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Abstract: Computing services for the Internet-of-Things (IoT) play a vital role for widespread IoT
deployment. A hierarchy of Edge-Cloud publish/subscribe (pub/sub) broker overlay networks that
support latency-sensitive IoT applications in a scalable manner is introduced. In addition, we design
algorithms to cluster edge pub/sub brokers based on topic similarities and geolocations to enhance
data dissemination among end-to-end IoT devices. The proposed model is designed to provide
low delay data dissemination and effectively save network traffic among brokers. In the proposed
model, IoT devices running pub/sub client applications periodically send collected data, organized
as a hierarchy of topics, to their closest edge pub/sub brokers. Then, the data are processed/analyzed
at edge nodes to make controlling decisions promptly replying to the IoT devices and/or aggregated
for further delivery to other interested edge brokers or to cloud brokers for long-term processing,
analysis, and storage. Extensive simulation results demonstrate that our proposal achieves the best
data delivery latency compared to two baseline schemes, a classical Cloud-based pub/sub scheme
and an Edge-Cloud pub/sub scheme. Considering the similar Edge-Cloud technique, the proposed
scheme outperforms PubSubCoord-alike in terms of relay traffic ratio among brokers. Therefore, our
proposal can adapt well to support wide-scale latency-sensitive IoT applications.

Keywords: broker-based publish/subscribe; topic similarity; geolocation awareness; IoT applications;
latency-sensitive; distributed pub/sub systems

1. Introduction

Recent advancements in Internet-of-Things (IoT) technologies have enabled various applications
in many domains, such as agriculture, healthcare, transportation, industrial automation, and smart
homes [1]. In these applications, IoT devices, for example, wearables, smart meters, and smart
appliances, will create an unprecedented amount of data that needs to be transferred, stored, and
analyzed at proper places. Cisco estimates that, with the widespread adoption of the IoT, by 2021
847 zettabytes (ZB) of IoT data will be generated per year [2]. A large part of that data will be ephemeral
and approximately 7.2 ZB will be stored in the Cloud [2]. In addition, data are primarily generated
near the edge of the network and will be processed by applications deployed at the edge to provide fast
reactions. A portion of the data and information extracted will be uploaded to the Cloud. Designing
a communication platform to provide low latency and high scalability for such IoT applications is
a challenging.

Cloud computing platforms, typically characterized by on-demand self-service, resource pooling,
and rapid elasticity, have proved to be a useful and economic alternatives for various applications, such
as collaboration and computing-intensive applications [3,4]. However, latency-sensitive applications
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restrict low transmission delay and require quality of service conditions; thus, these applications may
not be suitable to be solely deployed in the Cloud. Moreover, deploying many wide-scale IoT projects
requires the support of computing platforms with specialized characteristics, such as geo-distribution
and location awareness. Conversely, the Fog Computing paradigm can meet these requirements and
fit well for IoT applications by bringing computing, storage, and networking functions closer to the
edge [4]. In addition, interplay between Cloud Computing and Fog/Edge Computing is worthwhile
for long-term data management and IoT application analytics [5]. Thus, a communication paradigm
that can take advantages of the Cloud and the Fog will be fruitful for IoT.

The Publish/Subscribe (pub/sub) paradigm has been used as a powerful communication protocol
to develop a wide range of distributed applications. In this paradigm, communicating entities are
loosely coupled in terms of time, space, and synchronization; thus, the paradigm can support useful
and flexible characteristics, such as anonymity, many-to-many, and asynchronicity, that are critical
for distributed systems [6]. This makes the pub/sub paradigm highly suited for complex, wide-scale
information diffusion systems such as Spoti f y, Twitter, and Facebook [7]. For instance, Spoti f y [8] is
an international music streaming service that uses pub/sub paradigm to provide various features for
social interactions. In Spoti f y topic-based pub/sub system, users can subscribe topics under types of
Friends, Playlists, and Artist pages. When users subscribe to an Artist page, they will receive future
notifications related to the artist such as new album releases. Therefore, many IoT applications have
relied on pub/sub systems for data dissemination [9,10]. In addition, topic-based pub/sub (TBPS)
systems were mainly deployed for message delivery in IoT systems [11]. To support connectivity
between IoT devices and applications, a lightweight messaging protocol, such as MQTT [12], is
required. In addition, a message broker/server is deployed to facilitate data exchange among IoT
devices. The applications access the IoT data and control the devices via this server using provided
APIs. This method is highly suited to LAN environments but does not scale for application to
wide-scale IoT projects where there are a very large number of geo-distributed IoT devices and a large
number of brokers [13]. Furthermore, the centralized deployment of pub/sub brokers in the Cloud
will increase latency for IoT applications. Consequently, there is an evident need to develop advanced
coordination schemes to organize and scale these brokers effectively.

In this paper, we present an Edge–Cloud pub/sub broker model for data dissemination in
wide-scale IoT projects. In the proposed model, in order to take advantages of the Cloud and the Fog,
brokers are placed closer to the edge networks to reduce data delivery latency and are installed in
the Cloud for long-term data analytics for the applications. The main contributions of this paper are
summarized as follows.

