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Abstract: We present a Relativistic Newtonian Dynamics (RND) for motion of objects in a
gravitational field generated by a moving source. As in General Relativity (GR), we assume that
objects move by a geodesic with respect to some metric, which is defined by the field. This metric is
defined on flat lab spacetime and is derived using only symmetry, the fact that the field propagates
with the speed of light, and the Newtonian limit. For a field of a single source, the influenced direction
of the field at spacetime point x is defined as the direction from x to the to the position of the source
at the retarded time. The metric depends only on this direction and the strength of the field at x.
We show that for a static source, the RND metric is of the same form as the Whitehead metric, and
the Schwarzschild metric in Eddington–Finkelstein coordinates. Motion predicted under this model
passes all classical tests of GR. Moreover, in this model, the total time for a round trip of light is as
predicted by GR, but velocities of light and object and time dilation differ from the GR predictions.
For example, light rays propagating toward the massive object do not slow down. The new time
dilation prediction could be observed by measuring the relativistic redshift for stars near a black
hole and for sungrazing comets. Terrestrial experiments to test speed of light predictions and the
relativistic redshift are proposed. The RND model is similar to Whitehead’s gravitation model for
a static field, but its proposed extension to the non-static case is different. This extension uses a
complex four-potential description of fields propagating with the speed of light.

Keywords: symmetry and dynamics; SO-2 relativistic redshift; one-way light speed; black holes;
sungrazing comets

1. Introduction

Einstein’s General Relativity (GR) has succeeded in explaining non-classical behavior in
astrophysics. GR successfully implements Riemann’s idea “force equals geometry” to gravitation.
In GR, the gravitational force curves spacetime. The curving of spacetime is expressed by a metric [1–3].
By the Equivalence Principle, this metric is the same for all objects. It is assumed the motion of any
object, massive or massless, is by a geodesic with respect to this metric. Einstein’s field equations,
which is a set of nonlinear partial differential equations, are used to define the metric from the sources
of the field.

In 1922, A. N. Whitehead published [4] a relativistic theory of gravity, much simpler than GR and
containing no arbitrary parameters. This theory is set in Minkowski spacetime, and it is assumed that
the motion of any object is by a geodesic with respect to a metric defined on this spacetime. The metric
describes the gravitational field, and, assuming that the field propagates with the speed of light, it is
defined by the position of the sources at the retarded time. Whitehead proposed a metric for a static,
spherically symmetric gravitation field, which we call the Whitehead metric. This metric differs from
the corresponding GR metric—the Schwarzschild metric [5]. Whitehead showed that the dynamics
based on this metric accurately predicts the anomalous precession of the perihelion of Mercury and
the deflection of light.
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In 1924, A. S. Eddington [6] showed that in new coordinates on spacetime, now called Eddington-
Finkelstein coordinates, the Whitehead metric coincides with the Schwarzschild metric. Finkelstein
arrived at these coordinates [7] while showing that the Schwarzschild radius is only a coordinate
singularity and not a true physical singularity. A complexification of the Whitehead metric was used by
Kerr [8] to obtain an exact solution of Einstein field equations for a rotating, axially-symmetric massive
object, see also [9]. In 1952, J. L. Synge [10] presented an explicit form for Whitehead’s metric for a field
generated by several sources. From that time until the present, there is a difference of opinion whether
Whitehead’s theory of gravitation violates experimental tests, see [11–13] and references therein.

In this paper, we present a Relativistic Newtonian Dynamics (RND) for a gravitational field.
An earlier version was developed by the author and others [14–23]. RND is an attempt to realize
Riemann’s program for all forces. It is a metric-based Lagrangian theory. This theory is similar to
Whitehead’s theory of gravitation for a single static source, but the interpretation and the derivation of
the metric is different. In this paper, we lay out the ideas behind RND and apply our model to the
motion of an object in a static, spherically symmetric field.

The key point in deriving the metric of such a field is the use the symmetry of the problem
resulting because the field propagates with the speed of light. The symmetry defines the form of
the metric up to an unknown function, which is determined by the Newtonian limit. The obtained
metric is Whitehead’s metric. The trajectories predicted by RND and GR are the same. The RND
model passes all solar tests of GR. The total round trip time of light for both models is the same. Thus,
round-trip experiments cannot distinguish between RND and GR.

