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Abstract: We report evidence that the experimentally observed small deformation of
antiferromagnetic NiO modifies the symmetry of the crystal in such a way that the antiferromagnetic
state becomes an eigenstate of the electronic Hamiltonian. This deformation closely resembles a
rhombohedral contraction, but does not possess the perfect symmetry of a trigonal (rhombohedral)
space group. We determine the monoclinic base centered magnetic space group of the
antiferromagnetic structure within the deformed crystal which is strongly influenced by the
time-inversion symmetry of the Hamiltonian. The antiferromagnetic state is evidently stabilized by
a nonadiabatic atomic-like motion of the electrons near the Fermi level. This atomic-like motion is
characterized by the symmetry of the Bloch functions near the Fermi level and provides in NiO a
perfect basis for a Mott insulator in the antiferromagnetic phase.

Keywords: NiO; antiferromagnetic eigenstate; Mott insulator; atomic-like motion; nonadiabatic
Heisenberg model; magnetic band; magnetic super band; group theory

1. Introduction

Nickel monoxide is antiferromagnetic with the relatively high Néel temperature TN = 523 K.
Above TN , NiO possesses the fcc structure Fm3m = Γ f

c O5
h bearing the international number 225 [1].

Cracknell and Joshua [2] found that, below TN , the magnetic structure is invariant under the
magnetic group Cc2/c (Number 90 in Table 7.4 of [3]), which will be given explicitly in Equation (1).
The antiferromagnetic state is accompanied by a small contraction of the crystal along one of the triad
axes often referred to as a rhombohedral deformation. However, the magnetic group Cc2/c does not
possess any trigonal (rhombohedral) subgroup. Thus, this interpretation, if taken literally, seems to
imply that the ground state of NiO does not possess any symmetry because, clearly, it cannot have two
space groups.

In Section 4, this paper treats a new path in interpreting the experimental observation of
Rooksby [1]: the time-inversion symmetry of the electron system suggests that the crystal is deformed
by a small contraction closely resembling a rhombohedral deformation of the oxygen atoms in such a
way that both the magnetic structure and the rhombohedral-like deformation have a common magnetic
space group, namely the group M9, which will be defined in Section 3. Now, having determined
explicitly the magnetic group of the ground state of NiO, the group-theoretical nonadiabatic Heisenberg
model (NHM) [4] becomes applicable. The NHM defines a nonadiabatic atomic-like motion briefly
described in Section 5.1. On the basis of the symmetry of the Bloch functions in the band structure of
NiO, the NHM predicts that, indeed, a magnetic structure with the magnetic group M9 may be stable
in NiO (Section 5.2).

NiO has a second very interesting feature: it is an antiferromagnetic Mott insulator [5,6].
Furthermore, this observation may be understood within the NHM. In Section 6 we will show that the
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atomic-like motion of the electrons in antiferromagnetic NiO stabilizes not only the antiferromagnetic
state, but, in addition, provides an ideal precondition for the Mott condition to be effective in NiO.

In order to understand the interesting features of NiO, the paper formulates three conditions
of stability. The first two conditions in Sections 3 and 5.1, respectively, concerning the stability of a
magnetic state, have already been published in former papers. They are reformulated in order to
facilitate the reading of the paper. The third condition in Section 6, concerning the existence of a Mott
insulator, is given for the first time in this paper.

2. Group-Theoretical and Computational Methods Used in the Paper

The band structure of paramagnetic NiO in Figure 1 is calculated by the FHI-aims (“Fritz Haber
Institute ab initio molecular simulations”) computer program using the density functional theory
(DFT) [7,8] to compute the total energy in the electronic ground state. The NHM does require the exact
total E(k) curves of the electrons, but only a more qualitative run of the energy bands. It starts from the
symmetry of the Bloch states in the points of symmetry in the respective Brillouin zone. The FHI-aims
program uses spherical harmonics as eigenvectors and provides the possibility of an output of the
eigenvectors at any wave vector k. Thus, I was able to write a C++ program to determine the symmetry
of the Bloch functions at the points of symmetry in the Brillouin zone for the fcc Bravais lattice Γ f

c
using the symmetry of the spherical harmonics as given in [3]. The results are given in Figure 1.
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Figure 1. Conventional band structure of paramagnetic fcc NiO as calculated by the FHI-aims
program [7,8], using the structure parameters given in [1], with symmetry labels determined by
the author. The notations of the points of symmetry in the Brillouin zone for Γ f

c follow Figure 3.14
of [3], and the symmetry labels are defined in Table A1 in Appendix B. The “active” band highlighted
by the bold line becomes a magnetic super band when folded into the Brillouin zone for the magnetic
structure; see Figure 3.

In Table A2, I give the symmetry of those Bloch functions, which can be unitarily transformed
into optimally localized Wannier functions adapted to the symmetry of the magnetic group M9 of
antiferromagnetic NiO. The determination of these “magnetic bands” (Section 5.2) is a complex process
described in [9] (see Theorems 5 and 7 ibidem), which is also performed by a C++ computer program.
The notes to Table A2 give short remarks on the (symmetry) properties of the Wannier functions.
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3. Magnetic Group of the Antiferromagnetic State: First Stability Condition

The antiferromagnetic structure of NiO is invariant under the symmetry operations of the type IV
Shubnikov space group Cc2/c [2], which may be written as [3]:

Cc2/c = C2/c + K{E|τ}C2/c, (1)

where K denotes the anti-unitary operator of time-inversion. The unitary subgroup C2/c has the
monoclinic base centered Bravais lattice Γb

m and contains (besides the pure translations) four elements,

C2/c =
{
{E|0}, {C2b|τ}, {I|0}, {σdb|τ}

}
, (2)

when the magnetic structure is orientated as given in Figure 2 (and in [2]).
As in our former papers, we write the symmetry operations {R|t} in the Seitz notation: R is a

point group operation and t the subsequent translation. In this paper, R stands for the identity E,
the inversion I, the rotation C2b through π indicated in Figure 2, or the reflection σdb = IC2b; the
translation is t = 0 or t = τ, where:

τ =
1
2

T1 (3)

stands for the non-primitive translation in the group C2/c indicated in Figure 2. In what follows,
the magnetic group Cc2/c is referred to as M15 because the unitary subgroup C2/c bears the
international number 15,

M15 = C2/c + K{E|τ}C2/c. (4)

Though the magnetic group M15 leaves the antiferromagnetic structure of NiO invariant, it need
not be the magnetic group of antiferromagnetic NiO. This statement can be understood as follows:
Consider a magnetic material, and let:

M = S + K{R|t}S (5)

be a magnetic group leaving invariant the magnetic structure in this material. S is the unitary subgroup
of M; K is still the operator of time-inversion; and R a point group operation. M includes all magnetic
groups whether they are of type II, III, or IV [3]. Further, let |G〉 be the exact magnetic ground state of
the electronic HamiltonianH. SinceH commutes with the symmetry operators P(a) assigned to the
symmetry operations a of M,

[H, P(a)] = 0 for a ∈ M, (6)

the magnetic state |G〉 is the basis function of a one-dimensional co-representation D of M,

P(a)|G〉 = c(a)|G〉 for a ∈ M, (7)

where |c(a)| = 1. The operators P(a) and the operator K of time-inversion are defined in [9]; in the
present paper, there definition is omitted.

The time-inverted state K|G〉 represents the opposite magnetic structure and, hence, is different
from |G〉,

K|G〉 6= |G〉. (8)

K|G〉 is also an eigenstate ofH sinceH commutes with K,

[H, K] = 0. (9)

Hence, the states |G〉 and K|G〉 form a basis of a two-dimensional co-representation D̃ of
the overgroup:

M̃ = M + KM (10)
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of M, where D is subduced from D̃. Now, we can formulate a stability condition for magnetic states:
the states |G〉 and K|G〉 are eigenstates ofH (i.e., |G〉 and K|G〉 represent stable magnetic structures) if
and only if the two-dimensional co-representation D̃ is irreducible [10]. This statement is well known
in the theory of ordinary (unitary) groups [11].

Fortunately, it is not very complicated to decide whether or not the magnetic group M̃ has at least
one co-representation D̃ complying with these conditions [12]:

Condition 1. The group M in Equation (5) may be the magnetic group of a stable magnetic structure if the
unitary subgroup S has at least one one-dimensional single valued representation:

(i) following Case (a) with respect to the magnetic group S + K{R|t}S in Equation (5) and
(ii) following Case (c) with respect to the magnetic group S + KS.

The cases (a) and (c) are defined by Equations (7.3.45) and (7.3.47), respectively, of [3].
Tables A3 and A4 provide all the information we now need for antiferromagnetic NiO: First,

Table A3 shows that the space group C2/c (15) has only real one-dimensional representations, and
hence, no representation meets the second condition (ii). Consequently, a spin structure with the
magnetic group M15 cannot be stable in NiO.

Removing from C2/c the two symmetry operations {C2b|τ} and {I|0}, we receive the space
group Cc (9) containing (besides the pure translations) two elements,

Cc =
{
{E|0}, {σdb|τ}

}
. (11)

Table A4 shows that the representations at points A and M in the Brillouin zone of Cc (9) meet
Condition (ii). In addition, the first condition (i) is satisfied for the magnetic group:

M9 = Cc + K{C2b|0}Cc (12)

while it is not satisfied for Cc + K{E|τ}Cc. Consequently, the group M9 is the only magnetic group in
antiferromagnetic NiO representing a stable antiferromagnetic structure. Just as M15, the group M9

has the monoclinic base centered Bravais lattice Γb
m [3].

Magnetostriction alone produces the magnetic group M15 in NiO. Consequently, in addition to the
magnetostriction, the crystal must be distorted in such a way that the HamiltonianH still commutes
with the elements of:

M9 =
{
{E|0}, {σdb|τ}, K{C2b|0}, K{I|τ}, n1T1 + n2T2 + n3T3

}
, (13)

[H, P(a)] = 0 for a ∈ M9, (14)

but does not commute with the symmetry operations of:

M15 −M9 =
{
{C2b|τ}, {I|0}, K{E|τ}, K{σdb|0}

}
, (15)

[H, P(a)] 6= 0 for a ∈ M15 −M9. (16)

This is achieved by exactly the one distortion of the crystal illustrated in Figure 2: The Ni atoms are
shifted in the±(T2−T3) direction from their positions at the lattice points tNi in Equation (17), realizing
in this way the group M9 in the sense that the two commutator relations (14) and (16) are satisfied.
With our group-theoretical methods, we cannot determine the magnitude of the displacements;
however, they are clearly not so large as plotted (for the sake of clarity) in Figure 2a. The oxygen atoms,
on the other hand, are not shifted from their positions at the lattice points tO in Equation (18) since any
dislocation of the oxygen atoms would destroy the symmetry of the group M9. These statements on
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the atomic positions in the group M9 may be understood by inspection of Figure 2. However, they
may also be justified in terms of the Wyckoff positions of Ni and O in the group M9; see Appendix A.
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Figure 2. Nickel (a) and oxygen (b) atoms in distorted antiferromagnetic NiO with the magnetic
group M9 in Equation (12) possessing the monoclinic base centered Bravais lattice Γb

m. The Ni atoms
represented by red circles bear a magnetic moment parallel or antiparallel to [112] and the atoms
represented by green circles the opposite moment. The magnetic structure is orientated as in [2]. The
vectors Ti are the basic translations of Γb

m.