• We propose a hierarchy of Edge-Cloud publish/subscribe (pub/sub) broker overlay networks
that support latency-sensitive IoT applications in a scalable manner.

• We devise a collaborative scheme to enable pub/sub brokers to efficiently find, inform, and link
a large number of topics in wide-scale IoT projects.

• We design algorithms to cluster edge pub/sub brokers based on topic similarities and geolocations
to enhance data dissemination among end-to-end IoT devices.

• Extensive simulations results demonstrate that the proposed scheme can provide low delay data
dissemination and effectively save network traffic among brokers that are critical for wide-scale
IoT applications.

The remainder of this paper is organized as follows. Section 2 surveys works related to pub/sub
systems for wide-scale applications. Section 3 outlines the proposed pub/sub model for message
delivery in IoT projects. In Section 4, the coordination scheme and the details of algorithms to cluster
pub/sub brokers are presented, and, in Section 5, we provide simulation results and a discussion.
Conclusions and suggestions for future work are presented in Section 6.
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2. Related Work

Firebase Cloud Messaging (FCM) [14] is a cross-platform messaging solution that can play as
a development platform for IoT applications. FCM allows application developers to send notifications
and messages across many IoT applications that need to collect data and deliver low latency content.
An implementation of FCM comprises two main components to build, transport, and receive messages:
a trusted server environment that supports the FCM server protocols and client applications. Another
famous framework to address the emerging needs of IoT is IoTivity [15]. The IoTivity is an open source
project with the goal to create a new standard that can connect billions of wired and wireless devices.
In this framework, data are collected from IoT devices and ultimately stored in IoTivity Global Cloud
using pub/sub brokers that might cause long delay for latency-sensitive IoT applications.

To support message delivery in wide-scale applications, many studies have proposed solutions
by providing protocols and algorithms to build scalable peer-to-peer TBPS systems [7,16,17].
Rahimian et al. [7] proposed a hybrid TBPS overlay system that offers low relay messages among peers
and scales well with a large number of peers and topics. In this system, peers with similar subscriptions
are clustered by a gossip-based unstructured sampling method. Then, these clusters are linked by
a structured rendezvous routing technique. Girdzijauskas et al. [17] presented a TBPS system that is
efficient and scalable in message dissemination by exploiting topic subscription correlations among
peers while dynamically clustering them on a skewed distributed hash table. In addition, a routing
technique, based on the underlying routing structure, was proposed to build the multicast trees for
locality preservation to reduce message delivery latency. In a different method, Chockler et al. [16]
introduced a distributed protocol, SpiderCast, to dynamically organize correlated workload peers into
an overlay network to support TBPS communication. SpiderCast works well with a large number of
nodes and a limited number of correlated subscriptions per node. In short, these methods could be
applied to manage broker-based TBPS systems where groups of distributed brokers are responsible
for relaying messages among publishers and subscribers (IoT devices). However, it is infeasible to
apply such methods directly on IoT devices in wide-scale IoT applications due to limited device
resources. In addition, these methods lack broker/peer locality-awareness to further reduce latencies
for delay-sensitive applications in a scalable manner.

Another promising approach to deliver data in wide-scale IoT systems is building scalable
broker-based TBPS systems, for example, by deploying pub/sub brokers, such as Dynamoth [18].
Dynamoth is scalable pub/sub middleware that can be deployed in the Cloud to provide data delivery
service for data producers and consumers. Dynamoth provides a scalable, load-balancing topic routing
service among brokers inside the Cloud for outside clients. However, this solution may not suit
delay-sensitive IoT applications due to long delays when transferring data from clients to Cloud
brokers. Another way is to incorporate strong characteristics of both Fog Computing and Cloud
Computing by deploying distributed brokers closer to the clients and coordinating them with brokers
located in the Cloud. In PubSubCoord [19], edge brokers are deployed at isolated networks to reduce
delays, and routing servers are deployed in the Cloud to route messages among the edge network
brokers. In [19], however, the authors do not exploit topic correlations among proximate edge brokers
to further decrease delays. In addition, it is very important to provide efficient mechanisms for
edge/fog servers to communicate and collaborate with each other to improve system performance [20].
The integration of the Fog and the Cloud with the IoT will bring many benefits to different IoT
applications. Therefore, in this paper, we attempt to provide an efficient coordination scheme for
distributed pub/sub brokers and algorithms to build broker overlay networks for event notifications
in wide-scale IoT systems.

