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Abstract: We consider the maximum likelihood and Bayesian estimation of parameters and prediction
of future records of the Weibull distribution from δ-record data, which consists of records and
near-records. We discuss existence, consistency and numerical computation of estimators and
predictors. The performance of the proposed methodology is assessed by Montecarlo simulations
and the analysis of monthly rainfall series. Our conclusion is that inferences for the Weibull model,
based on δ-record data, clearly improve inferences based solely on records. This methodology can be
recommended, more so as near-records can be collected along with records, keeping essentially the
same experimental design.

Keywords: δ-records; near-records; Weibull distribution; maximum likelihood estimation; Bayes
estimation; maximum likelihood prediction; Bayes prediction

1. Introduction

Informally, a record is an extraordinary value of a variable, which surpasses all of its kind.
Records are very popular in fields such as sports, climatology, finance or insurance. In mathematical
terms, given a sequence of real-valued observations X1, X2, . . . , we define X1 as the first record,
by convention, and we say that Xn is an upper record (or simply a record) if Xn > Mn−1 holds, where
Mn−1 = max{X1, . . . , Xn−1}, for n ≥ 2. Records have been extensively studied in Extreme Value
Theory and their probabilistic properties, mainly under the assumption of independent and identically
distributed observations, with continuous underlying distribution, are well known. This classical
setting has significant symmetry which greatly simplifies calculations because it implies that all
orderings of observations are equally likely. On the other hand, departures from symmetry, such as
the existence of a trend in the sequence of observations, brings about technical complexities which
require the use of more sophisticated mathematical tools. For general information on record theory,
see Reference [1] or Reference [2].

In parallel, statistical inference for record data has developed considerably, impelled by the
availability of many data sets of records and also because, in contexts such as destructive stress-testing,
efficient sampling schemes (in terms of the number of broken units) yield record series. There is
a vast literature on inference for record data and the interested reader can consult, for example,
References [3–5].

A serious problem with record data is relative scarceness, since a sequence of n iid observations
has only about log n records. So extra data may be needed and a reasonable option is near-record data,
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which can be available along with records. By near-record data we mean observations that are close
to being records, in a sense to be made precise. Our working hypothesis is this: if one uses statistical
methods specifically designed for record data but feels that the record series is too short, then a sound
option is to incorporate near-records. Of course, the methodology has to be adapted to handle the
new data, along with records. In this paper we show how this can be done, in the particular case of
the Weibull model. We assess via simulations the impact of the additional information and present
an application to real data. Various definitions of near-records have been proposed, for example,
in References [6–8]. In this paper we consider near-records in the sense of Reference [7], which
are closely related to δ-records. The latter were independently defined in Reference [9], as natural
and tractable generalizations of records, which are as easily collected as records. Their probabilistic
properties have been studied in References [9–14].

Concerning the statistical applications of δ-records, their likelihood function for a continuous
distribution was first published in Reference [10], with results on maximum likelihood estimation
(MLE) for the exponential and Weibull distributions. In Section 4.3 of the above cited paper, a variant
of the sequential stress-testing scheme is proposed to collect δ-records, which we briefly describe here.
Suppose we wish to test, say, tensile strength. In a classical sampling scheme, all items are stressed
until they break. In the more efficient sequential testing, each item is stressed up to the maximum
level that a previous item broke and this yields a sequence of (lower) records. The proposed variant
consists in stressing the items further than the previous record, by a fixed value δ > 0, to obtain
a sequence of lower δ-records. The likelihood of lower δ-records can be easily obtained by adapting
the ideas from the theory of standard (upper) δ-records; see Reference [10] for details. Additionally,
Bayesian and MLE methods, for parameter estimation and prediction of future records in the geometric
distribution, were presented in Reference [15]. A conclusion to be drawn from results in these papers
is that inference methods based on δ-records outperform their corresponding record-only versions.

The main objective of the present paper is to investigate properties of inferences based on δ-records
for the Weibull model, such as strong consistency of the MLE of parameters, maximum likelihood
prediction (MLP) of records and Bayesian estimation and prediction of records. The reason for focusing
on the Weibull distribution is twofold: First, the model and recently introduced variants are widely
used in applications; see References [16,17]. Second, inference for its parameters using records has
drawn significant attention in recent years; see References [4,5,18–24].

In our analysis we consider two cases: known and unknown shape parameter, while the scale
parameter is always assumed unknown. According to References [25,26] and [27] (Section 14.2),
in many practical problems it is not unreasonable to assume that the shape parameter is known or,
at least, it is one among a small number of values. We do not analyze the situation of known scale
parameter since, according to the literature, it is not considered natural and very few papers deal
with it; see Section 14.2.2 in Reference [27]. It is important to warn the reader that, while statistical
inference based on records from a Weibull distribution, with known shape parameter, can be reduced
to inference from the exponential distribution (via power transform), this is not the case for δ-records.
See Remark 2.

We assess the impact of δ-records in parameter estimation and prediction of new records, by means
of Montecarlo simulation and the analysis of real data. We perform comparative analyses of estimators
and predictors based on δ-records, in a variety of settings. In particular, we show that the performance
of estimators and predictors is improved when using δ-record data with respect to only record data.
Regarding real data, we analyze cumulative rainfall information recorded at the Castellote weather
station in Spain; see Reference [10].

The paper is organized as follows: Section 2 is devoted to preliminary definitions and notation.
MLE and MLP of future records are developed in Section 3; we show existence of estimators
and predictors and prove the strong consistency of the MLE of the scale parameter, if the shape
parameter is known. Results of simulation are presented in Section 3.4, showing that δ-records
bring about noticeable improvement in estimation and prediction. The analysis of real data is
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presented in Section 3.5. Section 4 is devoted to Bayesian inference. We compute Bayes estimators
and highest posterior density (HPD) intervals of parameters, using two different priors in the case
of both parameters unknown. Then we consider Bayesian prediction of future records. Results from
simulations and real data are shown in Sections 4.5 and 4.6. In Section 5 we present our conclusions.

We end this introduction with some comments about the novelty of results presented in this paper.
We remark first that, while the expressions for the likelihood of the sample of δ-records and for the MLE
of the parameters were first obtained in Reference [10], the remaining results are new, in the context
of continuous distributions. These novel results include strong consistency of the MLE of the scale
parameter (under known shape parameter); the development of a frequentist strategy for the prediction
of future records and the proof of existence of predictors. In the Bayesian framework we develop the
estimation of parameters, under a variety of choices of prior distributions, also complemented with
a consistency result and, finally, we propose and analyze a method for predicting new records.

2. Preliminaries

Let Xn, n ≥ 1, be a sequence of independent and identically distributed (iid) random variables, with
common distribution function Fθ and density fθ, where θ is a parameter. Let Mn = max{X1, . . . , Xn},
n ≥ 1, be the sequence of partial maxima.

Definition 1. Let X1 be a record by convention and, for n ≥ 2, Xn is a (upper) record if Xn > Mn−1.
The indexes L(n), corresponding to record observations, are called record times. That is, L(1) = 1 and
for n ≥ 2, L(n) = min{m > L(n − 1) : Xm > Mm−1}. Records (or record-values) Rn are defined by
Rn = XL(n), n ≥ 1.

Definition 2. Let δ be a fixed, real parameter. Let X1 be a δ-record by convention and, for n ≥ 2, Xn is
a δ-record if Xn > Mn−1 + δ.

The sequences of δ-record times and δ-records are defined analogously as for records. Note that if
δ = 0, δ-record are just records. If δ > 0, δ-records are a subsequence of records and, on the contrary,
if δ < 0, records are a subsequence of δ-records. So, the only statistically relevant situation is δ < 0, since
δ-records contain all records plus the so-called near-records (in the sense of Reference [7]). Given δ < 0,
Xn is a δ-near-record (or simply near-record) if Xn ∈ (Mn−1 + δ, Mn−1]. In other words, near-records
are close to being records but are not records. It is clear also that near records are not symmetrically
clustered around records. In the rest of the paper we assume δ ≤ 0.

Definition 3.
(i) A near-record Xn is said to be associated to the m-th record Rm, if L(m) < n < L(m + 1).
(ii) The number of near-records associated to Rm is denoted by Sm.
(iii) If Sm > 0, the vector of near-records associated to Rm is denoted by (Ym,1, . . . , Ym,Sm).
(iv) The sample is defined by the vector T = (Rn, Sn, Yn), where Rn = (R1, . . . , Rn), Sn = (S1, . . . , Sn) and
Yn = (Y1,1, . . . , Y1,S1 , . . . , Yn,1, . . . , Yn,Sn).

When referring to the sample as a random object we use bold upper-case letters, otherwise we
use t = (rn, sn, yn). Note that T contains a fixed number n of records (R), plus the counts (S) and
respective values (Y) of all near-records associated to each record. So, T has random length, depending
on the (random) numbers Si of near-records associated to each record Ri. In turn, the distribution
of Si depends in a non trivial way on δ and is also affected by the tail behavior of Fθ . For example,
the number of near-records obviously increases with the absolute value of δ. On the other hand, if Fθ

is heavy-tailed, there will tend to be fewer near-records. Laws of large numbers and central limit
theorems, for the number of near-records, can be found in References [28,29]. Normalizing sequences
of asymptotic results in Example 4 of Reference [10], may serve as proxies for the expected values of
the number of near-records, for the Weibull distribution.
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2.1. Likelihood of δ-Record Observations

Proposition 1. Let Fθ(x) = 1− Fθ(x). The likelihood function of sample T is given by

L(t|θ) = Fθ(rn)
n

∏
i=1

fθ(ri)

Fθ(ri + δ)si+1

si

∏
j=1

fθ(yi,j), (1)

where 0 < r1 < · · · < rn < ∞, si ∈ Z+ = {0, 1, . . .} and yi,j ∈ (ri + δ, ri), for j = 1, . . . , si, i = 1, . . . , n.