4. Rhombohedral-Like Distortion

Antiferromagnetic NiO becomes slightly deformed by a small contraction along one of the triad
axes [1]. This deformation is often referred to as distortion from the cubic structure in the paramagnetic
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state to a rhombohedral one in the antiferromagnetic state [13]. On the basis of Figure 2, this important
and interesting experimental observation can be understood as follows.

Figure 2 shows exhaustively the distorted antiferromagnetic structure of NiO with the magnetic
group M9. However, it should be noted that, for the sake of clarity, the basic vectors of the Bravais
lattice Γb

m of M9 are embedded in the paramagnetic fcc lattice of NiO. However, the fcc lattice may
be distorted as a whole on the condition that the vectors T1, T2, and T3 stay basic vectors of Γb

m. The
lattice points tNi and tO plotted in Figure 2a,b, respectively, are no longer the positions of Ni and O in
the fcc lattice, but are defined by the equations:

tNi = n1T1 + n2T2 + n3T3 and

tNi =
1
2

T1 + n1T1 + n2T2 + n3T3, (17)

and:

tO =
1
2
(T2 − T3 +

1
2

T1) + n1T1 + n2T2 + n3T3 and

tO =
1
2
(T2 − T3 +

1
2

T1) +
1
2

T1 + n1T1 + n2T2 + n3T3, (18)

where T1, T2, and T3 are the basic vectors of Γb
m and n1, n2, and n3 are integers. Thus, the vectors tNi

and tO are solely given in terms of the basic vectors of Γb
m detached from the paramagnetic fcc lattice.

In the stable antiferromagnetic structure, the Ni atoms are shifted in the ± (T2 − T3) direction
from their positions at the lattice points tNi, while the oxygen atoms stay at the positions tO (Section 3).
Within a ferromagnetic sheet, all the Ni atoms are dislocated in the same direction. Hence, the atomic
distances within a sheet are the same as in the paramagnetic fcc phase. In adjacent sheets, on the
other hand, the dislocations have different directions, and consequently, the distances between the Ni
atoms in adjacent sheets become slightly greater than in the paramagnetic phase. Hence, the initial
fcc structure is mostly disturbed in the <111> direction. It is conceivable that the antiferromagnetic
structure is slightly contracted along the <111> axis because no symmetry operation of M9 forbids
such a contraction.

Figure 2b shows the position vectors ρ1, ρ2, and ρ3 of three oxygen atoms in relation to the atom
at position A1. In the paramagnetic fcc phase, the ρi form a basis of the trigonal (rhombohedral)
lattice Γrh orientated in the <111> direction. Within the Bravais lattice Γb

m of M9, however, they are
no longer translational symmetry operations. Thus, in the antiferromagnetic state of NiO, the ρi no
longer define a trigonal space group, but only define the positions of the oxygen atoms in the lattice Γb

m.
A (slight) contraction of the crystal along <111> has the consequence that the three position vectors
ρi are modified. However, they can only be modified in such a way that the magnetic group M9 is
preserved, which means that the vectors T1, T2, and T3 stay basic vectors of Γb

m. Thus, the directions
and the lengths of the vectors T1, T2, and T3 are modified on the condition that:

• T1 still passes through the plain (110) and
• in relation of this plane, T2 and T3 stay symmetrical to one another.

The Ti and the ρi are connected by the equations:

T1 = −2ρ1 (19)

T2 = ρ3 − ρ1 (20)

T3 = ρ2 − ρ1; (21)

see Figure 2. From the last the two equations, it follows that:

T2 − T3 = ρ3 − ρ2. (22)
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Let be P the plane parallel to (110) containing the point A1 in Figure 2b. Equations (19) and (22)
immediately show that T1, T2, and T3 still are basic vectors of Γb

m in the disturbed system if:

(i) ρ1 passes through P and
(ii) ρ2 and ρ3 are symmetrical to each other with respect to P.

These two conditions are satisfied when still the modified vectors ρi comply with a trigonal basis
orientated in the ρ1 + ρ2 + ρ3 direction. Hence, the magnetic group M9 with the monoclinic base
centered Bravais lattice Γb

m is preserved when the modified ρi define a rhombohedral-like array of
the oxygen atoms within the antiferromagnetic state. The rhombohedral-like array of the oxygen
atoms forms an “inner” deformation of the oxygen atoms within the monoclinic base centered Bravais
lattice Γb

m.
In summary: In the forgoing Section 3, we report evidence that the antiferromagnetic

ground state of NiO is stable only if M9 in Equation (12) is the magnetic group of the
antiferromagnetic structure. Thus, the experimentally observed “rhombohedral structure” is evidently
the described rhombohedral-like contraction of the crystal in the ρ1 + ρ2 + ρ3 direction producing a
rhombohedral-like array of the oxygen atoms preserving the magnetic group M9 with the monoclinic
base centered Bravais lattice Γb

m. Since this contraction is small, the ρ1 + ρ2 + ρ3 direction only differs
slightly from the <111> direction.

