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5 Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University,

Almaty 050040, Kazakhstan
* Correspondence: arman.tursunov@fpf.slu.cz

Received: 22 October 2019; Accepted: 17 December 2019; Published: 23 December 2019
����������
�������

Abstract: Explicit expressions are constructed for a locally conserved vector current associated with a
continuous internal symmetry and for energy-momentum and angular-momentum density tensors
associated with the Poincaré group in field theories with higher-order derivatives and in non-local
field theories. We consider an example of non-local charged scalar field equations with broken C
(charge conjugation) and CPT (charge conjugation, parity, and time reversal) symmetries. For this
case, we find simple analytical expressions for the conserved currents.

Keywords: non-local field theories; Noether’s theorem; internal symmetry; energy-momentum;
angular-momentum; Poincaré group; charged scalar field; broken symmetries; CPT violation

1. Introduction

According to Noether’s theorem [1], the invariance of the Lagrangian function of a physical
system with respect to continuous transformations leads to conservation laws and the corresponding
existence of conserved charges. In its standard form, Noether’s theorem refers to local field theories
with derivatives, of no higher than second order, in the field equations.

Quantum field theories with higher derivatives are used for intermediate regularization
procedures (see, e.g., [2]). The low-energy regime of quantum chromodynamics (QCD) is known
to be successfully described by chiral perturbation theory based on a power-series expansion
in derivatives [3,4]. Infinite higher-order derivatives, in the form of an infinite set of ordinary
differential equations, appear in the treatment of the delay-time problem of the electromagnetic
radiation-reaction [5,6], which can be considered as an example of non-local theory. Field theories with
higher-order derivatives or non-local theories are also discussed in the context of general relativity [7,8].
In solid state physics, non-local field theories are successfully used to describe non-local interactions
of atoms on scales up to the lattice parameter [9]. A conserved current associated with pairs of
non-Noether or non-local symmetries is constructed in [10].

The charge conjugation, parity, and time reversal (CPT) theorem states that the CPT symmetry
violation can be related to non-local interactions. Low-energy nuclear and atomic experiments provide
strict constraints on the scale of a possible violation of CPT symmetry. A simple classification of the
effects of the violation of the C, P, and T symmetries and their combinations is presented by Okun [11].
A class of inflationary models is based on a non-local field theory [12].
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In this paper, the question of whether one can generalize Noether’s theorem to non-local field
theory is discussed.

As an initial step, we consider a Lagrangian that contains, along with a field Ψ = (φ, φ∗), its
higher derivatives ∂µ1 . . . ∂µn Ψ, up to order n ≥ 1:

L = L(Ψ, ∂µ1 Ψ, . . . , ∂µ1 . . . ∂µn Ψ). (1)

The Lagrangian given in (1) is still local as it is a function of the field and its finite-order derivatives are
evaluated at a single point in space-time. To obtain a non-local field theory, one must include in (1) a
dependence on an infinite number of field derivatives, i.e., by considering the limit n→ ∞.

In the remainder of this paper, we use a system of units such that h̄ = c = 1. Indices
µ, ν, ..., denoted by Greek letters from the middle of the alphabet, run from 0 to 3. Indices
α, β, ... denote the spatial components of tensors and run from 1 to 3. We use a time-like metric
gµν = diag(+1,−1,−1,−1), and indices enumerating members of internal-symmetry multiplets
are suppressed.

2. Symmetries and the Conserved Currents

Any observable quantity can be expressed in terms of fields and their certain combinations.
In general, the fields that appear in the Lagrangian belong to a representation space of the internal
symmetry group. Linear transformations of the fields related to the internal symmetry group do not
affect physical quantities, which is the case considered in the present paper. Thus, for infinitesimal
transformations related to the internal symmetries, one can write the transformation matrix as follows:

U(ω) = 1− iωaTa, (2)

where the ωa are a set of infinitesimal real parameters and the Ta are generators of group
transformations. If the matrix U is unitary, then the Ta are Hermitian matrices. For the U(1) symmetry
group, Ta = 1, and for SU(2), the Ta are the Pauli matrices.

Along with the internal symmetry of a physical system, in the general case, one must consider the
existence of external symmetries that are related to the invariance of physical quantities with respect
to translations and the Lorentz transformations. Invariance under space-time translations leads to
energy-momentum conservation, whereas the Lorentz invariance gives rise to the conservation of
angular momentum. For an infinitesimal element of the Lorentz group, coordinate transformations can
be realized by means of the matrix aµ

ν = δ
µ
ν + ε

µ·
·ν , where εµν is an infinitesimal antisymmetric tensor.