In contrast to Whitehead’s theory, RND makes predictions different from GR for the relativistic
redshift. The GR metric is invariant under time reversal, but the RND metric breaks the time reversal
symmetry. The differences in the predicted relativistic redshift could be observed for stars near a black
hole. This redshift was recently measured and analyzed for the SO-2 star near the massive black hole
at the center of the Milky Way galaxy. The differences in the relativistic redshift could also be observed
for sungrazing comets. The velocities of objects in RND differ from those predicted by GR. In RND,
a star can be swallowed by a black hole in finite time, whereas in GR, this will take infinite time.

In a strong, static gravitational field, RND predicts a different one-way speed of light from that
predicted by GR. For instance, the speed of light toward the gravitational source is always c, and is
not slowed down, as in GR. These predictions have not yet been tested. We propose two experiments:
one to test the one-way speed of light and a second to test relativistic redshift predictions.

In Section 9, we reveal the shortcomings of Whitehead’s treatment of a non-static source.
We propose how to extend RND to a non-static force field. This extension is based on the pre-potential
and four-potential description on a field propagating with the speed of light, see [24].

2. The Ideas behind Relativistic Newtonian Dynamics

To describe dynamics by use of geometry one must consider trajectories in spacetime, not in
space. For example, free or constant velocity motion an object is described by a a straight line in
spacetime, while knowing that its trajectory is a straight line in space tells nothing about the objects
acceleration. We describe the motion of objects with respect to a preferred frame, called the lab frame,
as observed by an observer far away from the sources of the field. We will assume that the lab frame is
in Minkowski spacetime.

We always have a preferred frame of reference. For example, if we are considering the motion
of Mercury, we use a frame with the Sun at the center and measure distances with respect to the
background of fixed stars. If we are dealing with motion within a distant galaxy, we observe this
motion from a point far away from the field within the galaxy, and we may use the frame represented
by the microwave background radiation [25,26].

The development of our dynamics starts with the relativity of spacetime, which mean that
spacetime is an object-dependent notion. The objects spacetime is defined by the forces affecting it.
For example, an electron and a neutron exist in different worlds in the vicinity of an electric field.
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The electric field does not exist for the neutron. The way spacetime curves due to an electric potential
depends also on intrinsic properties of the object. This was also recognized in [27] in the geometric
approach of electrodynamics. For gravity, by the Equivalence Principle, a gravitational field is felt
equally by all objects. Therefore, the geometry of the field is object independent.

How does the field affect an object’s motion? The motion of an object is described by its world-line
in the lab frame K. If there is no field around, the four-acceleration a observed in K is zero. If there
is a field affecting the object’s motion, the field will define the acceleration on the world-line. As the
admissible speeds in relativity are limited by the speed of light, in any relativistic dynamics, unlike in
Newtonian dynamics, the acceleration must depend also on the four-velocity u of the moving object.

We are aware of two ways in which the four-acceleration a can depend on the four-velocity u.
The first one is linear dependence. For example, for an electromagnetic field, the acceleration caused
by the Lorentz force is a = Fu, where F is an antisymmetric 4× 4 tensor. Motion under such dynamics
predicts a precession for motion in a central field, but this precession is much smaller that the observed
anomalous precession of Mercury’s orbit. Thus, dynamics based on linear dependence on u cannot
properly describe the gravitational field. The second type of dependence arises in geodesic motion
with respect to some metric. For such motion, the dependence of a on u is quadratic. Such dynamics
properly predicts the anomalous precession of Mercury’s orbit. Thus, as in GR, we assume that
the geometry of spacetime caused by a gravitational field is defined by a metric. As the speed of
propagation of the field is finite, this metric at a given time will be defined by the position of the
sources of the field in the past.

We maintain that an object moves freely in its spacetime. In other words, the object’s acceleration
is zero in a spacetime defined by the force, that is, it moves along a geodesic with respect to the metric
defined by the field. This results from the fact that an inanimate object has no internal mechanism to
change its velocity. Thus, in its world, its acceleration is zero. Note that GR makes the same claim
about an object freely falling in a gravitational field.

We should also emphasize here how our approach differs from GR. The first, and primary,
difference is perspective. We work in flat spacetime. In GR, one works in curved spacetime, on a
pseudo-Riemannian manifold. The assumption is that one can, in fact, carry out measurements in
curved spacetime. The standard GR definition of the radial coordinate r (see for example [2,28]) is to
define it so that a sphere of radius r has surface area 4πr2. However, how are we to measure surface
area in curved spacetime? Our approach, on the other hand, is to measure r in a well-defined inertial
frame far removed from the sources. This is what is measured usually.