The above conditions (i) and (ii) do not require that the vectors ρi comply exactly with a trigonal
basis. Thus, the oxygen atoms will not form an exact trigonal array within the antiferromagnetic
system because there is no symmetry operation in M9 requiring such an exact array. Nevertheless, the
conditions (i) and (ii) allow only small deviations from an ideal trigonal array in the antiferromagnetic
system, in particular also since the vectors ρi form an exact trigonal basis in the paramagnetic phase of
the crystal.

5. Wannier Functions Symmetry Adapted to M9: Second Stability Condition

5.1. Atomic-Like Motion

The nonadiabatic Heisenberg model (NHM) [4] is based on three immediately obvious postulates
defining an atomic-like motion [14,15] in narrow, partly filled bands, which cannot be described
within the adiabatic approximation. This nonadiabatic atomic-like motion is a strongly correlated
electronic motion clearly separated from any adiabatic band-like motion because the electrons gain
the nonadiabatic condensation energy ∆E (Equation (2.20) of [4]) at the transition from the adiabatic
band-like to the nonadiabatic atomic-like motion.

The nonadiabatic localized states belonging to the atomic-like motion are represented by
hypothetical nonadiabatic localized functions. They are adapted to the symmetry of the crystal
in order that the nonadiabatic Hamiltonian of the atomic-like system has the correct symmetry, i.e.,
the correct commutation properties [4]. Their existence, their spin dependence, and their symmetry
are fixed by the postulates of the NHM. Therefore, they have the same symmetry and the same spin
dependence as the exact symmetry adapted optimally localized Wannier functions related to one of the
narrowest, partly filled bands in the conventional band structure of the considered metal. The adjective
“exact” means that the Wannier functions are an exact unitary transformation of the actual Bloch
functions of the considered band. Particularly, any modification of the symmetry of the Bloch functions
in order to obtain closed bands is not allowed because we would lose important physical information.
“Optimally localized” and “symmetry adapted” Wannier functions were defined in Definitions 5 and 7,
respectively, of [9]. By “conventional band structure”, I mean a pure one electron band structure not
taking into account any correlation effect. Correlation effects enter into the theory by the postulates of
the NHM since the nonadiabatic atomic-like motion is strongly correlated.

The known complication that the narrowest bands of the metals are generally not closed may be
solved in specific cases by allowing the Wannier functions to have a reduced symmetry [9]. So far,
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we found narrow, partly filled bands with optimally localized symmetry adapted Wannier functions in
the band structures of magnetic materials and of superconductors by allowing the Wannier functions:

(i) to be adapted only to the magnetic group M of the magnetic structure or
(ii) to be spin dependent,

respectively. An energy band with Wannier functions of the first type (i) and the second type
(ii) we called “magnetic band related the the magnetic group M” and “superconducting band”,
respectively (Definitions 16 and 22 of [9]), because the strongly correlated nonadiabatic atomic-like
motion in a magnetic band and in a superconducting band evidently stabilizes magnetism [10,16,17]
and superconductivity [18,19], respectively. While superconducting bands are not the subject of this
paper, the meaning of magnetic bands shall be clarified as follows:

Condition 2. A magnetic structure with the magnetic group M may be stable in a material if and only if
there exists a narrow, roughly half filled magnetic band related to M in the conventional band structure of this
material. The Wannier functions are centered at the positions of the atoms bearing the magnetic moments.

5.2. Magnetic Band of NiO

All the information we now need is given in Figure 3 and in Table A2. When folding the band
structure of paramagnetic NiO given in Figure 1 into the Brillouin zone of the monoclinic base centered
magnetic structure, we receive the bands plotted in Figure 3. The band highlighted in the paramagnetic
band structure by the bold lines is still highlighted in Figure 3. In what follows, it is referred to as
the “active band”. In the same manner as in [9] (see Definition 2 ibidem), we call the active band a
“single band” consisting of two (Figure 1) or four (Figure 3) branches. The active band in Figure 3 is a
magnetic band related to the magnetic group M9 because the Bloch functions of two branches of this
band bear the symmetry labels of Band 1 in Table A2a. Thus, we can unitarily transform the Bloch
functions of two branches of the active band into optimally localized Wannier functions symmetry
adapted to M9 and centered at the Ni atoms. Thus, the active band provides localized states allowing
the electrons to perform a nonadiabatic atomic-like motion stabilized by the nonadiabatic condensation
energy ∆E. However, a prerequisite is that a magnetic structure with the magnetic group M9 is actually
realized in the crystal. Therefore, the electron system activates a spin dependent exchange mechanism
producing the magnetic structure with the magnetic group M15. Such a mechanism is possible within
the nonadiabatic system; see Section 2 of [20]. The group M15 is reduced to the group M9 by the
dislocations of the Ni atoms.

In summary, the electrons produce the magnetic structure with the magnetic group M9, so that the
symmetry of the crystal is modified in such a way that the active band becomes a closed band [9]. This
allows the electrons at the Fermi level to occupy an atomic-like state stabilized by the nonadiabatic
condensation energy ∆E [4].
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Figure 3. The band structure of NiO given in Figure 1 folded into the Brillouin zone for the monoclinic
base centered Bravais lattice Γb

m of the magnetic group M9. The band highlighted in Figure 1 by the
bold lines is still highlighted by bold lines in the folded band structure. It now forms a magnetic “super”
band consisting of four branches assigned to the two nickel and the two oxygen atoms. The symmetry
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4 0) in the Brillouin zone for the paramagnetic fcc lattice.