Proof. See Proposition 1 in Reference [10].

Remark 1. Observe that in (1) the sample is assumed to contain all near-records associated to the last record
Rn. To ensure that all near-records are present in the sample, the value of Rn+1 must be observed. As commented
in Section 4.2.1 of Reference [10], the data may not contain all near-records associated to Rn, since Rn+1 is
not observed. So, it is not known if some near-records associated to Rn are missing and, in such situation,
the likelihood has to be modified accordingly. It is easy to see that this amounts to substituting Fθ(rn) for
Fθ(rn + δ) in (1). Then the modified likelihood L, of a possibly incomplete sample, is

L(t|θ) = Fθ(rn + δ)
n

∏
i=1

fθ(ri)

Fθ(ri + δ)si+1

si

∏
j=1

fθ(yi,j). (2)

In the rest of the paper, except in the analysis of real data, we work with L (thereby assuming that
all near-records associated to Rn have been collected). Results for L can be adapted to L, with only minor
modifications.

2.2. Density of Future Records

The prediction of a future record Rm, m > n, is based on the conditional density, given T,
as presented below.

Proposition 2. The density of the m-th record Rm conditional on T, is given by

fRm(z|t, θ) =
(Λθ(z)−Λθ(rn))m−n−1

Γ(m− n)
fθ(z)

Fθ(rn)
, (3)

for m > n and z ≥ rn, where Λθ(z) = − log Fθ(z).

Proof. Conditionally on Rn, Rm is independent of T (see Proposition 1 in Reference [10]). Therefore,
the density of Rm given T is the same as the density of Rm given Rn, which proves the result.

2.3. Weibull Distribution

We present here the likelihoods corresponding the Weibull distribution, with two parametrizations:
P1, for classical (frequentist) inference, and P2, for Bayesian analysis. We find it convenient to work with
these two parametrizations mainly because they are found in the literature, associated respectively to
classical or Bayesian inferences. See, for example, the Weibull Distribution Handbook [27], where the
author argues that P2 separates parameters and has the advantage over P1, of simplifying the algebra in
Bayesian manipulations.

Definition 4. Let the parametrizations P1, P2 of the Weibull distribution be defined respectively by

P1 : fλ,β(x) = λ−ββxβ−1e−(x/λ)β
, Fλ,β(x) = 1− e−(x/λ)β

,

P2 : fα,β(x) = αβxβ−1e−αxβ
, Fα,β(x) = 1− e−αxβ

,

for x ≥ 0 and λ, α, β > 0.
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Parameter λ in P1 is the so-called scale parameter, while β is known as shape parameter. In P2 the
scale parameter is given by α−1/β. From (1) we obtain the corresponding likelihoods

L1(t|λ, β) = λ−NββNe−λ−βG(β) Jβ−1, (4)

L2(t|α, β) = αN βNe−αG(β) Jβ−1, (5)

where N, G(β) and J are defined by

N = n +
n

∑
i=1

si, G(β) =
n

∑
i=1

(
rβ

i − (ri + δ)
β
+ +

si

∑
j=1

(
yβ

i,j − (ri + δ)
β
+

) )
+ rβ

n and

J =
n

∏
i=1

ri

( si

∏
j=1

yi,j

)
, with (x)+ := max{x, 0}.

(6)

For possibly incomplete data, using (2), the corresponding likelihoods are (4) and (5), with G(β)

substituted by G̃(β) := G(β)− (rβ
n − (rn + δ)

β
+).

3. Maximum Likelihood Analysis

This section is devoted to study the MLE of parameters and the MLP of future records. We begin
with the MLE of parameters λ, β, related to P1 and, as commented before, we consider two cases: β

known and β unknown. Throughout this section λ is assumed unknown.

Remark 2. Notice that if β is known, some inferences for λ can be reduced to the exponential distribution
since, if X is Weibull distributed, then Xβ is exponentially distributed. However, this is not so for δ-records
because, for β 6= 1, the β-th power of δ-records sampled from X, are not distributed as δ-records sampled from
Xβ. The reason being that δ-record extraction and power transform of the data are not symmetrical actions,
in the sense that they do not commute. Therefore, the consistency result of Theorem 1, for β 6= 1, does not follow
from the corresponding result for the exponential model (β = 1).

The existence of the MLE of λ, β is established in Proposition 3. For ease of notation, we omit
their dependence on t. The set of solutions of a maximization problem is denoted argmax.

3.1. MLE of Parameters λ, β

Proposition 3. (i) For all β > 0, argmax
λ

L1(t|λ, β) has a unique element

λ̂(β) =

(
G(β)

N

)1/β

. (7)

(ii) Let Â = argmax
β

L1
(
t|λ̂(β), β

)
. Then Â 6= ∅ and (λ̂(β̂), β̂) ∈ argmax

λ,β
L1(t|λ, β), for any β̂ ∈ Â.

Proof. (i) (7) is obtained by solving ∂ log L1
∂λ = 0 for λ.

(ii) It can be shown that maximizing log L1
(
t|λ̂(β), β

)
over β is equivalent to maximizing h(β) :=

log β− log G(β) + (β− 1)(log J)/N and that ∅ 6= argmax
β

h(β) ⊆ [L, U], where 0 < L =
(

log rn −
log J

N
)−1/(3N + 2) and U = 2

(
log rn − log J

N
)−1

(1 + log(N + 1)). See Reference [10] for details.
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Remark 3. Note that λ̂(β) depends on all δ-records (records and near-records) in the sample t. If, by chance,
no near-records are observed (si = 0, for i = 1, . . . , n), then

λ̂(β) =

(
∑n

i=1(r
β
i − (ri + δ)

β
+) + rβ

n

n

)1/β

,

which is in contrast with the case δ = 0, where the estimator depends only on the last record rn.

The numerical computation of the MLE is straightforward. If β is known, the explicit formula for
the MLE of λ is given in (7). If β is unknown, the numerical maximization of h(β) over [L, U] must be
carried out to find β̂, as explained in the proof of Proposition 3. Then λ̂(β̂) and β̂ are the MLE of λ and
β respectively.

3.2. Strong Consistency

We state below the strong consistency of λ̂(β), the MLE of λ when β is known. The proof of this
result is split into several technical lemmas, presented in Section 6.1. Strong convergence as n→ ∞ is
denoted a.s.−→.

Theorem 1. λ̂(β)
a.s.−→ λ, for all λ, β > 0.

Remark 4. If β is unknown, the question of consistency of λ̂ remains open. Nevertheless, we have run
Montecarlo simulations which suggest that consistency also holds in this case. In the left panel of Figure 1,
values of the EMSE of λ̂ are plotted versus n. It can be seen that λ̂ appears to be consistent, for unknown β

(in mean square sense). We also observe that convergence in the case of known β is much faster (lower curves).
Moreover, in both situations δ-records yield an EMSE smaller than records. On the right panel of Figure 1 we
can see a steep descent of the EMSE of β̂, suggesting consistency of this estimator as well.
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Figure 1. Simulated values of estimated mean square error (EMSE) of λ̂ (left panel) and β̂ (right panel),
from 1000 runs, for n ∈ {10, 15, 20, 30, 40, 50}, λ = 0.5 and β = 1.

3.3. Maximum Likelihood Prediction of Future Records

The MLP of future records, as defined in Reference [30], consists in maximizing the so-called
predictive likelihood function. The following definitions follows that idea, adapted to the sample t of
δ-records.
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Definition 5. Let the predictive likelihood of Rm and θ be defined by LP(z, t|θ) = fRm(z|t, θ)L(t|θ). In the
case of the Weibull distribution, using parametrization P1, we have, for z ≥ rn,

fRm(z|t, λ, β) =
λ−β(m−n)β

Γ(m− n)
zβ−1e−λ−β(zβ−rβ

n)(zβ − rβ
n)

m−n−1,

and so,

LP
1 (z, t|λ, β) :=

λ−(m−n+N)ββN+1

Γ(m− n)
zβ−1e−λ−β(zβ−rβ

n+G(β))(zβ − rβ
n)

m−n−1 Jβ−1. (8)

Definition 6. The MLP of Rm, m > n, is defined by R̃m = z̃, where (z̃, θ̃) ∈ argmax
z,θ

LP(z, t|θ). In the case of

the Weibull distribution, using parametrization P1, we have
(i) R̃m = z̃(β), where (z̃(β), λ̃(β)) ∈ argmax

z,λ
LP

1 (z, t|λ, β), if β is known, and

(ii) R̃m = z̃, where (z̃, λ̃, β̃) ∈ argmax
z,λ,β

LP
1 (z, t|λ, β), if β is unknown.

Remark 5. The estimators λ̃, β̃ in Definition 6 are the so-called predictive maximum likelihood estimators of
λ, β, according to Reference [7]. Their properties are not investigated in this paper.

The existence of MLP of future records in the Weibull distribution is established in Proposition 4
and the corresponding proof is presented in Section 6.2.