As a geodesic has minimal length, it is advantageous to use a variational principle: We will derive
Euler–Lagrange-type equations and obtain conservation of certain momenta. With these tools, we can
compute the metric. Let the line element of the spacetime metric be

ds2 = gαβ(q)dqαdqβ, (1)

where qα, α = 0, 1, 2, 3 are the coordinates in an inertial lab frame K. Introduce the function L

L (q, q́) = c
√

gαβ(q)q́α q́β (2)

with independent variables qα, q́α:
We describe a trajectory of an object of mass m by q : σ → x, a ≤ σ ≤ b, with an arbitrary

parameter σ. The length of the trajectory l(q) is given by

l(q) = c
∫ b

a

ds
dσ

dσ =
∫ b

a
L
(

q,
dq
dσ

)
dσ. (3)
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The length of a perturbation of the trajectory r : σ→ x, a ≤ σ ≤ b, r(a) = r(b) = 0 is extremal if

d
dε

l(q + εr)|ε=0 = 0. (4)

As the object moves along a geodesic, the length of the trajectory q(σ) is extremal. By a standard
argument, using integration by parts, it follows that q(σ) satisfies the Euler–Lagrange equations

∂L
∂qµ −

d
dσ

∂L
∂q́µ = 0, (5)

where L is defined by (2) and q́ = dq
dσ . In this case, the conjugate momentum uµ per unit mass is

uµ =
∂L
∂q́µ

∣∣∣
q́= dq

dσ

=
cgµβ

dqβ

dσ

ds/dσ
= cgµβ

dqβ

ds
. (6)

The second term in Equation (5) contains differentiation is by s, as seen in Equation (6) first and
then differentiation is by σ. To obtain a differential equation with a single parameter, we choose σ to
be proportional to s. More precisely, we choose σ to be the “proper time”, defined by

dτ = c−1ds. (7)

Proper time reduces to the coordinate time t in the classical limit.
Using τ as a parameter in Equation (5) and denoting differentiation of q with respect to τ by q̇ turn

this equation into a second-order differential equation, and the Euler–Lagrange equations become

∂L
∂qµ =

duµ

dτ
, (8)

where

uµ = gµβ q̇β, aµ =
duµ

dτ
(9)

are the four-velocity and the four-acceleration (respectively) as co-vectors.
Note that the metricin (9) is necessary to lower the index of the momentum which is a co-vector.

Using (2), Equation (8) becomes

aµ =
1
2

gαβ,µuαuβ, (10)

where gαβ,µ = ∂gαβ/∂qµ. This equation is called the “alternative form of the geodesic equation”,
see [29] p. 81.

The following proposition follows immediately from Equation (8).

Proposition 1. If the metric coefficients gαβ do not depend on the coordinate qµ, then the conjugate momentum
pµ is conserved on the trajectory.

Obviously, the conjugate momentum for massless particles is pµ = gµβ q̇β, where the
differentiation is by an affine parameter (see, for example, in [1]). As we obtain parameter-free
equations, there is no need here to specify this parameter.
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3. Symmetry Consequence for the Metric of the Field of a Static, Spherically Symmetric Source

Consider first the motion of an object of mass m in a static, gravitational field of a non-rotating,
spherically symmetric source. We measure the space displacements and time increments in a lab frame
as seen by an observer positioned far away from the sources of the field. As this observer is not affected
by the force, we can assume that his measures are as in Minkowski space. We move the origin of our
lab frame K at the center of the source and use standard spherical coordinates ct, r, θ, ϕ.

The world line of the source in the lab reference frame K is S = (ct, 0, 0, 0). We assume that the
motion is a geodesic motion with respect to a metric and that the field propagates with the speed of
light c. Under this assumption, the metric at a spacetime point P with coordinates x = (ct, r, θ, ϕ) will
depend only on the strength of the source and on the retarded position of the source xs, defined as
the intersection point of the backward light cone with vertex at x with the world line S. The Lorentz
invariant 4D vector

y(x) = x− xs = (r, r, θ, ϕ) (11)

where is the only vector expressing the effect of the field on the object at x. The direction of this vector
is called the “influenced direction of the field”.