6. Mott Insulator: Third Condition of Stability

The active band of NiO does not only contain a magnetic band, but has in addition two
remarkable features:

(i) The magnetic band with the symmetry in Table A2a occurs twice in the active band. Since Band
1 in Table A2b has the same symmetry, we can unitarily transform the Bloch functions of two
branches of the active band into optimally localized Wannier functions centered at the Ni atoms,
and the Bloch functions of the two remaining branches into optimally localized Wannier functions
centered at the O atoms. Thus, the electrons perform an atomic-like motion with localized states
situated at both the Ni and the O atoms.

(ii) All the electrons at the Fermi level take part in the atomic-like motion because the active band
comprises all the branches crossing the Fermi level.

Such an active band I already found in the band structure of BaMn2As2 [17] and called it the
“magnetic super band”:

Definition 1. The Bloch functions of a magnetic super band related to the magnetic group M can be unitarily
transformed into optimally localized Wannier functions symmetry adapted to M in such a way that the Wannier
functions are not only centered at the atoms bearing the magnetic moments, but are centered at all the atoms of
the material. Moreover, each Bloch function at the Fermi level belongs to the super band.
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Thus, a magnetic super band produces a nonadiabatic atomic-like motion not only between the
atoms bearing the magnetic moments, but between all the atoms of the material, whereby all the
electrons at the Fermi level take part in the atomic-like motion. A magnetic super band contains just as
many branches as there are atoms in the unit cell, and only branches belonging to the super band cross
the Fermi level.

If the magnetic super band of NiO is half filled, it produces not only the magnetic structure, but
may produce an atomic-like state with exactly one electron on each atom. If such a state has the lowest
Coulomb repulsion energy, the crystal is a Mott insulator, because there are no further electrons at the
Fermi level that would be able to carry an electrical current.

Because NiO is a prototype Mott insulator [5,6,21], the magnetic super band of NiO is evidently
half filled, and the Mott condition is evidently satisfied in this band. As mentioned, I already found a
magnetic super band in the band structure of BaMn2As2 [17]. In fact, also BaMn2As2 is a band gap
insulator, often referred to as a small band gap semiconductor [22,23]. These observations on NiO and
BaMn2As2 suggest that the nonadiabatic atomic-like motion in these materials, involving all the atoms
and all the electrons at the Fermi level, is a cause for the insulating ground state. On the basis of these
observations, I try to formulate a third condition of stability:

Condition 3. Let a magnetic material be given with the magnetic space group M that possesses bands crossing
the Fermi level in its conventional band structure (i.e., the material should be metallic under conventional band
theory). This material may be in fact a band gap or Mott insulator, if there exists a half filled narrow magnetic
super band related to M in its band structure.

If in any material, the non-adiabatic atomic-like motion in a magnetic super band stabilizes both a
magnetic structure and an insulating ground state, then the atomic-like motion breaks down in the
paramagnetic phase, and hence, the material becomes metallic. Therefore, there is evidence that both
NiO and BaMn2As2 are metallic above the Néel temperature.

7. Results

The paper is concerned with three features of antiferromagnetic NiO, where two of them are
very special:

• The rhombohedral-like deformation of antiferromagnetic NiO,
• the stability of the antiferromagnetic state, and
• the insulating ground state.

7.1. The Rhombohedral-Like Deformation

The time-inversion symmetry of the electronic Hamiltonian requires that the magnetic group of
the antiferromagnetic state possesses special irreducible co-representations (Condition 1 in Section 3)
so that the antiferromagnetic state is stable. The maximal group M15 leaving the magnetic structure
of NiO invariant, however, does not possess such suitable irreducible co-representations. It is the
subgroup M9 of M15 that has co-representations allowing a stable magnetic structure.

Thus, the Ni atoms are shifted from their positions in the space group M15 as indicated in Figure 2a
in order that M9 is realized, i.e., in order that M9, but not M15, is the magnetic space group of the crystal.
This distortion creates a deformation of the crystal closely resembling a rhombohedral deformation,
but, clearly, cannot produce a rhombohedral space group because the magnetic space group of NiO
still is the monoclinic base centered group M9. The rhombohedral-like deformation may be called an
“inner” deformation of M9.

7.2. The Stability of the Antiferromagnetic State

In Section 5.2, we show that NiO possesses a narrow, roughly half filled magnetic band related
to the magnetic group M9 in its band structure. Thus, the electrons may perform a nonadiabatic
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atomic-like motion with the localized states centered at the Ni atoms. This atomic-like motion stabilizes
the antiferromagnetic structure of NiO.

7.3. The Insulating Ground State

Moreover, the magnetic band of NiO is a magnetic super band. This means that the electrons
even perform a nonadiabatic atomic-like motion with the localized states centered at both the Ni and
the O atoms and that all the electrons at the Fermi level take part in the atomic-like motion. This is an
optimal precondition for antiferromagnetic NiO to be a Mott insulator.

8. Discussion

The nonadiabatic Heisenberg model (NHM) defines a nonadiabatic atomic-like motion in NiO
(Section 5.1) and claims that this motion is physically existent. It provides evidence that this really
existing electronic motion causes the interesting properties of NiO, namely the stability of the
antiferromagnetic structure and of the insulating ground state. The antiferromagnetic structure,
however, can only be stable when the crystal is slightly distorted. This distortion creates a deformation
of the crystal closely resembling a rhombohedral deformation.