3. Hierarchy of Proposed Edge–Cloud Pub/Sub Broker Overlay Networks

Our model under consideration comprises a three-tier hierarchy: user devices, edge cloud, and
core cloud, as shown in Figure 1. First, IoT devices, such as smart sensors/actuators, smart gadgets,
and smart appliances, are deployed at the edge of the network. In addition, pub/sub client applications
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are installed in these devices to periodically send sensed data to their nearby pub/sub brokers located
in the edge cloud tier. Note that the clients can be either producers or consumers in a pub/sub system.
Once the clients subscribe to interested topic channels, they play a role as consumers in a pub/sub
system used to receive event notifications from their counterparts via their corresponding brokers.
In this scheme, we assume that pub/sub clients are pre-configured to connect to their corresponding
edge brokers or dynamically arranged to their nearby edge brokers by applying previously proposed
techniques [21–23]. Our proposed model differs from previously proposed models [21–23] in the
following aspects. First, pub/sub brokers are strategically located in edge clouds and in the core cloud,
and they will link all topic channels of the system with instructions provided by their coordinators.
Coordination servers, which coordinate all brokers in the system, are located in the top tier. Second,
pub/sub brokers will send pub/sub servers control information to help them know which brokers
currently relay which topics in the system (Section 4.2); thus, they help determine whether the number
of brokers should be scaled up or down relative to demand.

Core Cloud

…

Data channel

Control channel

Pub/Sub Brokers

<Client>

Coordination servers

Edge Cloud

<Client>
…

<Client> <Client> …<Client> <Client>

Edge Cloud 1

Pub/Sub Brokers

Edge Cloud 3

Pub/Sub Brokers

Edge Cloud 2

Pub/Sub Brokers

The System Coordinator

The coordination database

Coordination server

Pub/sub Broker

Coordination module

Pub/sub 
table

Topic routing 
table

Pub/sub Module

Pub/sub client

Figure 1. Pub/sub broker overlay networks with geolocation awareness and topic similarity clustering
for wide-scale IoT applications.

Considering a wide-scale pub/sub system, it is necessary to design a distributed coordination
service scheme, which is used to deal with coordination logic. One such approach is known as
ZooKeeper. In this paper, we suggest that using ZooKeeper [24] is crucial for the following reasons.
Due to the inherent nature of distributed systems, many problems can arise, such as unreliable
transmissions, varied latencies, changing topologies, and heterogeneous networks. ZooKeeper can
lessen these challenges for distributed application developers with its open source, distributed process
coordination framework. In additional, ZooKeeper’s set of APIs provides highly efficient coordination
services, such as configuration management, distributed queues, locks, leader election, and group
membership. As a result, a wide range of industrial applications has successfully used the ZooKeeper
framework [25].

Next, to take advantages of the ZooKeeper service to build a specialized coordination service for
a distributed application, an ensemble of ZooKeeper servers is installed and properly configured in our
model. Depending on the coordination requirements of the application, a specialized hierarchical data
node (znodes) structure is constructed. Consequently, application developers using the ZooKeeper
client API manage these znodes through read and write requests to get and set synchronized data
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on the znodes based upon the coordination logic. An application client can also register listeners on
interested znodes to watch for changes to the nodes. The ZooKeeper server will notify the broker when
events happen on the watched znodes. The operation and advantages of the ZooKeeper service will be
applied in our model with reference to the above considerations. For more detail about the ZooKeeper
coordination service, we refer interested readers to [24,25].

Figure 2 shows a specific znodes structure for the pub/sub system to illustrate the application of
ZooKeeper in coordinating pub/sub brokers. A set of coordination servers takes responsibility for the
topic discovery service of the pub/sub system. These servers elect a leader for task assignments and
group management. Each server creates a znode for itself under the /CoordWorkers namespace
and solves tasks assigned in its corresponding /BrokerRequests znode. Similarly, each pub/sub
broker creates a znode under the /PublishSubscribeBrokers namespace, and the leader will assign
a coordination worker to provide the broker with the topic discovery service. The operational process
shown in Figure 2 is explained as follows. Whenever a new pub/sub topic is detected, the broker sends
a topic bridging request to its coordinator by writing the task on the coordinator’s /BrokerRequests
znode. After processing the request to find either the best publish cluster or the most appropriate
broker for the requester to join/subscribe the topic, the coordination worker writes the result under
the requester’s /CoordinatorRespones znode. The worker also updates information about the new
pub/sub broker of the topic under the /Topics znode.

/

/PublishSubcribeBrokers

/EdgeBroker_1 /EdgeBroker_2 …/CloudBroker_3

/PublishBrokers /SubscribeBrokers

/Topics

…/Topic_A /Topic_B

/Cluster_1

/EdgeBroker_1

/EdgeBroker_2

/Cluster_2

/CloudBroker_3

/EdgeBroker_1

/EdgeBroker_2

/CloudBroker_3

…

…

/BrokerStatus

/Subscribe

/Publish

/CoordinationServers

/CoordLeader

/CoordWorkers

/Coord_Srv_1

/Coord_Srv_1

/Coord_Srv_2

…

/CoordinatorResponses
/CoordStatus

/BrokerRequests

Figure 2. Illustration of the specific data tree in ZooKeeper.