The metric is a symmetric tensor of rank two. Thus, the deviation of the metric from the
Minkowski metric must be proportional to a symmetric bilinear form constructed from the vector
y and is of the form

gαβ(x) = ηαβ + f (x)yα(x)yβ(x) = ηαβ + f (x)ηαµηανyµ(x)yν(x), (12)

where ηαβ is the Minkowski metric with signature (1,−1,−1,−1) and f (x) is a scalar function
depending on x. Since our field is static and spherically symmetric, both f and g depend only
on the coordinate r of x.

The null vector y(x) can be written as

y(x) = r(1, n(x)), n(x) = (1, θ, ϕ). (13)

We introduce the unit-free direction of influence

ŷ(x) = y(x)/r = (1, n(x)), (14)

where n(x) is the radial direction - the direction of the force and the direction of propagation of the
field. Note that ŷ is independent of r. Denoting φ(r) = −r2 f (r), the metric (12) can be rewritten as

gαβ(x) = ηαβ − φ(r)ŷαŷβ. (15)

From this, we observe that φ(r) expresses the “strength” of the field at the point x.
Introduce a local basis eµ at P by normalizing ∂t, ∂r, ∂θ , and ∂ϕ. In this basis, ŷ = (1, 1, 0, 0) and

the matrix of the metric (15) is

gαβ(x) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

− φ(r)


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



=


1− φ(r) −φ(r) 0 0
−φ(r) −1− φ(r) 0 0

0 0 −1 0
0 0 0 −1

 . (16)
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4. Newtonian Limit Consequence for the Metric of the Field of a Static, Spherically
Symmetric Source

From (15) and the fact that ŷ is independent of r, it follows that the r derivative of the metric
is gαβ,1 = −φ′ŷαŷβ. On the trajectory of the moving object, q̇ = (cṫ, ṙ, ?, ?), and using (15) yields
gαβ,1q̇α q̇β = −φ′(cṫ + ṙ)2. Thus, from Equation (10), the r component of acceleration for geodesic
motion is

a1 = −1
2

φ′(cṫ + ṙ)2, (17)

where a1 is defined by (9).
To apply the Newtonian limit at a spacetime point P, consider a geodesic motion xµ(τ) of an

object with zero velocity at P. From Equations (1) and (7), it follows that c2 =
(

ds
dτ

)2
= gµν ẋµ ẋν and

as, at P, ẋµ(P) = (cṫ, 0, 0, 0), using (16), at this point c2 = (1− φ)c2 ṫ2. As for this motion ṙ(P) = 0,
from (17), the r component of the four acceleration at P is

a1(P) = − c2

2
φ′(P)

1− φ(P)
. (18)

Since dτ2 = (1− φ)dt2 at P, the r component of the acceleration by the time t is

a1(P) = (1− φ(P))a1(P) = − c2

2
φ′(P). (19)

The Newtonian acceleration (as a co-vector) for a spherically symmetric field with classical
Newtonian potential U(r) is in the r direction and is a1 = m−1U(r)′ (lowering the index of acceleration
eliminated the usual minus sign). The Newtonian limit assumes that for this object at P, the classical
acceleration and the one defined by (19) from the geodesic motion are the same. Thus,

φ′(P) = − 2
mc2 U′(P). (20)

Now we use the fact that P was arbitrary. Since our metric is flat far from the source, φ(r) should
vanish at infinity. The last equation yields

φ(r) = −2U(r)
mc2 , (21)

which is the dimensionless potential energy of our field. This completes the definition of the metric of
a static, spherically symmetric force.

For a gravitational field of a spherically symmetric body of mass M, the Newtonian potential is
U(r) = −GMm

r , where G is the gravitational constant. This implies that the dimensionless potential is

2U(r)
mc2 = − rs

r
, rs =

2GM
c2 , (22)

where rs denotes the Schwarzschild radius, and from Equation (21)

φ(r) =
rs

r
. (23)

The metric (15) is
gαβ(r) = ηαβ −

rs

r
ŷαŷβ = ηαβ −

rs

r3 yαyβ. (24)

This metric coincides with Whitehead’s metric for a gravitational field of a spherically symmetric
source, derived by different methods [4]. It was shown by Eddington and Finkelstein [6,7] that in
appropriately defined coordinates, this metric becomes the Schwarzschild metric. In our model,
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the coordinates are the usual coordinates in the lab frame K, which is similar to Whitehead’s proposal.
The metric can be also written in 4D notation using the fact that

r = y ◦ u, (25)

where u = (1, 0, 0, 0) is the 4-velocity of the rest source in K, y is defined by (11), and ◦ is the Minkowski
inner product in K.