This implies that the infinitesimal Lorentz transformation matrix in the representation space of the
field can be written in the most general form as follows:

S(a) = 1− i
2

εµνΣµν, (3)

where Σµν is a matrix defined by the transformation properties of the field. Thus, the complete
transformations of the coordinates and the field corresponding to internal and external symmetries
can be expressed in matrix notation as follows:

x′ = ax + b, (4)

Ψ′(x′) = U(ω)S(a)Ψ(x), (5)

where the notation used in Equation (4) dictates a particular order of the transformations, namely,
translation is performed after the Lorentz transformation. In the opposite case, one must use
x′ = a(x + b). In the particular case of a scalar field, we obtain a simple expression φ′(x′) = φ(x),
with φ being a scalar with respect to the internal symmetries group and the Lorentz transformations.



Symmetry 2020, 12, 35 3 of 13

The field Ψ(x) in general belongs to a nontrivial representation of the internal symmetry group and a
Poincaré group representation.

For the infinitesimal parameters ωa, εµν, and bµ, the variation of the field takes the form

δΨ(x) = Ψ′(x)−Ψ(x)

= S(a)U(ω)Ψ(a−1x− b)−Ψ(x)

= (−iωaTa)Ψ(x)− bµ∂µΨ(x)− i
2

εµν
(
Λµν + Σµν

)
Ψ(x).

(6)

The intrinsic symmetry generates variation δΨ = (δφ, δφ∗) with δφ = −iωataφ and δφ∗ =

iωa t̃aφ∗. We thus use Ta = (ta,−t̃a). The spin generators act as δφ = − i
2 εµνσµνφ and δφ∗ =

i
2 εµνσµν∗φ∗. The rotation operators are defined by Λµν = (Rµν,−Rµν) where Rµν = xµi∂ν − xνi∂µ

and Σµν = (σµν,−σµν∗). The order of the transformations is as follows: the matrix U(ω) is applied
first, followed by the Lorentz transformations and then translation. However, the order of the matrices
S(a) and U(ω) is interchangeable as the transformations of internal symmetries commute with those
of external symmetries. Thus, the first term on the right-hand side of Equation (6) corresponds
to transformations of internal symmetries, the second corresponds to translations, and the third
corresponds to the Lorentz transformations.

Returning to Equation (1) for the infinitesimal parameters ωa, εµν, and bµ, one can now write the
variation of the Lagrangian, δL(x) = L′(x)−L(x), as

− bσ∂σL− εσνxν∂σL =
∂L
∂Ψ

δΨ + ∑
n≥1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µ1 . . . ∂µn δΨ. (7)

To derive the expression for the conserved current, one must use the generalized higher-order
Euler–Lagrange equation

∂L
∂Ψ

+ ∑
n≥1

(−)n∂µn . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

= 0. (8)

By replacing the first term on the right-hand side of Equation (7) with the corresponding
expression from the Euler–Lagrange Equation (8), one can rewrite the right-hand side of Equation (7)
as follows:

r.h.s. = − ∑
n≥1

(−)n∂µn . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

δΨ + ∑
n≥1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µ1 . . . ∂µn δΨ. (9)

The purpose is to represent the expression (9), using the form of the divergence of some quantity.
The n-th order term under the first summation symbol in Equation (9) can be rewritten in the form

− (−)n∂µn . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

δΨ

=− (−)n∂µn

(
∂µn−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

δΨ
)

− (−)n+1∂µn−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µn δΨ.

(10)
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The first term has the form of a divergence, whereas in the second term, the derivative ∂µn is
shifted to the right and acts on δΨ. By rewriting the second term of (10) in the same way,

− (−)n+1∂µn−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µn δΨ

=− (−)n+1∂µn−1

(
∂µn−2 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µn δΨ
)

− (−)n+2∂µn−2 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µn−1 ∂µn δΨ,

(11)

we again obtain a divergence and one more derivative of δΨ in the second term. This implies that
through such recursion, one can shift the derivative to the right until it lies immediately before δΨ.
With each such procedure, the second term in the rewritten part of the expression changes sign and the
first term has the form of a divergence.

