1.15,1.36,1.39, 1.44,1.83,1.95,1.96,1.97,2.02,1.16,1.2,1.21,1.22,1.22,1.24,1.3,1.34,2.13, 1.46, 1.53,
1.59,1.6,1.63,1.63,1.68,1.71,1.72,1.76,2.15,2.16,2.22,2.3,2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 3.47, 3.61, 4.02,
4.32,4.58, 5.55}.

Data set III (called taxes revenue data in 1000 million Egyptian pounds): 5.9, 20.4, 13.3, 8.5, 21.6,
14.9,16.2,17.2,7.8,6.1,9.2,10.2,9.6, 18.5,5.1,6.7,17,9.2, 26 .2, 21.9,16.7, 21.3, 35.4, 14.3, 8.6, 9.7, 39.2,
35.7,15.7,9.7,10, 4.1, 36, 8.5, 8, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 11.9, 7,
8.6,12.5,10.3,11.2,6.1,8.9,7.1, 10.8}.

Data set IV (called leukemia data and represents the survival times in weeks of 33 patients
suffering from acute Myelogenous Leukemia.): 65, 56, 26,22, 1,1, 5, 65, 16,22, 3,4, 2, 3,56, 65,17, 7,
156, 8, 4, 3, 30, 4, 100, 134, 16, 108, 121, 4, 39, 143, 43.
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