The NHM provides the group-theoretical framework of the atomic-like motion of the electrons
in NiO. It considers the exact atomic-like motion with hypothetical nonadiabatic localized functions
being not suited for the calculation of matrix elements. For this purpose, we still must approximately
represent the nonadiabatic localized states by atomic functions or (if they are known) by adiabatic
Wannier functions. This “adiabatic approximation” of the nonadiabatic atomic-like state should yield
physically relevant results in NiO because the electrons actually perform a nonadiabatic atomic-like
motion. Thus, our results conflict neither with band structure calculations taking correlation effects into
account [24,25] nor with the proven concept of correlation effects in narrow d bands being responsible
for the nonmetallic behavior in NiO [6,14,21,26].

9. Conclusions

The results of this paper corroborate that the nonadiabatic atomic-like motion defined within
the NHM is physically existent if the considered metal possesses a narrow, partly filled band with
suitable Wannier functions (Section 5.1). The success in the last 40 years in identifying narrow, roughly
half filled superconducting [9,27] and magnetic [9,17] bands in the conventional band structures of
superconducting and magnetic materials provides evidence that the nonadiabatic atomic-like motion
as defined in the NHM actually has physical reality and stabilizes the superconducting and magnetic
states, respectively, in these materials. In addition, our results on NiO and BaMn2As2 [17] suggested
that “magnetic super bands” (Section 6) may stabilize insulating ground states in a magnetic phase.
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Abbreviations

The following abbreviations are used in this manuscript:

∆E Nonadiabatic condensation energy as defined in Equation (2.20) of [4]
NHM Nonadiabatic Heisenberg model
E Identity operation
I Inversion
C2b Rotation through π as indicated in Figure 2
σdb Reflection IC2b
K Anti-unitary operator of time inversion
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Appendix A. Wyckoff Positions

The magnetic group M9 of the antiferromagnetic state of NiO is a type III Shubnikov space group,
which also may be written in the form [3]:

M9 = Cc + K(C2/c− Cc), (A1)

where the unitary space group C2/c contains (besides the translations) the elements:

C2/c =
{
{E|0}, {C2b|0}, {I|τ}, {σdb|τ}

}
. (A2)

Though the symmetry operations of the group C2/c are different from the operations contained
in C2/c (see Equation (2)), both groups bear the same international number 15 because the elements of
C2/c are changed into the elements of C2/c when the origin of C2/c is translated by [3]:

t0 =
1
4

T1 (A3)

Keeping this in mind, we may determine the Wyckoff positions of the atoms in the space group
C2/c by means of the Bilbao Crystallographic Server [28] yielding the Wyckoff positions (a|b|c):

4b (0| 12 |0) (0| 12 |
1
2 )

4e (0|y| 14 ) (0| − y| 34 )
(A4)

in the space group C2/c. In the coordinate system given in Figure 2a, the two Wyckoff positions 4b
may be written as:

p4b1 = 1
2 (T2 − T3) + t0 = 1

2 (T2 − T3) +
1
4 T1

p4b2 = 1
2 (T2 − T3) +

1
2 T1 + t0 = 1

2 (T2 − T3) +
1
2 T1 +

1
4 T1,

(A5)

and in the case 4e, we have (for y = 0):

p4e1 = 1
4 T1 + t0 = 1

2 T1

p4e2 = 3
4 T1 + t0 = T1,

(A6)

since (in Equation (A4)) b = T2 − T3 and c = T1.
Thus, the vectors tNi and tO in Equations (17) and (18) represent the Wyckoff positions 4e and 4b

of C2/c. Equation (A4) confirms that in the magnetic group M9, the nickel atoms may be shifted by ±y
in the T2 − T3 direction from their positions tNi, while the oxygen atoms are fixed at their positions tO.

Appendix B. Group-Theoretical Tables

This Appendix provides Tables A1–A5 along with notes to the tables.
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Table A1. Character tables of the single valued irreducible representations of the cubic space group
Fm3m = Γ f

c O5
h (225) of paramagnetic NiO.

Γ(000)

C−34 S+
64

C+
31 S−61

C−32 S+
62 C+

4y S−4y C2a σda

C+
32 S−62 C−4y S+

4y C2 f σd f

C−33 S+
63 C+

4z S−4z C2b σdb
σy C2y C+

33 S−63 C+
4x S−4x C2d σdd

σz C2z C−31 S+
61 C−4z S+

4z C2e σde
E I σx C2x C+

34 S−64 C−4x S+
4x C2c σdc

Γ+
1 1 1 1 1 1 1 1 1 1 1

Γ+
2 1 1 1 1 1 1 −1 −1 −1 −1

Γ−2 1 −1 −1 1 1 −1 −1 1 −1 1
Γ−1 1 −1 −1 1 1 −1 1 −1 1 −1
Γ+

3 2 2 2 2 −1 −1 0 0 0 0
Γ−3 2 −2 −2 2 −1 1 0 0 0 0
Γ+

4 3 3 −1 −1 0 0 1 1 −1 −1
Γ+

5 3 3 −1 −1 0 0 −1 −1 1 1
Γ−4 3 -3 1 −1 0 0 1 −1 −1 1
Γ−5 3 -3 1 −1 0 0 −1 1 1 −1

L( 1
2

1
2

1
2 )

C2e σdb
S−61 C−31 C2 f σde

E I S+
61 C+

31 C2b σd f

L+
1 1 1 1 1 1 1

L+
2 1 1 1 1 −1 −1

L−1 1 −1 −1 1 1 −1
L−2 1 −1 −1 1 −1 1
L+

3 2 2 −1 −1 0 0
L−3 2 −2 1 −1 0 0

X( 1
2 0 1

2 )