4. Coordination Scheme and Geolocation Awareness Topic Similarity Clustering Algorithms

To support an increasing number of topics for a large number of clients where data are periodically
exchanged in geographically distributed IoT applications, how the pub/sub system implements an
advanced coordination scheme for topic discovery among brokers is critical. Furthermore, algorithms
for dynamic clustering pub/sub brokers must guarantee data delivery latency requirements. Therefore,
we devise an effective coordination scheme and clustering algorithms to tackle these issues by efficiently
clustering all brokers based on both geolocation awareness and topic similarities to be represented as
a single data delivery domain.

4.1. Coordination Scheme for Pub/Sub Brokers

In the proposed pub/sub system, whenever a broker receives a new topic subscription from one
of its clients, the broker, with the help of the coordinator, has to find the most suitable broker of the
requested topic to register the interesting channel. Similarly, when receiving a new topic publication,
the responsible broker needs to be linked to the closest possible cluster of brokers publishing events
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on the topic. The core interactions among pub/sub brokers and their coordinators are described
as follows.

• Brokers promptly inform their coordination servers about new topics published or subscribed by
their clients.

• Information about which brokers pub/sub what topics is stored in the coordination database.
Coordination servers will make clustering decisions based on topic similarities and proximity
coordinates among relevant brokers.

• Coordination servers maintain information about a set of publish broker overlay networks. The set
comprises one overlay network for each topic that can include many publish broker clusters that
forwards the topic’s published events. Furthermore, broker leaders of these clusters will connect
to each other to bridge the topic in the entire system.

• When notified of a new publish broker of a topic, the coordinator assigns the new publish broker
to the “nearest” publish broker cluster and sends the updated cluster membership information to
all cluster members. In each cluster, brokers exchange topic event notifications directly. The broker
leader, however, is the only broker that forwards topic event notifications to other clusters.

• A subscribe broker that has client(s) interested in a topic needs to consult the coordinator
to determine which publish broker it should connect with to receive all related notifications.
The coordinator, in turn, first determines the publish broker cluster nearest to the subscribe broker
based on the brokers’ topic similarities and coordinates. Then, it selects the publish broker in that
cluster with the highest utility score based on topic similarities and topic loads, and returns the
selected broker’s address to the subscribe broker.

Figure 3 provides an example of how publish/subscribe messages are delivered among brokers in
the system. For topic A, in the example, there are three publishers (P1, P2, and P3) that will periodically
send related event notifications and three subscribers (S1, S2, and S3) interested in the topic. Similarly,
P4, P5, and P6 are publishers of topic B, and S4 and S5 are subscribers of topic B. Two publish broker
clusters are established for topics A and B ({EB1, EB2, EB3} and {EB4, EB5, EB6}). The broker leaders
for topic A and B are EB2 and EB4, respectively. Within a cluster, brokers directly exchange data
with each other. An interested broker from outside has to contact one of the publish brokers in the
best fit cluster to receive all related events. For example, using control information received from the
coordinator, the edge broker EB5 subscribes to topic A from EB2 to receive all published messages
about the topic.

Coordinator

EB2

EB1 EB3

EB4

EB5 EB6

S1
(A)

P1
(A)

P2
(A)

S2
(A)

P1

P1

P2

P2

P1

P3
(A)

P3

P3 P2 P3
P1, P2, P3

P1, P2, P3

S4
(B)

S3
(A)

P1, P2, P3

P4
(B)

P5
(B)

P6
(B)

S5
(B)

P4

P5

P5

P5

P6P4, P5, P6P4, P5, P6

P4, P5, P6 P6P4

Control channel

Pi(T): Publisher i of topic ‘T’
Si(T): Subscriber i of topic ‘T’
EB: Edge Broker

P1, P2, P3

Figure 3. Illustration of message delivery in the system.
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4.2. Operation of Proposed System

In the proposed pub/sub model, we deploy pub/sub brokers near IoT devices to support low
delay data delivery. We also place pub/sub brokers in the Cloud to collect data for long-term data
management and analytics. This subsection describes the main schemes and algorithms executed by
coordination servers and pub/sub brokers to interact with each other and forward event notifications
among geographically distributed clients.

In the proposed system, pub/sub clients collect and exchange data with the help of their
responsible pub/sub brokers as follows. (1) Data are structured as a set of topics. (2) Publishers
of each topic collect related data and send them to their brokers. (3) Subscribers express their interests
to their brokers by subscribing to corresponding topic channels to receive relevant notifications.
A coordination module in each pub/sub broker connects to a coordinator to communicate control
information. Coordinators must be informed of broker topic lists to efficiently cluster brokers based
on topic similarities and proximity coordinates. More specifically, whenever a broker receives a new
topic publication or a new topic subscription from one of its pub/sub clients, it promptly notifies
the coordinator. Then, the coordinator uses the following procedures and algorithms to process
the notifications.