Finally, the last term in the recursion can be obtained by shifting over n derivatives; this term will
have an additional sign (−1)n, and consequently, it will have a sign opposite to that of the second term
of Equation (9) and will therefore vanish.

Thus, the result of this procedure for the right-hand side of Equation (7) has the form

r.h.s. =
n

∑
k=1

δσ
µk
(−)k+1∂σ

(
∂µk−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µn Ψ)

∂µk+1 . . . ∂µn δΨ
)

= ∂σ

n

∑
k=1

(−)k+1
(

∂µk−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µk−1 ∂σ∂µk+1 . . . ∂µn Ψ)

∂µk+1 . . . ∂µn δΨ
)

.
(12)

Finally, Equation (7) can be written fully in the form of a divergence as follows:

∂σ[∑
n≥1

n

∑
k=1

(−)k+1
(

∂µk−1 ... ∂µ1

∂L
∂(∂µ1 ... ∂µk−1 ∂σ∂µk+1 ... ∂µn Ψ)

∂µk+1 ... ∂µn δΨ
)

+bσL+ εσνxνL] = 0, (13)

where δΨ in the parentheses is given by Equation (6). The terms that are linear in the parameter ωa

determine the set of conserved currents Jaσ related to the internal symmetry group. The terms that are
proportional to the vector −bσ determine the conserved second-rank tensor that can be identified with
the energy-momentum tensor Tσ

µ. Finally, the terms that are proportional to the tensor εµν determine
the conserved third-rank tensor Mσ

µν. The spatial components of this tensor correspond to the total
angular momentum density of the system. In the case of n = 1, we obtain the standard results. The set
of conserved currents takes the form

Jaσ = ∑
n≥1

n

∑
k=1

(−)k+1
(

∂µk−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µk−1 ∂σ∂µk+1 . . . ∂µn Ψ)

)
× ∂µk+1 . . . ∂µn(−iTa)Ψ(x),

(14)

Tσ
µ = ∑

n≥1

n

∑
k=1

(−)k+1
(

∂µk−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µk−1 ∂σ∂µk+1 . . . ∂µn Ψ)

)
× ∂µk+1 . . . ∂µn ∂µΨ(x)− δσ

µL,

(15)

Mσ
µν = ∑

n≥1

n

∑
k=1

(−)k+1
(

∂µk−1 . . . ∂µ1

∂L
∂(∂µ1 . . . ∂µk−1 ∂σ∂µk+1 . . . ∂µn Ψ)

)
×∂µk+1 . . . ∂µn(−i)

(
Λµν + Σµν

)
Ψ(x)−

(
xµδσ

ν − xνδσ
µ

)
L.

(16)
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Using Noether’s theorem one can find the conserved currents with accuracy within an arbitrary
factor. In Equations (14)–(16), the factors are chosen in such a way that the conserved quantity T0

0
coincides with the energy density defined by the Legendre transform of the Lagrangian. The quantity
M0

αβ then coincides with the angular momentum density of the system for the spatial indices α and β.
Equation (15) is in agreement with [7].

We remark that a complete rotor, whose divergence is identically zero, can always be added to
the conserved Noether current to achieve another conserved current, e.g., Jaσ&→ &Jaσ + εστρν∂τ Aa

ρν,
where εστρν is the totally antisymmetric Levi-Civita tensor and Aa

ρν is an arbitrary tensor. In general,
the conserved Noether current is not a gauge invariant, even if the Lagrangian is. The construction of
symmetric and gauge invariant energy–momentum tensors in electrodynamics and general relativity
is discussed in [7,13].

In non-local field theory, we expand non-local operators of the Lagrangian in an infinite power
series over the differential operators. The conserved currents are then given by Equations (14)–(16),
with the summation over n extended to +∞. This method is applied below to construct the conserved
currents in a non-local charged scalar field theory.

3. Non-Local Charged Scalar Field

We consider an example of a non-local charged scalar field described by the Lagrangian

L =
1
2

φ∗
(

i∂t −
√
−∆ + m2

)
φ + c.c. (17)

The particles follow a relativistic dispersion law E(p) =
√

p2 + m2. Because of the absence of
negative-frequency solutions, the particles do not have antiparticles, which leads to a violation of the
Lorentz invariance. After quantization of the system (17), the field commutator [φ(x), φ(y)] does not
disappear at space-like intervals (x− y)2 < 0, so signals can propagate at speeds above the speed of
light, ultimately violating causality. The condition [φ(x), φ(y)] = 0 for (x− y)2 < 0 is also required for
the Lorentz invariance of the T product of the field operators. The system described by Lagrangian (17)
is interesting from methodological and historical points of view, since the corresponding evolution
equation was considered in the past as a possible relativistic generalization of the Schrödinger equation.