C−4y C2z C2c S+
4y σz σdc

E C2y C+
4y C2x C2e I σy S−4y σx σde

X+
1 1 1 1 1 1 1 1 1 1 1

X+
2 1 1 1 −1 −1 1 1 1 −1 −1

X+
3 1 1 −1 1 −1 1 1 −1 1 −1

X+
4 1 1 −1 −1 1 1 1 −1 −1 1

X+
5 2 −2 0 0 0 2 −2 0 0 0

X−1 1 1 1 1 1 −1 −1 −1 −1 −1
X−2 1 1 1 −1 −1 −1 −1 −1 1 1
X−3 1 1 −1 1 −1 −1 −1 1 −1 1
X−4 1 1 −1 −1 1 −1 −1 1 1 −1
X−5 2 −2 0 0 0 −2 2 0 0 0

W( 1
2

1
4

3
4 )

S−4x C2 f σz
E C2x S+

4x C2d σy

W1 1 1 1 1 1
W2 1 1 1 −1 −1
W3 1 1 −1 1 −1
W4 1 1 −1 −1 1
W5 2 −2 0 0 0

Λ( 1
4

1
4

1
4 )

σd f
C−31 σde

E C+
31 σdb

Λ1 1 1 1
Λ2 1 1 −1
Λ3 2 −1 0

R( 1
4

1
4

3
4 )

E σdb

R1 1 1
R2 1 −1

Notes to Table A1:

(i) The point group operations are related to the x, y, z coordinate system in Figure 2.
(ii) The notations of the points of symmetry follow Figure 3.14 of [3].

(iii) The character tables are determined from Table 5.7 of [3].
(iv) The point R lies in the plane ΓLK.
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Table A2. Symmetry labels of the Bloch functions at the points of symmetry in the Brillouin zone for Cc
(9) of all the energy bands with symmetry adapted and optimally localized Wannier functions centered
at the Ni (Table (a)) and O (Table (b)) atoms, respectively.

(a) Ni Ni1(000) Ni2( 1
2 00) K{C2b|0} Γ A Z M L V

Band 1 d1 d1 OK Γ1 + Γ2 A1 + A2 Z1 + Z2 M1 + M2 2L1 2V1

(b) O O1(
1
4

1
2

1
2 ) O2(

3
4

1
2

1
2 ) K{C2b|0} Γ A Z M L V

Band 1 d1 d1 OK Γ1 + Γ2 A1 + A2 Z1 + Z2 M1 + M2 2L1 2V1

Notes to Table A2:

(i) The space group Cc is the unitary subgroup of the magnetic group M9 = Cc + K{C2b|0}Cc
leaving invariant both the experimentally observed [2,29–32] antiferromagnetic structure
and the dislocations of the Ni atoms shown in Figure 2a. K still denotes the operator of
time-inversion.

(ii) Each band consists of two branches (Definition 2 of [9]) since there are two Ni and two O
atoms in the unit cell.

(iii) Band 1 of Ni forms the magnetic band responsible for the antiferromagnetic structure of NiO.
(iv) Band 1 of Ni and Band 1 of O form together the magnetic super band responsible for the Mott

insulator.
(v) The notations of the points of symmetry in the Brillouin zone for Γb

m follow Figure 3.4 of [3].
(vi) The symmetry notations of the Bloch functions are defined in Table A4.

(vii) The bands are determined following Theorem 5 of [9].
(viii) Table (a) is valid irrespective of whether or not the Ni atoms are dislocated as shown in

Figure 2a.
(ix) The Wannier functions at the Ni or O atoms listed in the upper row belong to the representation

d1 included below the atom.
(x) Applying Theorem 5, we need the representation d1 of the point groups G0Ni and G0O of

the positions of the Ni and O atoms, respectively (Definition 12 of [9]). In NiO, both groups
contain only the identity operation,

G0Ni = G0O =
{
{E|0}

}
. (A7)

Thus, the Wannier functions belong to the simple representation defined by:

{E|0}

d1 1
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(xi) Each row defines a band with Bloch functions that can be unitarily transformed into Wannier
functions being:

• as well localized as possible (according to Definition 5 of [9]);
• centered at the Ni (Table (a)) or O (Table (b)) atoms; and
• symmetry adapted to Cc; that means (Definition 7 of [9]) that they satisfy Equation (15)

of [9], reading in NiO as:

P({σdb|τ})wNi1(r) = wNi2(r),
P({σdb|τ})wNi2(r) = wNi1(r),
P({σdb|τ})wO1(r) = wO2(r),
P({σdb|τ})wO2(r) = wO1(r),

(A8)

where wNi1(r), wNi2(r), wO1(r), and wO2(r) denote the Wannier functions centered at the
Ni and O atoms, respectively.

(xii) The entry “OK” indicates that the Wannier functions follow also Theorem 7 of [9] with N =( 1 0
0 1

)
in Table (a) and N =

( 0 1
1 0

)
in Table (b). That means that the Wannier functions

may even be chosen symmetry adapted to the magnetic group M = Cc + K{C2b|0}Cc. Thus,
Equation (62) of [9] is valid, reading in NiO as:

KP({C2b|0})wNi1(r) = wNi1(r)
KP({C2b|0})wNi2(r) = wNi2(r)
KP({C2b|0})wO1(r) = wO2(r)
KP({C2b|0})wO2(r) = wO1(r)

(A9)

in addition to Equations (A8).
(xiii) Within the NHM, Equations (A8) and (A9) have only one, but an important meaning:

they ensure that the nonadiabatic Hamiltonian of the atomic-like electrons commutes with the
symmetry operators of M9 [4].
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Table A3. Character tables of the single valued irreducible representations of the monoclinic base
centered space group C2/c = Γb

mC6
2h (15).