4.2.1. Handling a New Topic Publish Message

According to the model shown in Figure 1, when an IoT device has a new topic, all brokers in the
system are required to be informed about the topic. To do that, the new topic information is processed
in the corresponding pub/sub broker, the coordinator, and updated in the database. The sequence
diagram for handling a new topic publication message from a client at a pub/sub broker is shown in
Figure 4. When a publisher sends a Publish message on a new topic, A, the responsible broker has to
check its publish topic list to determine if the message constitutes a new topic. If the publish topic
list includes topic A and the sender is a new publisher, the pub/sub broker adds the new sender to
its publisher. Otherwise, the broker adds the new sender to its publisher list and sends a message
to inform the coordinator that it is now a new publish broker of topic A. In turn, the coordinator
queries the coordination database, selects the best fit publish cluster for the new broker according to
Algorithm 1, and returns the selected cluster list of brokers back to the new broker. It also notifies
all cluster members about the new publish member. Thus, all current cluster members know about
the new publish broker and, consequently, they subscribe to topic A on the new broker to receive
incoming event notifications. Similarly, the new broker subscribes topic A to other members of the
selected cluster. Note that, in both cases, the pub/sub broker forwards the publish message to any
interested subscribers.

In the following, we describe how the coordinator determines the best fit cluster for the new
publish broker of the topicID. The coordinator calculates the average distances from the new publish
broker to each publish cluster of the topic. A new publish broker is included in a cluster if the
average distance between the new publish broker and existing publish clusters is less than or equal to
MAX_DISTANCE, i.e. 10 km. To calculate the distance between two points in the sphere, according
to [26], we have: d(x, y) = r ∗ (haversine(θ2 − θ1)) + cos(θ1) ∗ cos(θ2) ∗ haversine(λ2 − λ1)), where r
is the radius of the earth (6371 km), and x = (λ1, θ1) and y = (λ2, θ2) are coordinates of two points
in the sphere in decimal degrees (longitude, latitude). We convert decimal degrees to radians to be
used in trigonometric functions. With haversine(θ) = sin2(θ), ∆θ = θ2 − θ1, ∆λ = λ2 − λ1 (in radians),
we can further derive:

a(x, y) = sin2(∆θ/2) + cos(θ1) ∗ cos(θ2) ∗ sin2(∆λ/2),

d(x, y) = 2 ∗ r ∗ atan2(
√

a(x, y),
√

1− a(x, y)).
(1)
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Given that we know the brokers’ coordinates in advance, the average distance between broker bi and
cluster Ck can be calculated as follows:

avg_Distance(bi, Ck) =
1
m

m

∑
j=1

d(bi, bj), Ck = {b1, ..., bm}. (2)

For the selected clusters, the coordinator then calculates publish utility scores between the new broker
and each cluster using a utility function that is similar to a previously proposed utility function [27].

pub_Utility(bi, Ck) =
1

avg_Distance(bi, Ck)
∗ | subs(bi) ∩ subs(Ck) |
| subs(bi) ∪ subs(Ck) |

. (3)

Here, subs(bi) denotes the broker bi’s topic subscription list, and subs(Ck) denotes all subscribe topics
in cluster Ck. After calculating publish utility scores, the coordinator selects the optimal cluster with
the best publish utility score to return to the new member. In a sporadic density scenario, if the average
distance between the new broker and all clusters is greater than MAX_DISTANCE, a new cluster is
created with the new broker as the leader.

Algorithm 1: Finding the best fit publish cluster for a new publish broker.

Function findPublishCluster(topicID, brokerID, publishTable, topicClusters):
add (topicID, brokerID) to publishTable;
if topicID is in topicClusters then

initialize potentialClusters;
for each cluster in topicClusters of topicID do

avg_Distance(brokerID, cluster)→ Equation (2);
if avg_Distance(brokerID, cluster) ≤MAX_DISTANCE then

add cluster to potentialClusters;
end

end
if length(potentialClusters) > 0 then

initialize clusterUtilityScores;
for each cluster in potentialClusters do

pub_Utility (brokerID, cluster)→ Equation (3);
save to clusterUtilityScores;

end
sort clusterUtilityScores in descending order;
add brokerID to the best cluster with the highest utility score in topicClusters;
return the best fit cluster;

end
end
create a new cluster with (topicID, brokerID) and add it to topicClusters;
return the new cluster as the best cluster;
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PubSub Broker

publish message on

 a new topic A

inform a new publish broker on topic A

[topic A is a new topic in the publish list]            

add the sender to the publisher list

select publish brokers of topic A

list of publish brokers of topic A

save the new broker info to the cluster

return list of brokers in the cluster

Coordinator
Coordination

Database

inform the cluster's members about the new broker

subscribe topic A on the cluster's brokers

build the proper query

find the best fit cluster for the new broker

[else]

add the sender to the publisher list if needed

forward the message to the subscribers

save info

alt

Figure 4. New topic Publish message handling sequence diagram.