In spherical coordinates, the line interval of our metric is

ds2 = (1− φ(r))c2dt2 − 2cφ(r)dtdr− (1 + φ(r))dr2 − r2(dθ2 + sin2 θdϕ2), (26)

with φ(r) defined by (23). Dividing this equation by c2dτ2 and using the definition (7) of τ, we obtain

1 = ṫ2
(

1− β2 − φ(r)(1 + βr)
2
)

, (27)

where β is the magnitude of the relativistic velocity 1
c

ṙ
ṫ and βr = 1

c
ṙ
ṫ the magnitude of its radial

component, as observed in K.
We can define now explicitly the connection between τ and the lab frame time t by introducing a

γ factor satisfying dt = γdτ. From (27),

γ =
1√

1− β2 − φ(r)(1 + βr)2
. (28)

If the field vanishes, we have φ(r) = 0, and (27) becomes the time dilation γ factor of special
relativity. If the object is at rest, then β = βr = 0, and (27) is the gravitational time dilation. Thus, our γ

factor properly incorporates both known dilations.
Let us compare our metric and time dilation to the corresponding formulae in GR based on

the Schwarzschild metric. In our notation, the line interval of the Schwarzschild metric in spherical
coordinates is

ds2
s = (1− φ(r))c2dt2 − (1− φ(r))−1dr2 − r2(dθ2 + sin2 θdϕ2), (29)

with φ(r) defined by (23). Formula (27) becomes

1 = ṫ2
s

(
1− β2 − φ(r)(1 + (1− φ(r))−1β2

r )
)

, (30)

which yields a time dilation factor

γs =
1√

1− β2 − φ(r)(1 + (1− φ(r))−1β2
r )

. (31)

To compare the Whitehead and the Schwarzschild metrics, we use a standard assumption of post
Newtonian theory that β2 ∼ φ(r) ∼ ε, where ε is a small parameter used for bookkeeping. Comparing
metrics (26) and (29), we see that they differ only in two components: g11 with difference of order ε2

and g01 of order ε3/2. Moreover, the Schwarzschild metric is invariant under time reversal, whereas
the Whitehead metric is not. We are not aware of a physical reason why the relativistic gravitational
field of a static source should be invariant under time reversal.

The expansion to order less than ε2 of the GR time dilation formula, given by (31), is

γs =≈ 1 +
β2

2
+

rs

2r
. (32)
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The corresponding formula for RND based on (28) is

γ ≈ 1 +
β2

2
+

rs

2r
+ βr

rs

r
. (33)

The difference is βr
rs
r , which is of order ε3/2.

5. Trajectories of Planetary Motion in a Static, Spherically Symmetric Gravitational Field

Consider a gravitational field generated by a spherically symmetric body of mass M positioned
at the origin of our inertial frame K. The motion of an object or planet in RND is by a geodesic with
respect to the metric (16), where φ(r) is defined by (23). We may assume that the trajectory is in a plane
determined by the initial position of the object and its initial velocity and this plane is passing through
the origin. Thus, without loss of generality, we assume that the motion is in the plane θ = π/2.

For such motion, the metric (26) is

ds2 = (1− φ(r))c2dt2 − 2cφ(r)dtdr− (1 + φ(r))dr2 − r2dϕ2, (34)

and the Lagrangian is

L(t, r, ϕ, ṫ, ṙ, ϕ̇) = c
√
(1− φ(r))c2 ṫ2 − 2cφ(r)ṫṙ− (1 + φ(r))ṙ2 − r2 ϕ̇2. (35)

As the metric is static, the t-momentum

pt = (1− φ(r))c2 ṫ− cφ(r)ṙ (36)

is conserved and ( pt

c

)2
= (1− φ(r))2c2 ṫ2 − 2cφ(r)(1− φ(r))ṙṫ + φ(r)2ṙ2 = const. (37)

From the definition of τ, dividing (34) by dτ2 we obtain

c2 = (1− φ(r))c2 ṫ2 − 2cφ(r)ṫṙ− (1 + φ(r))ṙ2 − r2 ϕ̇2. (38)