Let us check whether CPT invariance holds in the non-local field theory defined by (17). First
we consider the charge-conjugation operation, C. In the momentum space given by pα = −i∇ =

−(pα)∗, with α = 1, 2, 3, we replace the particle’s momenta in (17) with the generalized momenta,
pµ → pµ − eAµ. Equating the functional derivative δL/δφ∗ to zero, we obtain the evolution equation
in an external electromagnetic field:

(i∂t − eA0)φ =
√
(p− eA)2 + m2 φ. (18)

For the complex conjugate scalar field, one has

(i∂t + eA0)φ
∗ = −

√
(p− eA)2 + m2 φ∗. (19)

Together with the sign reversal of the charge e in Equation (19), a negative sign appears at the
root. Obviously, the charge-conjugation symmetry is broken. Violation of the C symmetry means
that the properties of a particle and its corresponding antiparticle are different or, as in our case, the
corresponding antiparticles do not exist.

One can easily check that the Lagrangian given in (17) is invariant under the parity transformation,
P: φ(t, x) → φ(t,−x). By the same analysis, one can check that the time-reversal symmetry, T:
φ(t, x) → φ∗(−t, x), is conserved as well. Thus, the Lagrangian of (17) is symmetric under P and
T transformations; whereas, the C symmetry is broken. The combined CPT symmetry is therefore
broken, which is consistent with the fact that the theory is non-local.
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The Lagrangian expressed in (17) is explicitly invariant under global phase rotations of φ,
which may imply the existence of a conserved vector current. The Lagrangian given in (17) is also
explicitly invariant under space-time translations and three-dimensional rotations. We thus expect the
existence of conserved energy-momentum and angular momentum tensors. The dispersion law takes a
relativistic form; therefore, the field theory of (17) is apparently invariant under boost transformations.
This symmetry is, however, implicit, and we do not discuss its consequences here. We thus restrict
ourselves to the case of ε0α = 0, εαβ 6= 0.

We will work in terms of a power series over the derivatives. Expanding L, one can rewrite it
as follows:

L =
1
2

(
φ∗i∂tφ−

∞

∑
l=0

fl(m)φ∗∆lφ

)
+ c.c., (20)

where

fl(m) = (−1)l Γ( 3
2 )

l! Γ( 3
2 − l) m2l−1

, (21)

such that
∞

∑
l=0

fl(m)xl =
√

m2 − x. (22)

3.1. Time-Like Components

One can easily find the zeroth component of the conserved currents as the Lagrangian expressed
in (20) contains only the first derivative with respect to time and there are no mixed derivatives. This
implies that the series in Equations (14)–(16) are truncated at the first term of the sum. Thus, the
charge density J0, the energy density T0

µ and the angular momentum density M0
αβ take the following

simple forms:

J0 = φ∗φ, (23)

T0
µ =

1
2

φ∗i
←→
∂ µφ, (24)

M0
αβ =

1
2

φ∗Rαβφ +
1
2
(Rαβφ)∗φ, (25)

where
←→
∂ µ =

−→
∂ µ −

←−
∂ µ andRαβ is defined following Equation (6).

We turn to momentum space, substituting into Equations (23)–(25), plane waves for outgoing
and incoming particles with momenta p′ and p. The four-momentum operator in coordinate space
is given by pµ = (E, p) = (i∂t,−i∇) . In terms of the transition matrix elements, the conserved
currents (23)–(25) take the forms

J0(p′, p) = 1, (26)

T0
µ(p′, p) =

1
2
(p′ + p)µ, (27)

M0
αβ(p′, p) =

1
2
(

x̂α(p′ + p)β − x̂β(p′ + p)α

)
, (28)

where x̂µ = −i∂/∂pµ = i∂/∂p′µ.
To find the spatial components of the conserved currents, one must specify the action of the

derivatives in expressions (14)–(16). The rules that are useful for deriving the expressions for the
conserved currents are given in Appendix A.
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3.2. Vector Current