4.2.2. Handling a New Topic Subscribe Message

In this section, we discuss how to handle a new topic subscription message from a client at
a pub/sub broker, as shown in Figure 5. When a client subscribes to a new topic, the corresponding
broker consults its coordinator on finding the best publish broker to bridge the topic. In turn, the
coordinator, first, finds the best fit cluster publishing the topic, and then selects the best broker to return
to the requester. The detail procedure is described as follows. When a subscriber sends a Subscribe
message on a new topic, B, the corresponding broker must check whether topic B is a new topic in its
subscribe topic list. If the subscribe topic list already includes topic B and the sender is a new subscriber,
the pub/sub broker adds the new sender to its subscriber. If the subscribe topic list does not include
topic B, the broker adds the client to its subscriber list and sends a message to inform the coordinator
that the broker is now a new subscribe broker of topic B. Upon receiving the announcement, initially,
the coordinator searches the coordination database to find the best available publish broker cluster for
the new subscribe broker. Then, the coordinator selects the best publish broker in the selected cluster
and returns the result to the new subscribe broker (Algorithm 2). Then, the new broker subscribes
topic B on the selected publish broker to receive event notifications for the topic.

Algorithm 2 provides the logic for the coordinator to find the best fit publish broker for the new
subscribe broker on an interested topic, denoted as topicID. If there are brokers publishing events on
topicID, the coordinator uses formula (2) to calculate average distances from the new subscribe broker
to the existing clusters to select the most suitable cluster. Then, the coordinator computes subscribe
utility scores between the new broker, bi, and each broker, bj, in the cluster, Ck, to select the best publish
broker as shown in formula (4), which is based on a previously published formula [28].

sub_Utility(bi, bj, Ck) =
| subs(bi) ∩ subs(bj) |

| subs(bi) |
− β ∗

| subs(bj) |
| subs(Ck) |

. (4)
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Here, | subs(bj) | / | subs(Ck) | represents broker bj’s topic workload in correlation with other
brokers in the cluster, and β is the relative weight of workloads. In formula (4), we consider both
topic subscription similarity between two brokers (bi, bj) and the examined broker’s workload when
selecting the most appropriate publish broker for the new subscribe broker. This is because the system’s
topic routing efficiency increases relative to the extent that two brokers share similar topics. In addition,
considering the examined broker’s workload helps maintain the workload balance among brokers in
the cluster.

Algorithm 2: Finding the best fit publish broker for a new subscribe broker.
Function
findPublishBroker(topicID, brokerID, publishTable, subscribeTable, topicClusters, pendingTable):

if topicID is in publishTable then
add (topicID, brokerID) to subscribeTable;
for each cluster in topicClusters of topicID do

avg_Distance(brokerID, cluster)→ Equation (2);
end
select the cluster with the lowest average distance;
for each broker in the selected cluster do

sub_Utility (brokerID, broker)→ Equation (4);
end
return the publish broker with the highest subscribe utility score;

else
add (topicID, brokerID) to the pendingTable;

end

PubSub Broker

subcribe a message on

a new topic B

inform a new subscribe broker on topic B

[topic B is a new topic in the subscribe list]         

add the sender to the subscriber list

select publish brokers of topic B

list of publish brokers of topic B

save the new subscribe broker info to the publish brokerreturn the publish broker's address

Coordinator
Coordination

Database

subscribe topic B on the publish broker

build the proper query

[else]

add the sender to the subsriber list if needed

save info

alt

find the best fit publish broker cluster

find the best publish broker

Figure 5. New topic Subscribe message handling sequence diagram.
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5. Simulation Results and Discussion

This section describes our simulation experiments and results to validate the proposed model
and algorithms. We also compare the proposed method to some analogous approaches. We simulate
our pub/sub system based on Python and SimPy [29], a process-based discrete event simulation
framework. In our scheme, the coordinates of pub/sub brokers used to apply clustering algorithms
with locality-awareness and topic similarity are given in advance. Therefore, we used approximately
3300 Starbuck store coordinates for broker locations downloaded from [30] as a coordinate dataset.
Assuming that the round-trip time (RTT) between any two brokers is a random variable where the mean
is proportional to their geographical distance, and RTTs between IoT devices and their corresponding
brokers are uniformly distributed with an average delay of 4 ms.

Here, we define three key performance indicators to evaluate the relevant approaches.

1. End-to-end message delivery latency. This value is measured from publishers to subscribers on
all tested topic channels with various scenarios.

2. Percentage of forwarded traffic among brokers. This value is the ratio between the number of
packets that are forwarded among brokers to link topics and all sent packets. It is used to measure
the efficiency of bridging topics in the system.

3. Scalability: This property is achieved by considering average delivery latencies and percentage
of forwarded traffic among brokers while applying different pub/sub schemes for wide-scale
IoT scenarios.

5.1. End-to-End Message Delivery Latency with Varying Data Localities

To evaluate the effect of data locality on data delivery latency in the system, our proposal was
implemented in the following system: 300 brokers were deployed with their coordinates, randomly
selected from the dataset. We varied the number of topics per broker in each simulation run time: 50,
150, and 250 topics with one publisher and 10 subscribers per local topic. We also changed the local
subscription rate (LSR) for each broker from 0.1 to 0.9 in steps of 0.2. For example, for a broker with
100 topics and an LSR of 0.9, 90 topics were local for its subscribers and its consumers also subscribed
to 10 topics from other brokers. Each publisher sends a 64-byte packet every tick time. For each
setting, we ran the simulation in 15 time steps and collected up to 7.5 million subscriber/consumer
messages. In the experiment, we calculated the average delivery latency (ADL) of event notifications
from producers to consumers with varying local subscription rates at brokers.