Proposition 4.
(i) For all β > 0, there is a unique pair (z̃(β), λ̃(β)) ∈ argmax

z,λ
LP

1 (z, t|λ, β), given by

z̃(β) =
(

ρ + rβ
n

) 1
β and λ̃(β) =

(
ρ + G(β)

N + m− n

) 1
β

, (9)

where ρ = −b−
√

b2−4ac
2a , with

a = −(βN + 1), b = −β(N + 1)rβ
n + (β(m− n)− 1)G(β) and c = β(m− n− 1)rβ

nG(β). (10)

(ii) Let Ã = argmax
β

LP
1 (z̃(β), t|λ̃(β), β). Then Ã 6= ∅ and (z̃(β̃), λ̃(β̃), β̃) ∈ argmax

z,λ,β
LP

1 (z, t|λ, β), for any

β̃ ∈ Ã.

Remark 6. According to Proposition 4, if β is known, there is an explicit formula for the MLP of Rm, equal to
z̃(β) in (9). On the other hand, if β is unknown, z̃(β) and λ̃(β) are plugged in LP

1 and a maximization problem
in one real variable must be solved (numerically), namely max

β
LP

1 (z̃(β), t|λ̃(β), β). This is straightforward

since, as shown in Section 6.2, there is a compact interval containing a solution β̃. Finally, it suffices to replace β

by β̃ in (9), to find the MLP.
Observe, also in Proposition 4, that, if m = n + 1, then b < 0 (because G(β) ≤ (N + 1)rβ

n), c = 0 and,
consequently, ρ = 0. Hence, regardless of β being known or unknown, R̃n+1 = rn. See Section 6.2 for details.

3.4. Simulation Study

To assess the behavior of the MLE and MLP, we carry out Montecarlo simulations. For several
values of λ, β and for δ = 0,−0.5, we generate 104 samples of n = 5 records and their near-records.

The MLE of the Weibull parameters using δ-records were first studied in Section 4.1.1 of
Reference [10]. A comparison of the accuracy of estimators, for n = 10, λ = 1, β = 2 and δ = 0,−0.5
can be found in that paper. Throughout this paper we work in a different scenario, namely n = 5, with
several values of λ, β and δ = 0,−0.5.
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The estimated mean square errors (EMSE) of the MLE of λ, β are computed as averages of the
squared deviations of the MLE from the true values of the parameters. Results in Table 1 show that,
for β known, the EMSE of λ̂(β) is much lower for δ < 0 than for δ = 0 (only records). For β unknown,
the observed improvement is greater in β̂ than in λ̂. Regarding bias, it is known that the MLE of λ

and β, from record data, are biased; see Reference [23]. In the case of δ-records our simulations show
a small positive bias in the estimations of both parameters.

Table 1. Estimated Mean Square Errors (EMSE) of maximum likelihood estimators (MLE) λ̂, β̂.

Known β Unknown β

δ = 0 δ = −0.5 δ = 0 δ = −0.5

λ β EMSE λ̂(β) EMSE λ̂(β) EMSE λ̂ EMSE β̂ EMSE λ̂ EMSE β̂

0.75 0.024 0.015 0.370 1.200 0.230 0.376
0.25 1 0.013 0.004 0.118 1.814 0.033 0.174

1.5 0.005 0.001 0.032 4.187 0.001 0.067

0.75 0.102 0.076 1.488 1.196 1.252 0.671
0.5 1 0.051 0.027 0.463 1.871 0.298 0.631

1.5 0.022 0.006 0.128 3.688 0.038 0.388

For MLP of future records we proceed as above in terms of the number of simulated samples, the
number n of records and the values of λ, β and δ. The record to be predicted is R7 (that is m = n + 2),
which is the first interesting case for m > 5, since R̃6 = r5, as commented in Remark 6. For each run
we simulate R7 and compute the EMSE, as the average of squared deviations of R̃7 from the simulated
value of R7. Results show that predictions based on records or on δ-records tend to underestimate R7.
For example, given λ = 0.25 and β = 1, the mean of R7 is 1.75; for δ = 0, the mean of R̂7 is 1.39 while,
for δ = −0.5, the mean of R̂7 is 1.47. The values of the EMSE are displayed in Table 2.

Table 2. Estimated Mean Square Errors (EMSE) of R̃7.

Known β Unknown β

λ β δ = 0 δ = −0.5 δ = 0 δ = −0.5

0.75 1.462 1.353 1.739 1.525
0.25 1 0.223 0.193 0.260 0.213

1.5 0.027 0.022 0.034 0.024

0.75 5.893 5.591 6.963 6.445
0.5 1 0.884 0.793 1.072 0.917

1.5 0.114 0.092 0.139 0.106

Although, in absolute terms, the advantage of δ-records appears to be greater in estimation than
in prediction, it should be borne in mind that there exists a positive lower bound of the EMSE of
any predictor of Rm, based on past information, even if parameters were known. This is because the
optimal mean square predictor, based on past information, is the conditional expectation with respect
to the past. Indeed, let Fn be the σ-algebra generated by {Xk; k ≤ L(n + 1)− 1} and R∗m a predictor
based on the available information before record Rn+1 (that is, Fn-measurable), then

E(R∗m − Rm)
2 ≥ E(E(Rm|Fn)− Rm)

2 = E(E(Rm|Rn)− Rm)
2.

In particular, for the Weibull model, with β = 1, Rn is distributed as sums of n iid exponential
random variables, with mean λ, hence

E(R∗m − Rm)
2 ≥ E(Rm − Rn − (m− n)λ)2 = (m− n)λ2. (11)
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For example, if m = 7, n = 5 and λ = 0.5, the bound in (11) is equal to 0.5. Therefore, when
comparing the EMSE 0.884 (δ = 0) versus 0.793 (δ = −0.5), in the penultimate line of Table 2, the
bound should be taken into account. A fair estimate of the gain is obtained by subtracting 0.5 from each
quantity and computing (0.384− 0.293)/0.384, which yields a 23.7% reduction, instead of just 10.3%,
without such correction. An overall conclusion from Tables 1 and 2 is that estimators and predictors,
based on δ-records, outperform those based on records only. This is coherent with the fact that there
is more information in δ-records than in records and also with results in Reference [15], where this
property was also observed in the case of the geometric distribution.

3.5. Real Data

We compute estimations and predictions for the rainfall data mentioned in the introduction.
The data consists of cumulative rainfall (measured in millimeters), from September to November,
recorded at the Castellote weather station in Spain, between 1927 and 2000. The complete sample of
74 values is well fitted by a Weibull distribution, as can be seen in Table 3 and Figure 1 in Reference [10].
We have also run the Ljung-Box test to check the existence of autocorrelation, yielding a p-value of
0.621. There are n = 5 records in the sample and, for δ = −25, −50 and −75, the number of δ-records
is 6, 9 and 18, respectively. For completeness we show the δ-record data in Table 3.

Table 3. Records and near-records (δ-records) from Castellote rainfall data in millimeters. Near records
are shown to the right of their corresponding records (in boldface).

δ δ-Record Values

0 164.6, 184.9, 224.9, 247.1, 278.8
−25 164.6, 184.9, 164.7, 224.9, 247.1, 278.8
−50 164.6, 138.5, 184.9, 164.7, 224.9, 179.5, 247.1, 278.8, 230.5

−75 164.6, 138.5, 108.0, 184.9, 164.7, 130.1, 224.9, 179.5, 154.1, 151.1, 157.3,
247.1, 278.8, 204.3, 230.5, 214.0, 206.0, 209.1

Since in real data applications, unlike in simulations, we do not know the values of the parameters,
it is not clear how to assess the impact of δ-records. This is also the case in predicting records, because
no new record has been observed between the years 2000 and 2018. So, in order to measure the
improvement of estimations and predictions due to δ-records, we compare our results with those
obtained from the complete sample of 74 values, taken as benchmarks. Note that the complete sample
can be seen as the set of δ-records with δ = −∞.

The MLE of λ and β were reported in Reference [10], showing that δ-records give estimates closer
to the benchmark than the estimates from records only. For completeness we present those results here,
in the second and third columns of Table 4.

Table 4. MLE λ̂, β̂ and maximum likelihood prediction (MLP) R̃7, R̃8, R̃9 for Castellote rainfall data.

δ λ̂ β̂ R̃7 R̃8 R̃9

0 185 3.93 289.3 298.5 306.6
−25 188 3.48 294.1 306.8 317.7
−50 182 3.44 293.4 305.9 316.7
−75 150 2.90 292.7 305.1 316.3
−∞ 130 2.04 305.2 328.6 349.9

Maximum likelihood prediction was not considered in Reference [10]. The results in Table 4
show that the prediction with delta-records is closer to the estimation using the complete sample,
even though the gain is not as clear as in the case of estimation. Recall, however, that the predicted
values for future records using the whole sample are not the real values (since they have not been
observed yet). Conclusions on the advantage of using delta-records over records must be drawn from
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Montecarlo simulations in Section 3.4, rather than from this particular dataset. The reader interested in
applications to real data can also see Section 4.2.2 in Reference [10], where the theory is adapted to
lower records and lower δ-records. This is readily done by taking advantage of the symmetry between
the definitions of upper and lower records.