Following the rules listed in Appendix A, we find the spatial components of the vector current
as follows:

Jα =
i
2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δααk+1 . . . δα2l−1α2l ∂αk+1 . . . ∂α2l φ

− i
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δαk−1α . . . δα2l−1α2l ∂αk+1 . . . ∂α2l φ

+ c.c.,

(29)

where fl(m) is given by Equation (21) and δφ = −iφ and δφ∗ = iφ∗ for the U(1) symmetry group.
Let us write Equation (29) in the lowest-order approximation. Equation (21) yields f1(m) =

−1/(2m). The space-like component of the vector current Jσ reduces to the standard expression

Jα =
1

2m
φ∗i
↔
∂αφ + . . . . (30)

By performing contractions of the indices and with the aid of Equation (A5) from Appendix A,
we obtain

Jα =− i
2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(4(k−1)/2φ∗)4l−(k+1)/2 ∂αφ

+
i
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(4(k−2)/2∂αφ∗)4l−k/2 φ + c.c.

(31)

The sum of the first two terms is real, so adding the complex conjugate expression doubles the result.
After some simple algebra and with the use of Equation (A7), we obtain

Jα = φ∗iDαφ, (32)

where

Dα =

←→
∂ α√

m2 − (
←−
4) +

√
m2 − (

−→
4)

. (33)

The detailed derivation of Equation (32) is given in Appendix B. In terms of the four-dimensional
operator iDσ ≡ (1, iDα), the four-dimensional vector current can be written as

Jσ = φ∗iDσφ. (34)

It is useful to rewrite the vector current in the momentum space. By substituting the plane waves
φ∗(x) ∼ eip′x and φ(x) ∼ e−ipx with momenta p′ and p into Equation (34) and omitting the exponential
factors from the final expression, we obtain

Jσ(p′, p) =
(

1,
p′ + p

E(p′) + E(p)

)
. (35)

On the mass shell, the vector current is conserved:

∂σJ
σ = 0. (36)
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The variational derivative of the action functional S =
∫

d4xL with respect to the vector
field Aσ(x),

Jσ(x) = − δS
δAσ(x)

, (37)

introduced into L with the use of minimal substitution, is associated for Aσ(x) = 0 with a vector
current. Current (37) is defined off the mass shell and it coincides with the Noether current (34) on the
mass shell, as shown in Appendix C. Multiplying (35) with (p′ − p)σ yields the result

(p′ − p)σJ
σ(p′, p) = G−1(p′)− G−1(p), (38)

where G(p) = (p0 −
√

m2 + p2)−1 is the particle propagator. This equation can be recognized as the
Ward identity.

The field φs(x), which behaves like a true scalar under Lorentz transformations, may be defined

by the equation φ(x) =
(

i∂t +
√
−∆ + m2

)1/2
φs(x). In terms of φs(x), the Lagrangian (17) takes the

explicitly covariant form L = 1
2 φ∗s (−�−m2)φs + c.c. The non-local operator

(
i∂t +

√
−∆ + m2

)1/2

eliminates from φs(x) the negative-frequency solutions. Since the proper Lorentz transformations do
not mix plane waves with the positive and negative frequencies, the classical non-local field theory (17)
appears to be Lorentz covariant. The interaction preserving the covariance can be introduced, e.g., by
adding to L the term λ|φs|4.

Equations (14)–(16) are straightforward generalizations of the Noether currents of a local field
theory. Noether’s theorem applied to L(φs(x)) leads, however, to conserved currents that differ
from those of Equations (14)–(16). A family of the conserved currents apparently exists when
non-local field transformations are permitted. The conserved vector current of L(φs(x)) takes the form
(p′ + p)σ/

√
2E(p′)2E(p). Among the conserved currents, the expression (34) is highlighted by the

coincidence with (37).

3.3. Energy-Momentum Tensor

An analysis that is fundamentally identical to that presented in the previous section leads to the
conserved energy-momentum tensor. Considering that δα

µL = 0 for the fields that satisfy the equations
of motion, one can rewrite Equation (15) with the Lagrangian given in (17) in the form

Tα
µ =− 1

2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δααk+1 . . . δα2l−1α2l ∂αk+1 . . . ∂α2l ∂µφ

+
1
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δαk−1α . . . δα2l−1α2l ∂αk+1 . . . ∂α2l ∂µφ

+ c.c..