Figure 6 shows the simulation results with varying data localities. It is clear that, the more
subscribers belonging to the same broker share local topics, the better (lower) the event notification
delay for the entire pub/sub system improves. Specifically, in the highest case of 250 topics per broker,
when the LSR increases from 0.1 to 0.9, the average delay decreases from approximately 35 ms to
approximately 11.5 ms, respectively. This occurs because, when the LSR is high, a large percentage of
messages are transferred from producers to consumers within the responsible brokers, which do not
incur long delay dissemination among brokers. This proves that our use of edge brokers to manage
pub/sub clients helps reduce end-to-end delay and is consistent with the current known trend that
data are processed near where they are created. This is a very useful feature for IoT applications.
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Figure 6. Average delivery latency with varying local subscription rate.

5.2. Percentages of Forwarding Traffic among Brokers with Varying Data Localities

The experimental setup to evaluate Average Forwarding Traffic (AFT) among brokers was similar
to that of the experiment to evaluate the effect of data locality on data delivery latency, i.e., 300 brokers,
200 topics per broker, LSR ranges from 0.1 to 0.9. The simulation was repeated under different
subscription distributions (uniform and Zipf) when subscribers selected topics from outside pools.
AFT reflects the average number of messages exchanged among brokers during event notifications
between publishers and subscribers across the system. AFT can be used as an indicator to evaluate
the effectiveness of a broker overlay network. Therefore, we conducted an experiment to examine the
correlation between topic subscription distributions and AFT.

In Figure 7, when LSR increases from 0.1 to 0.9, AFT rapidly decreases in both uniform and Zipf
subscription distributions. Even with the lowest LSR value (0.1) when subscribers randomly select
topics from remote brokers, the percentage of forwarding traffic between brokers to deliver messages
from senders to receivers is approximately 8.15%. Furthermore, when client topic subscriptions
follow a Zipf distribution (α = 1.2) and LSR is 0.1 and 0.9, the AFT is approximately 3.94% and 0.74%,
respectively. This is because the more the consumers register to local topic channels (high LSR), the less
traffic the corresponding brokers relay to each other (low AFT). In addition, note that, in the Zipf case,
brokers share more common topics than the uniform distribution case; thus, our clustering algorithm
provides lower relay traffic among brokers. The experiment proves that the proposed broker overlay
networks are efficient in terms of the amount of relay traffic required to deliver event notifications in
the pub/sub system.
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Figure 7. Average forwarding traffic with varying local subscription rate.
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5.3. Scalability Evaluation

In this section, we evaluate the scalability of our pub/sub scheme and compare it to other
schemes having similar approaches. Here, the experiment consisted of several simulations run with
the parameters shown in Table 1. We highlight the benchmark between our proposal and two other
pub/sub schemes as follows:

• A Cloud-based pub/sub scheme, a.k.a. PSCloud, in which brokers are located in the core cloud,
similar to [18]. In this scheme, where pub/sub clients connect directly to pub/sub brokers in
the Cloud considering topic similarity and load balance, we implemented a classic round-robin
load-balancing scheme. RTTs between clients and cloud brokers are uniformly distributed with
an average delay is the average delay between edge brokers calculated from our proposed scheme
simulation results. Moreover, RTTs among cloud brokers are uniformly distributed between
U[1, 2] ms.

• We implement another Edge-Cloud based pub/sub scheme that is inspired by the work in [19],
a.k.a. PubSubCoord-alike. In this approach, edge brokers manage nearby pub/sub clients, and
a group of cloud brokers provides the routing service for edge brokers to bridge topic channels
in the whole system. RTTs among cloud brokers are set similar to the corresponding RTTs in
the PSCloud scheme. In addition, RTTs between edge brokers and cloud servers are set similar
to RTTs between clients and cloud brokers in the PSCloud case. For fair comparison, the two
schemes are implemented with parameters similar to the ones in Table 1.

Table 1. Parameters for the scalability experiment.

Parameter Value

Number of brokers 50, 100, 200, . . . , 600
Number of topics per broker 100
Local subscription rate (LSR) 0.8

RTT between brokers Proportional to their distance
RTT between clients and brokers Uniformly distributed between U[1, 4] ms

Number of clients per topic 1 publisher, 10 subscribers
Broker’s port rate 108 bit per second

Packet size 64 bytes
Subscription distribution Uniform, Zipf (α = 1.2)

Simulation duration 15 time steps per setting

In addition, we tested the capability of the pub/sub systems using many-to-many communication
by assigning multiple publishers of different brokers to several selected topics during each simulation.
Specifically, with 100 topics per broker and LSR = 0.8, 80 local topics were created for each broker, and
20 topics were randomly selected from other brokers’ topic pools for the broker’s clients to publish and
subscribe. As a result, multi-publisher and multi-subscriber scenarios were created for our experiment.
While increasing the number of brokers in the system, we calculated ADLs for messages sent from
publishers to subscribers on all topic channels in the simulations. In addition, we measured the AFT of
data packets exchanged among brokers to assess the effectiveness of the three schemes. The results are
shown in Figures 8–11.