4. Bayesian Analysis

We develop the estimation of parameters and prediction of future records in the Bayesian
framework. We use parametrization P2 because it is frequently found in the literature on Bayesian
analysis of the Weibull model; see Section 14.2 of Reference [27]. As in Section 3, we analyze the
cases of β known and unknown, while in this section α is assumed unknown. In all expressions
below, α, β are positive. Let the Gamma(µ, p) density, with parameters µ, p > 0, be denoted
γ(x|µ, p) = µpxp−1e−µx/Γ(p), x ≥ 0.

If β is known, we assume that α has prior π(α) = γ(α|a, b), which is easily checked to be conjugate.
In the case of β unknown, there seems to be no tractable conjugate family for α, β and, among several
alternatives found in the literature, we decided to follow Kundu [31] and Soland [32]. In Kundu’s
approach α and β have independent gamma distributions; in Soland’s approach, β is discrete, taking
values in a finite set and α conditional on β is gamma distributed. Other options, not considered here,
are found in References [33,34], where α, as well as β conditional on α, have gamma distributions.
Definitions of Kundu’s and Soland’s priors are given below.

Definition 7. (i) Let Kundu’s prior π1 be defined by π1(α|β) = γ(α|a, b) and π1(β) = γ(β|c, d), where
a, b, c, d are hyperparameters and a, b do not depend on β.
(ii) Let Soland’s prior π2 be defined by π2(α|β = βi) = γ(α|ai, bi) and π2(β = βi) = pi, where ai, bi are
hyperparameters and βi, pi are positive known values, for i = 1, . . . , k, with ∑k

i=1 pi = 1.

For simplicity we write hereafter π2(α|βi), π2(βi), and so forth, instead of π2(α|β = βi), π2(β =

βi) and so forth. In what follows we determine the posterior distributions to be used in inferences,
namely π(α|t) if β is known and πj(α, β|t), j = 1, 2, if β is unknown. Integrals with respect to α or β

are understood on (0,+∞) and so, the limits of the integrals are omitted.

4.1. Posterior Distributions

Suppose first that β is known and recall that π(α) = γ(α|a, b). From (5) we have π(α|t) ∝
L2(t|α, β)γ(α|a, b) ∝ αb+N−1e−(a+G(β))α and so, π(α|t) = γ(α|a + G(β), b + N).

If β is unknown, using Kundu’s prior we obtain the posteriors

π1(α, β|t) ∝ L2(t|α, β)γ(α|a, b)γ(β|c, d) ∝ αb+N−1βd+N−1e−(a+G(β))α(Je−c)β,

π1(α|t) ∝ αb+N−1
∫

βd+N−1e−(a+G(β))α(Je−c)βdβ,

π1(β|t) ∝ Γ(b + N)
βd+N−1(Je−c)β

(a + G(β))b+N ,

(12)

with common normalizing constant (numerically computed), given by

K1 := Γ(b + N)
∫

βd+N−1(Je−c)β

(a + G(β))b+N dβ. (13)
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For Soland’s prior we have, from (5) and Definition 7, the posteriors

π2(α, βi|t) ∝ L2(t|α, βi)π2(α|βi)π2(βi) = αbi+N−1βN
i e−(ai+G(βi))α Jβi−1 abi

i
Γ(bi)

pi,

π2(α|t) ∝
k

∑
i=1

αbi+N−1βN
i e−(ai+G(βi))α Jβi−1 abi

i
Γ(bi)

pi,

π2(βi|t) ∝
piβ

N
i Jβi−1

(ai + G(βi))
bi+N

abi
i Γ(bi + N)

Γ(bi)
,

(14)

with common normalizing constant given by

K2 =
k

∑
i=1

piβ
N
i Jβi−1

(ai + G(βi))
bi+N

abi
i Γ(bi + N)

Γ(bi)
. (15)

4.2. Estimation of Hyperparameters in Soland’s Prior

A practical challenge with Soland’s prior is the choice of the hyperparameters ai, bi. We propose
to estimate them, using the empirical-Bayes-type method described below, inspired by Reference [4].

For j = 1, . . . , n and i = 1, . . . , k, consider the expectations

E(Fα,β(rj)|βi) =
∫

Fα,β(rj)π2(α|βi)dα =

 ai

ai + rβi
j

bi

, (16)

E(Fα,β(Rj)|βi) =
∫

E(Fα,β(Rj)|α, βi)π2(α|βi)dα = 2−j. (17)

Note that the value 2−j in (17) follows from Fα,β(Rj) being distributed as e−∑
j
l=1 ξl , where ξ1, . . . , ξ j

are iid exponential, with parameter one, so E(Fα,β(Rj)|α, β) = E(e−∑
j
l=1 ξl ) = 2−j; see Reference [2].

Note also that (16) depends on rj, the actual j-th record value of the sample, while (17) depends on the
random variable Rj. Then ai, bi can be estimated by choosing, if possible (as described in Lemma 1
below), two suitable records rj, rl , j < l and solving for ai, bi in the equations

 ai

ai + rβi
j

bi

= 2−j,

(
ai

ai + rβi
l

)bi

= 2−l . (18)

Lemma 1. If there exist records rj, rl , j < l, such that lrβi
j < jrβi

l , then (18) has a solution.

Proof. Let x = 1/ai and y = bi, then (18) is equivalent to(
1 + xrβi

j

)y
= 2j,

(
1 + xrβi

l

)y
= 2l . (19)

Solving for y in (19) and equating we have gj(x) := (1 + xrβi
j )1/j = gl(x) := (1 + xrβi

l )1/l .
Furthermore, observe that gj(0) = gl(0) = 1 and that gj(x)/gl(x) → ∞, as x → ∞. Hence, if

the derivatives satisfy g′j(0) < g′l(0) or, equivalently, if
(
rj/rl

)βi < j/l, there exists x∗ such that
gj(x∗) = gl(x∗). Finally, x is replaced by x∗ in either expression of (19) to solve for y.
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4.3. Bayes Estimators of Parameters α, β

Bayes estimators are defined under quadratic loss. In the case of known β, the estimator of α is
denoted α̂B(β) and follows at once from π(α|t) = γ(α|a + G(β), b + N). So,

α̂B(β) =
b + N

a + G(β)
. (20)

Credible intervals for α are readily obtained from π(α|t), as well. Additionally, it may be of
interest the next result of consistency for α̂B(β), which follows from Theorem 1. See Reference [35] for
a discussion on Bayesian consistency.

Corollary 1. α̂B(β)
a.s.−→ α, for all a, b, β > 0.

Proof. From the definitions of P1, P2, we know that α = λ−β. Using this and (20), we can write α̂B(β) in
terms of λ̂(β) (the MLE of λ in (7)) as α̂B(β) = b/N+1

a/N+(λ̂(β))β . Last, Theorem 1 yields α̂B(β)
a.s.−→ λ−β.

If β is unknown and Kundu’s prior is used, we (numerically) compute the Bayes estimators of
α, β, denoted respectively α̂B , β̂B , by taking expectations of the posterior densities (12). We obtain

α̂B = K−1
1 Γ(b + N + 1)

∫
βd+N−1(Je−c)β

(a + G(β))b+N+1 dβ, β̂B = K−1
1 Γ(b + N)

∫
βd+N(Je−c)β

(a + G(β))b+N dβ, (21)

where K1 is defined in (13).
In the case of Soland’s prior, the Bayes estimators are also readily computed from (14), as

α̂B = K−1
2

k

∑
i=1

piβ
N
i abi

i Jβi−1

(ai + G(βi))
bi+N+1

Γ(bi + N + 1)
Γ(bi)

, β̂B = K−1
2

k

∑
i=1

piβ
N+1
i abi

i Jβi−1

(ai + G(βi))
bi+N

Γ(bi + N)

Γ(bi)
, (22)

where K2 is defined in (15). It should be noted that in simulations and in the analysis of real data, using
Soland’s prior, we prefer to estimate β using β̂MP ∈ arg max

1≤i≤k
π2(βi|t), in order to stay within the set of

possible β values.

4.4. Prediction of Future Records

The Bayesian prediction of future records is based either on fRm(z|β, t), if β is known, or on
fRm(z|t), if β is unknown. In all densities below we assume that parameters are positive and z ≥ rn.

From (3) and using parametrization P2, we have

fRm(z|α, β, t) =
αm−n(zβ − rβ

n)
m−n−1βzβ−1

Γ(m− n)
e−α(zβ−rβ

n).

First, if β is known, we use the posterior π(α|t) to compute

fRm(z|β, t) =
∫

fRm(z|α, β, t)π(α|t)dα

=
(zβ − rβ

n)
m−n−1βzβ−1(a + G(β))b+N

Γ(m− n)Γ(b + N)

∫
αm−n+b+N−1e−α(zβ−rβ

n+a+G(β))dα

=
(zβ − rβ

n)
m−n−1βzβ−1(a + G(β))b+NΓ(b + N + m− n)

(zβ − rβ
n + a + G(β))b+N+m−nΓ(m− n)Γ(b + N)

. (23)

Then the Bayes predictor of Rm, given by R̂m(β) = E(Rm|β, t) =
∫ ∞

zn
z fRm(z|β, t)dz, is numerically

computed as
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R̂m(β) =
β(a + G(β))b+NΓ(b + N + m− n)

Γ(m− n)Γ(b + N)

∫ ∞

rn

zβ(zβ − rβ
n)

m−n−1

(zβ − rβ
n + a + G(β))b+N+m−n

dz.