(39)

The lowest-order l = 1 term of the expansion yields

Tα
µ =

1
4m

φ∗i
↔
∂αi
↔
∂µφ + . . . . (40)

By performing contractions of the indices in Equation (39), we obtain

Tα
µ =− 1

2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(4(k−1)/2φ∗)4l−(k+1)/2 ∂α∂µφ

+
1
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(4(k−2)/2∂αφ∗)4l−k/2 ∂µφ + c.c.

(41)
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Using Equation (A7), the summation in Equation (41) can be performed in the same way as for
the conserved current. The energy-momentum tensor finally takes the form

Tσ
µ =

1
2

φ∗iDσi
←→
∂ µφ. (42)

A detailed derivation of this expression for σ = 1, 2, 3 is given in Appendix B. Equation (42) defines four
conserved quantities, one for each component of the translation parameter bσ. In momentum space,

Tσ
µ(p′, p) = Jσ(p′, p)

1
2
(p′ + p)µ, (43)

where Jσ(p′, p) is given by Equation (35). Using Equation (38), we obtain the conservation condition
for the energy-momentum tensor on the mass shell:

∂σT
σ
µ = 0. (44)

3.4. Angular Momentum Tensor

The conservation of angular momentum arises from the invariance of the system with respect to
rotation. Taking Σµν = 0 for the charged scalar field and substituting δα

µL = 0 into Equation (16), one
can write the expression for the angular momentum density in the following form:

M
γ
αβ =

i
2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δγαk+1 . . . δα2l−1α2l ∂αk+1 . . . ∂α2lRαβφ

− i
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(∂αk−1 . . . ∂α1 φ∗)δα1α2 . . . δαk−1γ . . . δα2l−1α2l ∂αk+1 . . . ∂α2lRαβφ

+ c.c. (45)

The first terms of the series expansion are

M
γ
αβ =

1
4m

φ∗i
↔
∂γRαβφ +

1
4m

(Rαβφ)∗i
↔
∂γφ + . . . . (46)

By performing contraction of the indices in Equation (45), we obtain

M
γ
αβ =

i
2

∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(4(k−1)/2φ∗)4l−(k+1)/2 ∂γRαβφ

− i
2

∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(4(k−2)/2∂γφ∗)4l−k/2Rαβφ + c.c.

(47)

The arguments presented in Appendix B enable the summation of the series in Equation (47),
yielding

Mσ
αβ =

1
2

φ∗iDσRαβφ +
1
2
(Rαβφ)∗iDσφ. (48)

For σ = 0, we recover Equation (25). Rαβ is not diagonal in the momentum representation, so
the momentum-space representation of Mγ

αβ offers no significant advantages. Using the equations of
motion, one can verify that

∂σM
σ
αβ = 0. (49)

The conserved currents defined by Equation (48) correspond to the space-like components of
the parameter εαβ, which describe a rotation; thus, the conserved charges are the components of the
angular momentum tensor.
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4. Conclusions

In non-local field theory with an internal symmetry and symmetries of the Poincaré
group there exist conserved vector current, energy-momentum, and angular momentum tensors.
Expressions (14)–(16) solve explicitly the problem of finding the corresponding Noether currents in
terms of infinite series of the field’s derivatives.

Equations (14)–(16) were used for the construction of the conserved currents in a non-local theory
of a charged scalar field with explicit symmetries of phase rotations, translations, and spatial rotations.
Using combinatorial arguments, we summed the infinite series over derivatives of fields and obtained
the simple analytical expressions (34), (42), and (48) for the corresponding Noether currents.

Among the possible applications of the considered formalism, transformations related to the
conformal symmetry group are of particular interest.
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Appendix A. Field Derivatives

In this section, we consider algebraic rules for the manipulation of the field’s derivatives in a
Minkowski space. The proofs are valid, however, in the general case of Rm,n. The fields Ψ and their
derivatives are not assumed to be smooth; therefore, the sequence of the differentiation operations
matters. As a result,

∂L
∂(∂µ1 ∂µ2 . . . ∂µn Ψ)

is not necessarily symmetric under the permutation of indices. The conserved currents (14)–(16) are
then calculated using the following formulas:

∂

∂(∂µΨ)
∂τΨ = δ

µ
τ , (A1)

∂

∂(∂µ∂νΨ)
∂τ∂σΨ = δ

µ
τ δν

σ, (A2)