Figures 8 and 9 show the ADL values for the three pub/sub schemes where consumer subscription
modes follow uniform and Zipf distributions, respectively. In all tested cases, our proposed pub/sub
scheme provides the lowest ADL values compared to other schemes. When the clients subscribe
topics according to uniform distribution, Figure 8, our proposal’s ADL is approximately 57% and
20% of PubSubCoord-alike and PSCloud’s ADL in all testing cases, respectively. Take the case of
300 brokers, for example—the ADL values of our proposal, PubSubCoord-alike, and PSCloud schemes
are 14.98 ms, 26.36 ms, and 74.65 ms, respectively. Interestingly, ADLs of each pub/sub scheme are
roughly similar while increasing the number of brokers from 50 to 600. The reason is that while the
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number of clients increases together with the increase of brokers, the topic similarity rates fluctuate
narrowly because subscribers follow uniform subscription mode in this experiment. That causes
similar effects to ADLs in the test cases. However, it is evident from the two figures that PSCloud
experiences the highest average delay followed by PubSubCoord-alike. This is due to the long delay
between clients and cloud brokers in the PSCloud scheme. PubSubCoord-alike demonstrates lower
delay because it takes advantage of edge brokers to manage nearby clients. The proposed scheme
further reduces end-to-end delay of event notifications by clustering edge brokers based on their topic
similarity and proximity geolocation. The proximate edge brokers in the same cluster can directly
exchange relevant messages rather than forwarding to cloud brokers for topic bridging, as in the case
of PubSubCoord-alike. Therefore, our scheme outperforms the other schemes in terms of average data
delivery delay.
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Figure 8. ADL comparison among schemes with uniform subscription distribution.
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Figure 9. ADL comparison among schemes with Zipf subscription distribution.

Figures 10 and 11 plot the average forwarding ratio of pub/sub brokers of the three schemes
relative to uniform and Zipf topic subscription distributions. While our proposal achieves the best
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AFT in the uniform case (approximately 3%, Figure 10), PSCloud accomplishes the lowest AFT in the
Zipf case (ranging from approximately 2.62% to 3.67%, Figure 11). The proposed scheme has the best
AFT in the uniform distribution case because we support both topic similarity and exploit geolocation
awareness while clustering brokers. Only the cluster head forwards relevant messages to other leaders.
That is the reason why our scheme is better than PubSubCoord-alike in terms of average forwarding
rate in both subscription modes. Interestingly, PSCloud has the best AFT in the Zipf case because
there is a large number of common topics in this subscription mode; thus, clustering publishers and
subscribers can be done more effectively based on topic similarity when all brokers are located in the
core Cloud. However, this has no great effect in terms of saving internetworking traffic because the
brokers are in the same Cloud infrastructure.
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Figure 10. AFT comparison among schemes with Uniform subscription distribution.
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Figure 11. AFT comparison among schemes with Zipf subscription distribution.

The comparison results in Figures 8–11 prove that the proposed scheme can scale well and provide
low delay message delivery for very wide-scale IoT applications with efficient forwarding traffic ratio
among brokers.
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6. Conclusions

We have presented a hierarchy of Edge-Cloud publish/subscribe broker overlay networks that
acts as an efficient, low delay, and scalable data delivery service for wide-scale IoT applications.
In the proposed model, IoT devices running pub/sub clients periodically send collected data to their
responsible brokers. Then, the edge nodes process the data to make prompt controlling decisions
or forward the data to other interested edge brokers or to cloud brokers for long-term processing,
analysis, and storage. To facilitate these processes, we designed an effective coordination scheme to
help pub/sub brokers quickly find and notify interested topics. This scheme links all brokers in the
system as a single domain to deliver data for wide-scale IoT applications. Furthermore, we clustered
pub/sub brokers based on similar interests and proximate geolocations to reduce delivery time and
forwarding traffic among brokers.

The simulation results show that our proposal achieves the best data dissemination latency
compared to PSCloud and PubSubCoord-alike, a classical cloud pub/sub scheme and a similar
Edge-Cloud pub/sub scheme, respectively. In addition, the proposed scheme outperforms
PubSubCoord-alike in terms of relay traffic ratio among brokers while considering the integration
of the Cloud and the Fog in supporting a broad range of IoT applications. Thus, our proposal can
well-support data delivery in wide-scale latency-sensitive IoT applications.

Along with advantages of our proposal, our designed brokers may consume high resources to
maintain topic overlay networks in case of very large number of topics and low topic similarities
among pub/sub brokers. Therefore, in the future, we will enhance our model by balancing between
delivery latency, relay traffic ratio, and a number of connections between brokers when constructing
the broker overlay network. In addition, we will consider applying artificial intelligence algorithms to
cluster brokers and route messages in pub/sub systems more efficiently.
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