If β is unknown we use πj(α, β) (j = 1, for Kundu and j = 2, for Soland) to compute

fRm(z|t) =
∫ ∫

fRm(z|α, β, t)πj(α, β|t)dαdβ, (24)

and the Bayes predictor is given by R̂m = E(Rm|t) =
∫ ∞

zn
z fRm(z|t)dz. Bayesian prediction intervals

are also readily obtained.
In the case of Kundu’s prior, from (12) and (24) we have

fRm(z|t) = K−1
1

Γ(N + m− n + b)
Γ(m− n)

∫
βN+dzβ−1(zβ − rβ

n)
m−n−1(Je−c)β

(zβ − rβ
n + a + G(β))m−n+N+b

dβ. (25)

In the case of Soland’s prior, from (14) and (24), we get

fRm(z|t) =
K−1

2
Γ(m− n)

k

∑
i=1

βN+1
i zβi−1(zβi − rβi

n )m−n−1 Jβi−1abi
i piΓ(m− n + bi + N)

(zβi − rβi
n + ai + G(βi))m−n+N+bi Γ(bi)

.

4.5. Simulation Study

We assess here the performance of estimators, credible intervals and predictors. To that end,
we simulate samples of δ-records, with n = 5 records. For each sample we compute estimators or
predictors for records only (δ = 0) and for δ-records (δ = −0.5).

4.5.1. Known β

In Table 5 we show results for the Bayes estimator α̂B(β), defined in (20) and 95% HPD intervals
for α. For several values of a, b and β, we simulate 104 independent observations of α, from the
Gamma(a, b) distribution. Then, for each α we simulate a random sample of 5 records and their
associated near-records and compute α̂B(β). The EMSE is computed as average of squared differences
(α̂B(β)− α)2, over the 104 simulation runs.

Table 5. EMSE of Bayes estimator α̂B (β); length (LHPD) and coverage (%CHPD) of highest posterior
density (HPD) interval of parameter α, with known β.

δ = 0 δ = −0.5

π(α) β EMSE LHPD %CHPD EMSE LHPD %CHPD

0.75 0.128 1.262 94.9 0.098 1.140 95.1
γ(α|4, 4) 1 0.131 1.263 94.7 0.090 1.077 95.0

1.5 0.120 1.250 94.9 0.066 0.919 94.7

0.75 0.224 1.719 94.9 0.162 1.500 95.0
γ(α|4, 6) 1 0.218 1.715 95.2 0.145 1.409 94.9

1.5 0.222 1.719 94.9 0.107 1.206 94.6

We report in Table 5 the mean coverage and average length of the 104 HPD intervals. Regarding
the coverage, as we sample α from its prior distribution, approximately 95% of the intervals (both for
records and δ-records), contain the value of the parameter in the simulation. Since this happens in
all the HPD we construct in this section, we do not include the coverage of the HPD intervals in the
remaining tables. In all cases we observe that α̂B(β) and the HPD intervals based on δ-records compare
quite favorably with their counterparts based only on records (δ = 0), in terms of smaller EMSE and
interval length.
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Additionally, we analyze the frequentist coverage for particular values of the parameter. In order to
do so, we take β = 1.5 and fix a value of α in a grid from 0.2 to 2; we then simulate 200 samples of
records (and δ-records), compute the corresponding HPDs for α, using a Gamma(4, 4) prior and check
if they contain the value of α. We repeat this for each value of α. Figure 2 (left) shows the coverage for
α ∈ [0.2, 2]. We observe that δ-records provide intervals with frequentist coverage closer to 95% than
records. The right plot in Figure 2 shows the average length of the intervals as a function of α.
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Figure 2. Frequentist coverage and average length of Bayes HPD intervals, based of records and
δ-records, for several values of α, β = 1.5 and γ(α|4, 4) as α prior.

In the assessment of Bayes predictors of future records (known β), we consider different gamma
priors for α and simulate 104 values of α. For each simulated α we generate a sample of δ-records and
the values of R6 and R7. Then we compute the EMSE of R̂6 and R̂7, as the average of the squared
deviations (R̂6 − R6)

2 and (R̂7 − R7)
2, over the 104 simulation runs. We also compute the lengths

of the HPD intervals as the average of the lengths of the estimated intervals. The coverage of the
intervals, defined as the proportion of runs where the simulated record is in the interval, is included as
well. As in the case of estimation, since we sample α from the prior distribution in the simulations,
approximately 95% of the intervals contain the corresponding record. So, we do not include the
coverage in the rest of the tables for prediction.

Results are displayed in Table 6, where it is apparent that predictors are more accurate with
δ-records. While Table 5 shows a significant improvement in the estimation of α, with the use of
δ-records, this improvement is less visible when forecasting future records. Nevertheless, as in the
case of MLP, a fair comparison between the EMSE of predictions should take into account the lower
bounds commented there. For instance, if β = 1 and α is fixed, the bound is (m− n)/α2. Therefore,
when α has a prior Gamma(a, b), with b > 2, the lower bound can be computed as

∫ ∞

0

m− n
α2

1
Γ(b)

e−aααb−1abdα =
(m− n)a2

(b− 1)(b− 2)
.

In the particular case a = b = 4, m = 7, n = 5, the bound is 16/3. Then the gain with the use of
δ-records, once subtracted the lower bound, is (6.292− 6.095)/(6.292− 16/3) = 20.5%. That is, while
the absolute gain of 0.2 may not seem relevant, relative to 6.292, it is so when the lower bound on the
EMSE is taken into account.
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Table 6. EMSE of Bayes predictors R̂6, R̂7; length (LHPD) and coverage (%CHPD) of HPD intervals for
R6, R7, with known β.

δ = 0 δ = −0.5

R6 R7 R6 R7

π(α) β EMSE R̂6 LHPD %CHPD EMSE R̂7 LHPD %CHPD EMSE R̂6 LHPD %CHPD EMSE R̂7 LHPD %CHPD

0.75 35.094 12.225 94.9 111.424 21.297 94.8 34.931 12.147 94.7 110.946 21.092 94.8
γ(α|4, 4) 1 3.054 4.261 94.9 6.292 6.964 95.1 2.995 4.217 94.9 6.095 6.843 95.0

1.5 0.227 1.368 95.4 0.491 2.140 94.6 0.219 1.335 95.3 0.454 2.058 94.9

0.75 6.302 5.961 94.6 14.945 10.211 94.9 6.213 5.916 94.7 14.671 10.074 94.7
γ(α|4, 6) 1 0.902 2.516 94.7 1.965 4.081 94.9 0.883 2.485 94.8 1.910 3.985 94.7

1.5 0.118 0.978 95.1 0.222 1.522 94.8 0.113 0.957 94.9 0.207 1.464 94.7

4.5.2. Unknown α, β

We begin with Kundu’s prior π1, described in Definition 7. For fixed a, b, c, d we simulate 103

pairs (α, β) from π1(α, β) and, for each (α, β) we generate a sample of 5 records and their near-records.
Once the sample is observed, we numerically compute K1 in (13), to obtain an approximation of
π1(α, β|t). We then compute the Bayes estimators α̂B , β̂B in (21) and the HPD intervals from π1(α, β|t).
The EMSE are obtained as averages of the squared deviations (α̂B − α)2 and (β̂B − β)2, over the 103

simulation runs. As in the case of known β, we observe in Table 7 that δ-records have a positive effect,
both in the accuracy of the estimations and in the length of the HPD intervals.

Table 7. EMSE of Bayes estimators α̂B , β̂B and length (LHPD) of HPD intervals, using Kundu’s prior.

δ = 0 δ = −0.5

π1(α) π1(β) EMSE α̂B LHPD α EMSE β̂B LHPD β EMSE α̂B LHPD α EMSE β̂B LHPD β

γ(α|8, 6) 0.179 1.488 0.048 0.731 0.152 1.389 0.036 0.662
γ(α|4, 4) γ(α|6, 6) 0.192 1.485 0.080 0.970 0.160 1.363 0.058 0.850

γ(α|6, 8) 0.173 1.456 0.105 1.205 0.139 1.310 0.080 1.049

γ(α|8, 6) 0.293 1.904 0.045 0.747 0.219 1.717 0.033 0.640
γ(α|4, 6) γ(α|6, 6) 0.288 1.899 0.078 0.997 0.220 1.690 0.051 0.830

γ(α|6, 8) 0.269 1.888 0.111 1.247 0.206 1.620 0.077 1.020

For Soland’s prior π2 we choose the values βk ∈ {0.5, 0.75, 1, 1.25, 1.5} for β, with different prior
probabilities and two different gamma distributions for α, given β = βk. The HPD intervals for β are
not computed since β is discrete and takes only five different values. Results are shown in Table 8.

Table 8. EMSE of Bayes estimator α̂B and of MP estimator β̂MP and length (LHPD) of HPD interval for
α, using Soland’s prior π2.