...
∂

∂(∂µ1 ∂µ2 . . . ∂µn Ψ)
∂ν1 ∂ν2 . . . ∂νn Ψ = δ

µ1
ν1 δ

µ2
ν2 . . . δ

µn
νn . (A3)

In particular,
∂

∂(∂µ∂νΨ)
�Ψ = gµν (A4)
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and
(∂µ1 ∂µ2 . . . ∂µ2l Ψ)

∂

∂(∂µ1 ∂µ2 . . . ∂µ2l Ψ)
�lΨ = �lΨ. (A5)

After the replacements � → ∆ and gµν → δαβ, these formulas also hold in Euclidean space.
The Euclidean versions of Equations (A1)–(A5) were used to derive Equations (29), (39), and (45).

Appendix B. Series Summation

The factor 1/2 in Equation (31) vanishes with the addition of the complex conjugate part.
The result can be written in the form

Jα = i
∞

∑
l=1

fl(m)
2l−1

∑
k=1,3,5,...

(4(k−1)/2φ∗)4l−(k+1)/2 ∂αφ

− i
∞

∑
l=1

fl(m)
2l

∑
k=2,4,6,...

(4(k−2)/2∂αφ∗)4l−k/2 φ

= i
∞

∑
l=1

fl(m)φ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
∂αφ

− i
∞

∑
l=1

fl(m)∂αφ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
φ.

= i
∞

∑
l=1

fl(m)φ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)←→
∂ αφ. (A6)

The arrows over 4 indicate the direction in which the differentiation acts. The series can be
summed up using the factorization formula

xl − yl = (x− y)
l

∑
k=1

xk−1yl−k. (A7)

This formula allows the simplification of the expression in brackets of Equation (A6):

Jα = i
∞

∑
l=1

fl(m)φ∗
1

(
−→
4)− (

←−
4)

[(
−→
4)l − (

←−
4)l ]
←→
∂ αφ

= i
∞

∑
l=0

fl(m)φ∗
1

(
−→
4)− (

←−
4)

[(
−→
4)l − (

←−
4)l ]
←→
∂ αφ

= iφ∗
1

(
−→
4)− (

←−
4)

[

√
m2 − (

−→
4)−

√
m2 − (

←−
4)]
←→
∂ αφ

= φ∗
i
←→
∂ α√

m2 − (
−→
4) +

√
m2 − (

←−
4)

φ. (A8)

In the transition to the second line, we use the fact that40 = 1. The third line is obtained with
the aid of Equation (22). We thus arrive at Equation (32).

On the way we proved a useful formula

∞

∑
l=1

fl(m)
l

∑
k=1

xk−1yl−k = − 1√
m2 − x +

√
m2 − y

. (A9)
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The sum over k in Equation (41) can be written explicitly as follows:

Tα
µ =

1
2

∞

∑
l=1

fl(m)φ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
∂α∂µφ

− 1
2

∞

∑
l=1

fl(m)∂αφ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
∂µφ + c.c. (A10)

Here, the indices are those of tensors in Minkowski space (e.g., ∂α = −∂α). Using the formula
given in (A9), the energy–momentum tensor can be found to be

Tα
µ =

1
2

φ∗
i
←→
∂ αi
←→
∂ µ√

m2 − (
−→
4) +

√
m2 − (

←−
4)

φ. (A11)

Equation (47) leads to

M
γ
αβ = − i

2

∞

∑
l=1

fl(m)φ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
∂γRαβφ

+
i
2

∞

∑
l=1

fl(m)∂γφ∗
(
(
−→
4)l−1 + (

←−
4)(
−→
4)l−2 + ... + (

←−
4)l−1

)
Rαβφ + c.c. (A12)

By writing the complex conjugate part of the expression explicitly, one can simplify the above
equation using the formula as expressed in (A9):

M
γ
αβ =

1
2

φ∗
i
←→
∂ γ√

m2 − (
−→
4) +

√
m2 − (

←−
4)
Rαβφ

+
1
2
(Rαβφ)∗

i
←→
∂ γ√

m2 − (
−→
4) +

√
m2 − (

←−
4)

φ. (A13)

Finally, substituting the expression given in (33) into the above equation and combining the result
with Equation (25), we obtain (48).