Γ(000), Z(0 1
2

1
2 )

K {E|0} {C2b|τ} {I|0} {σdb|τ}

Γ+
1 , Z+

1 (a) 1 1 1 1
Γ−1 , Z−1 (a) 1 1 −1 −1
Γ+

2 , Z+
2 (a) 1 −1 1 −1

Γ−2 , Z−2 (a) 1 −1 −1 1

A( 1
2 00), M( 1

2
1
2

1
2 )

{σdb|3τ} {I|T1} {C2b|3τ}
K {E|0} {E|T1} {σdb|τ} {I|0} {C2b|0}

A1, M1 (a) 2 −2 0 0 0

Notes to Table A3:

(i) The notations of the points of symmetry follow Figure 3.4 of [3].
(ii) Only the points of symmetry invariant under the complete space group are listed.

(iii) The character tables are determined from Table 5.7 in [3].
(iv) K denotes the operator of time inversion. The entry (a) is determined by Equation (7.3.51)

of [3] and indicates that the related co-representations of the magnetic group C2/c + KC2/c
follow Case (a) as defined in Equation (7.3.45) of [3].

Table A4. Character tables of the single valued irreducible representations of the monoclinic base
centered space group Cc = Γb

mC4
1h (9).

Γ(000), Z(0 1
2

1
2 )

K K{E|τ} K{C2b|0} {E|0} {σdb|τ}

Γ1, Z1 (a) (a) (a) 1 1
Γ2, Z2 (a) (a) (a) 1 −1

L( 1
2 0 1

2 ), V(00 1
2 )

{E|0}

L1, V1 1

A( 1
2 00), M( 1

2
1
2

1
2 )

K K{E|τ} K{C2b|0} {E|0} {σdb|τ} {E|T1} {σdb|3τ}

A1, M1 (c) (c) (a) 1 i −1 -i
A2, M2 (c) (c) (a) 1 -i −1 i

Notes to Table A4:

(i) The notations of the points of symmetry follow Figure 3.4 of [3].
(ii) The character tables are determined from Table 5.7 in [3].

(iii) K denotes the operator of time inversion. The entries (a) and (c) are determined by Equation
(7.3.51) of [3]. They indicate whether the related co-representations of the magnetic groups
Cc + KCc, Cc + K{E|τ}Cc, and Cc + K{C2b|0}Cc follow Case (a) or Case (c) as defined in
Equations (7.3.45) and (7.3.47), respectively, of [3].
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Table A5. Compatibility relations between the Brillouin zone for the fcc space group Fm3m (225) of
paramagnetic NiO and the Brillouin zone for the space group Cc (9) of the antiferromagnetic structure
in distorted NiO.

Γ(000)

Γ+
1 Γ+

2 Γ−2 Γ−1 Γ+
3 Γ−3 Γ+

4 Γ+
5 Γ−4 Γ−5

Γ1 Γ2 Γ1 Γ2 Γ1 + Γ2 Γ1 + Γ2 Γ1 + 2Γ2 2Γ1 + Γ2 2Γ1 + Γ2 Γ1 + 2Γ2

L( 1
2

1
2

1
2 )

L+
1 L+

2 L−1 L−2 L+
3 L−3

Γ2 Γ1 Γ1 Γ2 Γ1 + Γ2 Γ1 + Γ2

L′(00 1
2 )

L+
1 L+

2 L−1 L−2 L+
3 L−3

Z2 Z1 Z1 Z2 Z1 + Z2 Z1 + Z2

L′′( 1
2 00)

L+
1 L+

2 L−1 L−2 L+
3 L−3

V1 V1 V1 V1 2V1 2V1

Λ( 1
4

1
4

1
4 )

Λ1 Λ2 Λ3
A1 + A2 A1 + A2 2A1 + 2A2

R( 1
4

1
4

3
4 )

R1 R2
M1 + M2 M1 + M2

X′( 1
2

1
2 0)

X+
1 X+

2 X+
3 X+

4 X+
5 X−1 X−2 X−3 X−4 X−5

Z1 Z2 Z2 Z1 Z1 + Z2 Z2 Z1 Z1 Z2 Z1 + Z2

X′′(0 1
2

1
2 )

X+
1 X+

2 X+
3 X+

4 X+
5 X−1 X−2 X−3 X−4 X−5

V1 V1 V1 V1 2V1 V1 V1 V1 V1 2V1

Notes to Table A5:

(i) The Brillouin zone for Cc (9) lies diagonally within the Brillouin zone for Fm3m (225).
(ii) The upper rows list the representations of the little groups of the points of symmetry in the

Brillouin zone for Fm3m, and the lower rows list representations of the little groups of the
related points of symmetry in the Brillouin zone for Cc.

The representations in the same column are compatible in the following sense: Bloch functions
that are basis functions of a representation Di in the upper row can be unitarily transformed
into the basis functions of the representation given below Di.

(iii) The notations of the points of symmetry follow Figures 3.14 and 3.4, respectively, of [3].
(iv) The notations of the representations are defined in Tables A1 and A4, respectively.
(v) Within the Brillouin zone for Fm3m, the primed points are equivalent to the unprimed point.

(vi) The compatibility relations are determined by a C++ computer program in the way described
in great detail in [33].
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