δ = 0 δ = −0.5

π2(α|β) π2(β) EMSE α̂B EMSE β̂MP LHPD α EMSE α̂B EMSE β̂MP LHPD α

( 4
10 , 2

10 , 2
10 , 1

10 , 1
10 ) 0.165 1.400 0.076 0.138 1.289 0.054

γ(α|4, 4) ( 1
10 , 2

10 , 4
10 , 2

10 , 1
10 ) 0.156 1.374 0.055 0.128 1.240 0.044

( 1
10 , 1

10 , 2
10 , 2

10 , 4
10 ) 0.163 1.354 0.079 0.121 1.166 0.065

( 4
10 , 2

10 , 2
10 , 1

10 , 1
10 ) 0.258 1.837 0.085 0.204 1.634 0.053

γ(α|4, 6) ( 1
10 , 2

10 , 4
10 , 2

10 , 1
10 ) 0.252 1.820 0.061 0.189 1.578 0.046

( 1
10 , 1

10 , 2
10 , 2

10 , 4
10 ) 0.259 1.801 0.086 0.181 1.488 0.061

Simulation results of Bayes predictors of future records (α, β unknown), using Kundu’s and
Soland’s priors, are presented in Tables 9 and 10, respectively. As before, we proceed by simulating first
the parameter values, from the prior distributions and then the sample of δ-records and the values of
future records. There is, however, a practical difficulty when computing the EMSE of predictors, since



Symmetry 2020, 12, 20 16 of 24

a few huge records, which actually appear in simulations, completely dominate the EMSE because
it is just the average of squared deviations. Suppose, for example, that we use Kundu’s prior and
that the values α = 0.5, β = 0.1 have been obtained from π1(α, β). Then, the corresponding Weibull
distribution has expectation 3.7× 109, the value of Rm will likely be very large and so, a huge value
of (R̂m − Rm)2 will be observed. These “outliers” make the EMSE, computed over all the simulation
runs, a useless measure of performance. In order to avoid this problem, we compute the 5% trimmed
mean of (R̂m − Rm)2, over the simulations. That is, we eliminate the 2.5% smallest and largest values
of (R̂m − Rm)2 and compute the average with the remaining ones. The results in Tables 9 and 10 show
that δ-records have an impact in the prediction of future records, as observed in the case of known β.

Table 9. Trimmed EMSE (TEMSE) of Bayes predictors and lengths (LHPD) of HPD intervals for R6, R7,
using Kundu’s prior π1.

δ = 0 δ = −0.5

π1(α) π1(β) TEMSE R̂6 LHPD R6 TEMSE R̂7 LHPD R7 TEMSE R̂6 LHPD R6 TEMSE R̂7 LHPD R7

γ(α|8, 6) 3318.601 42.805 24,215.125 58,844 3281.805 42.795 24198.502 58.309
γ(α|4, 4) γ(α|6, 6) 45.326 14.270 415.003 27.315 45.724 14.013 414.015 26.771

γ(α|6, 8) 1.997 3.735 7.296 7.446 1.917 3.602 6.885 7.288

γ(α|8, 6) 134.211 19.175 1018.288 34.819 132.540 18.758 1006.229 34.279
γ(α|4, 6) γ(α|6, 6) 10.079 7.689 67.697 16.994 9.830 7.636 64.405 16.586

γ(α|6, 8) 0.664 2.266 2.539 4.221 0.702 2.201 2.534 4.032

Table 10. Trimmed EMSE (TEMSE) of Bayes predictors and lengths (LHPD) of HPD intervals for R6, R7,
using Soland’s prior π2.

δ = 0 δ = −0.5

π2(α|β) π2(β) TEMSE R̂6 LHPD R6 TEMSE R̂7 LHPD R7 TEMSE R̂6 LHPD R6 TEMSE R̂7 LHPD R7

( 4
10 , 2

10 , 2
10 , 1

10 , 1
10 ) 462.880 25.479 1069.877 41.557 462.968 25.420 1054.563 41.486

γ(α|4, 4) ( 1
10 , 2

10 , 4
10 , 2

10 , 1
10 ) 45.904 7.823 102.881 12.856 45.608 7.714 103.401 12.634

( 1
10 , 1

10 , 2
10 , 2

10 , 4
10 ) 15.881 5.597 56.159 10.723 16.009 5.565 54.574 10.551

( 4
10 , 2

10 , 2
10 , 1

10 , 1
10 ) 66.015 11.170 145.522 20.895 66.318 11.111 145.077 20.724

γ(α|4, 6) ( 1
10 , 2

10 , 4
10 , 2

10 , 1
10 ) 7.938 3.929 9.609 7.093 7.832 3.888 9.520 7.013

( 1
10 , 1

10 , 2
10 , 2

10 , 4
10 ) 5.827 3.022 5.961 5.185 5.769 2.983 5.943 5.132

4.6. Real Data

Given that we do not have actual prior knowledge of the parameters, we decided to consider
values around 2 for β and around 1/2 for α, having only illustrative meaning. In Kundu’s prior π1,
we take a = 2, b = 1, c = 1, d = 2. For Soland’s prior π2 we consider β uniformly distributed on
{1.5, 1.75, 2, 2.25, 2.5} and in order to determine the values of (ai, bi), we apply the method described
before Lemma 1, if possible. Recall that in order to apply the method on βi, there must exist a pair
of records rj < rl such that lrβi

j < jrβi
l . For β1 = 1.5 and β2 = 1.75, there exists no such pair of

records while, for β3 = 2, β4 = 2.25 and β5 = 2.5, the method can be applied and yields the following
hyperparameter pairs (after rounding up to the nearest integer): (40, 20), (18, 8) and (13, 5) for β3, β4

and β5 respectively. For β1 and β2, where the method fails, we pick the value of the closest β, that is,
(40, 20). For numerical convenience, we analyze rainfall data using decimeters instead of millimeters,
so that the values of δ and r̂i are now divided by 100.

The results are shown in Tables 11 and 12. In both tables we observe that the estimates of the
parameters using δ-records, with δ = −0.75, outperform those based on records only, because they are
closer to results using the complete sample. As in maximum likelihood prediction, the gain in prediction
of future records using δ-records versus records is not clear; while there is some improvement using
Soland’s prior, this is not the case for Kundu’s prior. This can be due to the surprising closeness of
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Kundu’s prediction using records to the prediction using the whole sample, which we believe happens
by chance in this particular instance.

Table 11. Bayes estimates α̂B , β̂B , Bayes predictions R̂6, R̂7, R̂8 and HPD intervals, for rainfall data,
using Kundu’s prior π1.

δ α̂B HPD α β̂B HPD β R̂6 HPD R6 R̂7 HPD R7 R̂8 HPD R8

0 0.41 [0.01, 1.05] 2.69 [1.21, 4.32] 3.04 [2.79, 3.61] 3.26 [2.79, 4.12] 3.47 [2.81, 4.58]
−0.25 0.41 [0.01, 1.04] 2.46 [1.06, 4.02] 3.13 [2.79, 3.87] 3.42 [2.79, 4.54] 3.24 [2.80, 3.84]
−0.50 0.39 [0.02, 0.97] 2.57 [1.19, 4.09] 3.07 [2.79, 3.67] 3.32 [2.79, 4.20] 3.55 [2.83, 4.68]
−0.75 0.48 [0.06, 1.05] 2.60 [1.44, 3.82] 2.98 [2.79, 3.37] 3.15 [2.79, 3.70] 3.32 [2.82, 4.00]
−∞ 0.58 [0.42, 0.74] 2.10 [1.72, 2.46] 3.05 [2.79, 3.54] 3.28 [2.80, 3.94] 3.50 [2.87, 4.30]

Table 12. Bayes estimation α̂B , maximum probability estimation β̂MP , Bayes predictions R̂6, R̂7, R̂8 and
HPD intervals (except β), for rainfall data, using Soland’s prior.

δ α̂B HPD α β̂MP R̂6 HPD R6 R̂7 HPD R7 R̂8 HPD R8

0 0.39 [0.16, 0.62] 2.50 3.01 [2.79, 3.45] 3.21 [2.8, 3.79] 3.39 [2.85, 4.08]
−0.25 0.33 [0.15, 0.53] 2.50 3.04 [2.79, 3.53] 3.26 [2.8, 3.90] 3.47 [2.86, 4.22]
−0.50 0.34 [0.17, 0.52] 2.50 3.03 [2.79, 3.49] 3.24 [2.8, 3.84] 3.44 [2.86, 4.14]
−0.75 0.43 [0.27, 0.61] 2.50 2.98 [2.79, 3.34] 3.15 [2.8, 3.62] 3.31 [2.85, 3.86]
−∞ 0.47 [0.37, 0.56] 2.50 2.96 [2.79, 3.29] 3.12 [2.8, 3.54] 3.27 [2.85, 3.75]

5. Final Comments

Professionals interested in statistical inferences for the Weibull model, based on record data, should
consider the possibility of using δ-records. We have presented in this paper the mathematical bases of the
methodology, together with some theoretical results, such as consistency. We have also established the
existence of estimators and predictors and discussed their numerical implementation so that researchers
interested in applications can readily test the method on their own data. As commented above, we insist
here that δ-records can be collected, in many cases, by slightly modifying the experimental setup for
records so that the additional cost related to extra data is kept low. The conclusions to be drawn from the
simulations and the application to the rainfall data are that δ-records improve inferences in the Weibull
model. The impact is more notorious in MLE than in the Bayesian framework, possibly because of
a strong influence of the priors. We believe that more investigation would be welcome for fine tuning
this novel methodology. For example, it would be useful to have guidelines for the choice of δ and to
explore the possibility of letting δ vary during data collection. Also, in the theoretical analysis of the
model, it would be of interest to extend the consistency of Theorem 1 to the case of unknown shape
parameter and study eventual asymptotic distributions; see Remark 4. These and other related topics
will be considered in forthcoming papers.