Appendix C. Vector Current from the Minimal Substitution

The minimal substitution provides a gauge invariance of theory. After the minimal substitution
the Lagrangian takes the form

L =
1
2

φ∗
(

i∂t − A0 −
∞

∑
l=0

(−)l fl(m)(p−A)2l

)
φ + c.c., (A14)

Based on Equation (37), we can immediately write J0 = φ∗φ.
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The variation of S under variation of A can be found using arguments similar to those of
Appendix B:

δS = −
∫

d4x
∞

∑
l=0

l

∑
k=1

(−)l fl(m)φ∗(p)2k−2(−pαδAα−δAα pα)(p)2l−2kφ

=
∫

d4x
∞

∑
l=0

l

∑
k=1

fl(m)φ∗(
−→
∆ )k−1(i

−→
∂ αδAα+δAαi

−→
∂ α)(

−→
∆ )l−kφ

=
∫

d4xδAα

(
∞

∑
l=0

l

∑
k=1

fl(m)φ∗(
←−
∆ )k−1i

←→
∂ α(
−→
∆ )l−kφ

)
= −

∫
d4xδAα (φ∗iDαφ) , (A15)

where we integrated by parts to remove derivatives from δA. The bottom line is obtained using
Equations (33) and (A9).

The current (37) coincides therefore with the Noether current (34).

References

1. Noether, E. Invariante Variationsprobleme. Nachrichten der Königlichen Gesellschaft der Wissenschaften
zu Göttingen. Mathematisch-Physikalische Klasse 1918, 235–257. (English translation: Noether, E. Invariant
Variation Problems. Transp. Theory Stat. Phys. 1971, 1, 183–207, arXiv:physics/0503066.)

2. Faddeev, L.D.; Slavnov, A.A. Gauge Fields: An Introduction to Quantum Theory, 2nd ed.; Westview Press:
Boulder, CO, USA, 1993.

3. Gasser, J.; Leutwyler, H. Chiral perturbation theory: Expansions in the mass of the strange quark.
Nucl. Phys. B 1985, 250, 465. [CrossRef]

4. Scherer, S. Introduction to chiral perturbation theory. Adv. Nucl. Phys. 2003, 27, 277.
5. Cremaschini, C.; Tessarotto, M. Statistical treatment of the electromagnetic radiation-reaction problem:

Evaluation of the relativistic Boltzmann-Shannon entropy. Phys. Rev. E 2013, 87, 032107. [CrossRef]
6. Cremaschini, C.; Tessarotto, M. Hamiltonian formulation for the classical EM radiation-reaction problem:

Application to the kinetic theory for relativistic collisionless plasmas. Eur. Phys. J. Plus 2011, 126, 63.
[CrossRef]

7. Szabados, L.B. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity. Living Rev.
Rel. 2009, 12, 4. [CrossRef] [PubMed]

8. Tessarotto, M.; Cremaschini, C. Theory of Nonlocal Point Transformations in General Relativity. Adv. Math.
Phys. 2016, 2016, 9619326. [CrossRef]

9. Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002.
10. Lunev, F.A. Analog of Noether’s theorem for non-Noether and nonlocal symmetries. Theor. Math. Phys. 1990,

84, 816. [CrossRef]
11. Okun, L.B. C, P, T are broken. Why not CPT? In Proceedings of the 14th Rencontres de Blois: Matter-

Anti-Matter Asymmetry, Chateau de Blois, France, 17–22 June 2002.
12. Barnaby, N.; Cline, J.M. Predictions for Nongaussianity from Nonlocal Inflation. JCAP 2008. [CrossRef]
13. Weinberg, S. The Quantum Theory of Fields, Volume 1: Foundations; Cambridge University Press: Cambridge,

UK, 2005.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1103/PhysRevE.87.032107
http://dx.doi.org/10.1140/epjp/i2011-11063-3
http://dx.doi.org/10.12942/lrr-2009-4
http://www.ncbi.nlm.nih.gov/pubmed/28179826
http://dx.doi.org/10.1155/2016/9619326
http://dx.doi.org/10.1007/BF01017679
http://dx.doi.org/10.1088/1475-7516/2008/06/030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Symmetries and the Conserved Currents
	Non-Local Charged Scalar Field
	Time-Like Components
	Vector Current
	Energy-Momentum Tensor
	Angular Momentum Tensor

	Conclusions
	Field Derivatives
	Series Summation
	Vector Current from the Minimal Substitution
	References