6. Technical Results and Proofs

6.1. Consistency of the MLE λ̂(β)

The proof of Theorem 1 follows from Lemmas 2–7, related to the asymptotic behavior of δ-records,
which can be of independent interest. Strong convergence, as the appropriate index (usually n) tends
to infinity, is denoted by a.s.−→; inequalities with random variables are understood in the almost sure
sense. Recall that Rm denotes the m-th record, while Sm and (Ym,1, . . . , Ym,Sm) denote respectively the
number and the vector of near-records associated to Rm.

Lemma 2. If β > 1 then Sn/nγ a.s.−→ ∞, for all γ > 0.
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Proof. It suffices to show that Sn/φn,k
a.s.−→ ∞, for k ≥ 1, where φn,k = (n − 1) · · · (n − k) is the

k-th falling factorial of n− 1. To that end we apply the Borel-Cantelli lemma to show that P(Sn <

φn,k M i.o.) = 0, for every integer M > 0 (i.o. stands for infinitely often). Observe that Sn conditional
on Rn is geometrically distributed (starting at 0), with parameter

pn :=
F̄λ,β(Rn)

F̄λ,β(Rn + δ)
= e−α(Rβ

n−(Rn+δ)
β
+), (26)

where α = λ−β, that is, P(Sn = k|Rn) = (1− pn)k pn, k ≥ 0; see Reference [10]. Noting that

Rβ
n − (Rn + δ)

β
+ ≥ β(Rn − (Rn + δ)+)(Rn + δ)

β−1
+ = |δ|β(Rn + δ)

β−1
+ ,

from (26) we have pn ≤ e−α|δ|β(Rn+δ)
β−1
+ and so,

P(Sn < φn,k M|Rn) = 1− (1− pn)
φn,k M ≤ φn,k Mpn ≤ φn,k Me−α|δ|β(Rn+δ)

β−1
+ .

Now, since Rβ
n has Gamma(α, n) distribution (see Reference [2]), we get

P(Sn < φn,k M) ≤ M
∫ ∞

0
e−α|δ|β(t1/β+δ)

β−1
+ φn,k

αntn−1e−αt

Γ(n)
dt.

Hence, knowing that the k-th factorial moment of a Poisson random variable with parameter µ is
µk, we have

∞

∑
n=1

P(Sn < φn,k M) ≤ M
∫ ∞

0
e−α|δ|β(t1/β+δ)

β−1
+ α

∞

∑
n=1

φn,k
(αt)n−1e−αt

Γ(n)
dt

= M
∫ ∞

0
α(αt)ke−α|δ|β(t1/β+δ)

β−1
+ dt

= M
∫ ∞

0
α(αuβ)ke−α|δ|β(u+δ)

β−1
+ βuβ−1du < ∞,

and the conclusion follows.

Lemma 3. Let Un = ∑Sn
j=1(Y

β
n,j − (Rn + δ)

β
+), n ≥ 1. Then, if β > 1, Un/Sn

a.s.−→ λβ.

Proof. From Proposition 1 in Reference [10] we know that, conditional on Rn and Sn, Sn > 0,
the random variables Yn,1, . . . , Yn,Sn are iid, with common density function

gλ,β(y) :=
αβyβ−1e−αyβ

e−α(Rn+δ)
β
+ − e−αRβ

n

, y ∈ ((Rn + δ)+, Rn), n ≥ 1,

with α = λ−β. Hence, letting F be the σ-algebra generated by the sequences (Rn) and (Sn), we obtain

E[Yβ
n,j|F ] =

1

e−α(Rn+δ)
β
+ − e−αRβ

n

∫ Rn

(Rn+δ)+
αβy2β−1e−αyβ

dy

=
1

e−α(Rn+δ)
β
+ − e−αRβ

n

∫ Rβ
n

(Rn+δ)
β
+

αte−αtdt

=
1
α
−

Rβ
ne−αRβ

n − (Rn + δ)
β
+e−α(Rn+δ)

β
+

e−α(Rn+δ)
β
+ − e−αRβ

n

,
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and so, E[Yβ
n,j − (Rn + δ)

β
+|F ] = 1

α − Kn, where Kn := Rβ
n−(Rn+δ)

β
+

eα(Rβ
n−(Rn+δ)

β
+)−1

, j = 1, . . . , Sn. Let also

Zn,j = Yβ
n,j − E[Yβ

n,j|F ] = Yβ
n,j − (Rn + δ)

β
+ −

1
α
+ Kn, j = 1, . . . , Sn, (27)

and let Vn = ∑Sn
j=1 Zn,j, n ≥ 1. Then, by Tchebychev’s inequality, P(|Vn| > εSn|F ) ≤ σ2

n
ε2Sn

, for all
ε > 0, where

σ2
n := E(Z2

n,j|F ) = E((Yβ
n,j − E(Yβ

n,j|F ))
2|F ) ≤ E(Y2β

n,j |F ) ≤ R2β
n , n ≥ 1.

Furthermore, since the sequence (Rβ
n) is distributed as the ordered points of a homogeneous

Poisson process, with rate λ−β (see Reference [2]), the strong law of large numbers implies

Rβ
n

n
a.s.−→ λβ, (28)

and so lim sup σ2
n/n2 ≤ λ2β. Then, by Lemma 2, with γ = 4, we have σ2

n/Sn = o(n−2). Therefore
∑∞

n=1 P(|Vn| > εSn|F ) < ∞ and, by the (conditional) Borel-Cantelli lemma, P(|Vn| > εSn i.o.|F ) = 0
and so P(Vn/Sn → 0|F ) = 1. Then, taking expectation, we obtain Vn/Sn

a.s.−→ 0. Finally, since Rβ
n −

(Rn + δ)
β
+ ≥ |δ|β(Rn + δ)

β−1
+

a.s.−→ ∞ (because Rn
a.s.−→ ∞ and β > 1), we get Kn

a.s.−→ 0. The conclusion
now follows from the above convergence results and the identity Un/Sn = Vn/Sn + λβ − Kn.

Lemma 4. If β = 1 then 1
n ∑n

i=1 Si
a.s.−→ e−δ/λ − 1.

Proof. As stated in Lemma 2, conditionally on (Rn), the random variables Si are independent and
geometrically distributed, with parameter pi = e−α(Ri−(Ri+δ)+), where α = λ−1. Let S̃i = Si − (1−
pi)/pi, i ≥ 1, then E(S̃i|G) = 0, where G is the σ-algebra generated by (Rn). Furthermore, observe
that pi ≥ eδα and E(S̃4

i |G) ≤ 19p−4
i . So, the conditional fourth moment of S̃i is bounded above by

19e−4αδ and the following (conditional) strong law of large numbers holds: P
(

1
n ∑n

i=1 S̃i → 0
∣∣∣G) = 1.

Then, taking expectation and observing that (1 − pn)/pn = eα(Rn−(Rn+δ)+) − 1 a.s.−→ e−αδ − 1,
the conclusion follows.

Lemma 5. If β = 1 then 1
n ∑n

i=1 Ui
a.s.−→ λ(e−δ/λ − 1) + δ, with Ui defined in Lemma 3.

Proof. Let F , Zi,j, Vi and α be defined as in the proof of Lemma 3. Note that, conditionally on F ,
the Zi,j are independent with mean 0 and also that |Zi,j| ≤ |δ|. It follows that E(V2

i |F ) ≤ MSi
and E(V4

i |F ) ≤ MS2
i , for some non-random constant M > 0. Consequently, since the Vi are also

conditionally independent and centered, we have

E
(( n

∑
i=1

Vi

)4∣∣∣F) =
n

∑
i=1

E(V4
i |F ) + 6 ∑

i<j
E(V2

i |F )E(V2
j |F ) ≤ M

n

∑
i=1

S2
i + 6M2 ∑

i<j
SiSj.

On the other hand, from (26) and Ri − (Ri + δ)+ ≤ −δ, we get

E(S2
i |Ri) ≤

2
p2

i
≤ 2e−2αδ, E(SiSj|Ri, Rj) = E(Si|Ri)E(Sj|Rj) ≤

1
pi pj

≤ e−2αδ. (29)
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Then, by Tchebychev’s inequality and (29),

P
(∣∣∣ 1

n

n

∑
i=1

Vi

∣∣∣ > ε
)
≤ E((∑n

i=1 Vi)
4)

n4ε4

≤ M
n4ε4

( n

∑
i=1

E(S2
i ) + 6M ∑

i<j
E(SiSj)

)
≤ M

n4ε4 (2ne−2αδ + 3n2Me−2αδ),

and it follows that 1
n ∑n

i=1 Vi
a.s.−→ 0. The conclusion is obtained if we show that

1
n

n

∑
i=1

Si

(
1
α
− Ri − (Ri + δ)+

eα(Ri−(Ri+δ)+) − 1

)
a.s.−→ 1

α
(e−αδ − 1) + δ,

but such convergence is implied by Lemma 4 and Rn − (Rn + δ)+
a.s.−→ −δ.

Lemma 6. If β < 1 then 1
n ∑n

i=1 Si
a.s.−→ 0.

Proof. Let Nn and Dn be the number of records and of near-records among the first n observations,
respectively, then it is clear that S1 + · · ·+ SNn−1 ≤ Dn ≤ S1 + · · ·+ SNn . From Proposition 5.1 of
Reference [28], we have Dn/ log n a.s.−→ 0 and, noting that NL(n) = n, where L(n) is the n-th record
time, we have

S1 + · · ·+ Sn−1

n
=

S1 + · · · SNL(n)−1

NL(n)
≤

DL(n)

log L(n)
log L(n)

NL(n)

a.s.−→ 0,

where we have used L(n) a.s.−→ ∞ and the well-known result Nn/ log n a.s.−→ 1, thus proving the
result.

Lemma 7. If β < 1 then 1
n ∑n

i=1 Ui
a.s.−→ 0, where Ui is defined in Lemma 3.

Proof. Since β < 1, we have Yβ
i,j − (Ri + δ)

β
+ ≤ Rβ

i − (Ri + δ)
β
+ ≤ |δ|β. Therefore, by Lemma 6,

1
n ∑n

i=1 Ui ≤ |δ|
β

n ∑n
i=1 Si

a.s.−→ 0.

Proof of Theorem 1.
We divide the proof in three cases, depending on the tail behavior of Fλ,β, that is, β > 1, β = 1, β < 1.

Recall that Ui = ∑Si
j=1

(
Yβ

i,j − (Ri + δ)
β
+

)
, then from (6) and (7),

λ̂(β) =

∑n
i=1

(
Rβ

i − (Ri + δ)
β
+ + Ui

)
+ Rβ

n

n + ∑n
i=1 Si


1
β

.

(i) Case β > 1. Note that, by Lemma 2 and (28),

∑n
i=1

(
Rβ

i − (Ri + δ)
β
+

)
+ Rβ

n

n + ∑n
i=1 Si

≤ (n + 1)Rβ
n

Sn

a.s.−→ 0.

Then convergence of λ̂(β) to λ is equivalent to

∑n
i=1 Ui

n + ∑n
i=1 Si

a.s.−→ λβ,

which follows from Lemmas 2 and 3.
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(ii) Case β = 1. From Lemma 4 we have N
n =

n+∑n
i=1 Si
n

a.s.−→ e−δ/λ. Also, since Rn
a.s.−→ ∞, we have

1
n ∑n

i=1(Ri − (Ri + δ)+)
a.s.−→ −δ and the result follows from (28) and Lemma 5.

(iii) Case β < 1. Note that Rβ
n − (Rn + δ)

β
+

a.s.−→ 0, since Rn
a.s.−→ ∞ and β < 1, so 1

n ∑n
i=1(Rβ

i − (Ri +

δ)
β
+)

a.s.−→ 0. This convergence, together with (28) and Lemmas 6 and 7, complete the proof.

6.2. MLP of Rm

Proof of Proposition 4.
(i) For z > rn, let l1(z, λ, β) = log LP

1 (z, t|λ, β). Then

l1(z, λ, β) = (m− n− 1) log(zβ − rβ
n)− log Γ(m− n)− β(m− n + N) log λ + (N + 1) log β

+ (β− 1) log z− λ−β(zβ − rβ
n + G(β)) + (β− 1) log J.

Solving for λ in
∂l1
∂λ

= − β(m− n + N)

λ
+ βλ−(β+1)(zβ − rβ

n + G(β)) = 0,

we obtain the stationary point λ̃(β) =

(
zβ−rβ

n+G(β)
m−n+N

) 1
β

> 0, which is the unique element of

argmax
λ

l1(z, λ, β), because ∂2
1l

∂λ2 < 0 at λ̃, for all z, β. Thus, the problem max
λ,z

l1(z, λ, β) is reduced

to max
z

l1(z, λ̃(β), β) or, equivalently, to max
z

l̃1(z), where

l̃1(z) :=− (m− n + N) log(zβ − rβ
n + G(β)) + (N + 1) log β

+ (m− n− 1) log(zβ − rβ
n) + (β− 1) log z + β log J.

With the change of variable x = zβ − rβ
n , we get

l̂1(x) := −(m− n + N) log(x + G(β)) + (N + 1) log β + (m− n− 1) log x + β−1
β log(x + rβ

n) + β log J, (30)

and max
z>rn

l̃1(z) is reduced to max
x>0

l̂1(x). We now study the sign of the derivative

∂l̂1
∂x

= −N + m− n
x + G(β)

+
m− n− 1

x
+

β− 1

β(x + rβ
n)

, (31)

which is equal to the sign of the polynomial q(x) := ax2 + bx + c, with coefficients defined in (10).
We observe, since a < 0 and ac ≤ 0, that q is concave on R and has real roots given by ν =

−b+
√

b2−4ac
2a ≤ 0 and ρ = −b−

√
b2−4ac

2a ≥ 0. If m = n + 1, then c = 0 and b = (β− 1)G(β)− β(N +

1)rβ
n < 0, because G(β) ≤ (N + 1)rβ

n ; see (6), for definitions of N and G(β). Hence ρ = − b+|b|
2a = 0.

On the other hand, if m > n + 1, then c > 0 and ac < 0, which clearly implies ρ > 0. We summarize
the above in terms of (31), denoting by z̃(β) an element of argmax

z
l̃1(z):

• If m = n + 1, then ρ = 0, ∂l̂1
∂x is negative on (0,+∞) and so, l̂1(x) has no maximum on (0,+∞).

In this case we do, however, define z̃(β) = rn, that is, z̃β(β) = ρ + rβ
n .

• If m > n + 1, then ρ > 0, ∂l̂1
∂x is positive on (0, ρ) and is negative on (ρ,+∞). Hence z̃β(β) = ρ + rβ

n .

(ii) Given the definitions of z̃(β) and λ̃(β), it only remains to prove that Ã is nonempty, noting that
Ã = argmax

β
l̂1(ρ). By Lemma 8, l̂1(ρ)→ −∞, as β→ 0+ and, by Lemma 10, l̂1(ρ)→ −∞, as β→ +∞.

This ensures that Ã is nonempty, since l̂1(ρ) is a continuous function of β > 0.
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Lemma 8. (i) lim
β→0+

ρ
β → m− n− 1,

(ii) lim
β→0+

l̂1(ρ)→ −∞.

Proof. (i) Note that rβ
n → 1 and G(β) → 1, implying a → −1, b → −1, c → 0 and c/β → m− n− 1,

as β→ 0+. Hence, the conclusion follows from

ρ

β
=

2c

β
(
−b +

√
b2 − 4ac

) → m− n− 1. (32)

(ii) Let m = n + 1 and recall that ρ = 0. Then the conclusion is reached, since, as β→ 0+,

l̂1(ρ) = (N + 1)(log β− log G(β)) + β(log rn + log J)− log rn → −∞.

On the other hand, if m > n + 1, from G(β)→ 1, ρ→ 0, we have

lim
β→0+

l̂1(ρ) = lim
β→0+

((N + 1) log β + (m− n− 1) log ρ) + lim
β→0+

β− 1
β

log(ρ + rβ
n). (33)

The first limit in the RHS of (33) is −∞ and the second is finite and can be computed from (32),
since

(ρ + rβ
n)

1/β =

(
1 + β

(
ρ

β
+

rβ
n − 1

β

))1/β

→ rnem−n−1.

Lemma 9. Let m > n + 1. Then there exist constants A, B > 0 such that, for all β > 1,

Arβ
n < ρ < Brβ

n . (34)

Proof. Note that G(β) = 2rβ
n + o(rβ

n), as β → +∞. Then, from (10), a/β = −N + o(1), b/β =

rβ
n(K + o(1)) and c/β = 2(m− n− 1)r2β

n (1 + o(1)), as β→ +∞, where K 6= 0 is a constant. Then

ρ

rβ
n
→ K +

√
K2 + 8N(m− n− 1)

2N
> 0,

and the conclusion follows.

Lemma 10. lim
β→+∞

l̂1(ρ) = −∞.

Proof. Let m > n + 1. From Lemma 9 and recalling that rβ
n < G(β) ≤ (N + 1)rβ

n , we have

l̂1(ρ) ≤ −(m− n + N) log((A + 1)rβ
n) + (N + 1) log β

+ (m− n− 1) log(Brβ
n) +

β− 1
β

log((B + 1)rβ
n) + β log J

= β(log J − N log rn) + (N + 1) log β + K + o(1)→ −∞,

as β → +∞, where K is a constant and the limit is a consequence of the inequality log J < N log rn;
see (6) for definitions of J and N. Now, if m = n + 1, we have ρ = 0 and
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l̂1(ρ) = (N + 1)(log β− log G(β)) + (β− 1) log rn + β log J

≤ (N + 1)(log β− β log rn) + β(log rn + log J)− log rn

= (N + 1) log β + β(log J − N log rn)− log rn → −∞.

Remark 7. It is clear that the maximization of l̂1(ρ) with respect to β, in the proof of Proposition 4, cannot
be done analytically and numerical techniques must be used. The search for the maximum can be reduced to
a compact interval [βL, βU ], with βL > 0, as explained below.

Let us write ρ(β) instead of just ρ, to make explicit the dependence on β. Then, by Lemma 8 (ii), there exists
βL ∈ (0, 1) such that l̂1(ρ(β)) < l̂1(ρ(1)), for all β < βL and hence argmax

β
l̂1(ρ(β)) ⊂ [βL, ∞). For the

upper bound βU we observe, from Lemma 10, that a value βU > 1 can be found, such that l̂1(ρ(β)) < l̂1(ρ(1)),
for all β > βU . Therefore, argmax

β
l̂1(ρ(β)) ⊂ (−∞, βU ] and, since βL < βU , we have argmax

β
l̂1(ρ(β)) ⊂

[βL, βU ]. Note that, when writing l̂1(ρ(1)), we mean that β is replaced by 1 in the whole expression for l̂1, not
only in ρ(β).
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