Subtracting (1− φ(r)) times (38) from (37) yields

ṙ2 + (1− φ(r))c2 + (1− φ(r))r2 ϕ̇2 = const. (39)

As our metric (34) is ϕ independent of the ϕ momentum is conserved, implying

r2 ϕ̇ = J, (40)

where J has the meaning of angular momentum per unit mass. Using this, we rewrite Equation (39) as

ṙ2 + (1− φ(r))
(

c2 +
J2

r2

)
= const. (41)

Differentiating (41) by τ, we obtain

2ṙr̈ +
rs

r2 ṙ
(

c2 +
J2

r2

)
− 2ṙ(1− φ(r))

J2

r3 = 0,
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and dividing by 2ṙ and using (23) yields

r̈ = − c2rs

2r2 −
J2rs

2r4 +
(

1− rs

r

) J2

r3 , (42)

which is the dynamic equation for our model. Substituting the value of rs from (22), this yields

r̈− J2

r3 = −MG
r2 − 3

J2MG
c2r4 = −MG

r2 − 1.5
J2rs

r4 , (43)

where the left-hand side is the acceleration, as a sum of radial and centrifugal accelerations.
The first term on the right side expresses the classical Newtonian gravitational force, while the
second one is the relativistic correction. This coincides with the GR dynamics equation based
on the Schwarzschild metric.

To obtain the energy conservation, note that (ẋ)2 = ṙ2 + (ẋtr)2, where ẋtr = rϕ̇. Using this,
multiplying Equation (39) by m/2 and using (22), we obtain that the energy E, defined by

m(ẋ)2

2
+ Ũ(x) + Ũ(x)

(ẋtr)2

c2 = E, (44)

where Ũ denotes the Newtonian potential (not per unit mass), is conserved on the trajectory. This is
the energy conservation law for a conservative force field in RND. The first term in this formula
corresponds to the kinetic energy, the second term is the potential energy. The last term, depending on
both the velocity of the moving object and the potential energy of the field, is the cause of the relativistic
corrections. Thus, in RND it is impossible to split the energy into kinetic and potential energies.

It is known [6,9,23] that the dynamics following from the metric (34), with φ defined by (23),
satisfies Einstein’s field equations and passes the following classical tests of GR:

(1) the anomalous precession of Mercury
(2) the periastron advance of a binary star
(3) gravitational lensing
(4) the Shapiro time delay

6. Distinctions between RND and GR Dynamics

In GR, the metric of a spherically symmetric gravitational field is the Schwarzschild metric [5].
The dynamics equations for the trajectory r(ϕ) of an object moving in this field are the same
as Equations (41) and (40). Thus, there is no difference in the predicted trajectories for both models.
But there is a difference in the velocities on these trajectories, as we will show below.

From (23) and (36), conservation of the t-momentum on a geodesic trajectory under RND is
expressed as (

1− rs

r

)
cṫ− rs

r
ṙ = A, (45)

for some constant A defined by the trajectory. This implies that

ṫ =
A + ṙrs/r

c (1− rs/r)
. (46)

From (45), it follows that limr→rs ṙ = −A. Solving (41) numerically for ṙ, one can show that ṫ has
a finite limit at the Schwarzschild radius r = rs.

The geodesic equations for motion in the plane θ = π/2 in RND are Equation (46) for ṫ,
Equation (41) for ṙ, and Equation (40) for ϕ̇. The constants in these equations could be defined
from the initial conditions.
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The corresponding formula for conservation of the t-momentum on a geodesic trajectory under
the GR model using the Schwarzschild metric is

ṫs =
A

c (1− rs/r)
, (47)

and so limr→rs ṫs = ∞.
The geodesic equations for motion in the plane θ = π/2 in GR are: Equation (47) for ṫ,

Equation (41) for ṙ and Equation (40) for ϕ̇. The constants in these equations could be defined
from the initial conditions. Note that also the parameter τ on the trajectories is different due to the
difference between γ and γs, defined by (28) and (31), respectively.

As the radial velocity of the motion, as observed in our frame K, is vr = ṙ/ṫ, and both models
predict the same ṙ but different ṫ (accept when ṙ = 0), the two models predict different velocities on the
trajectory. For example, for an object moving toward the source of the field, in GR, the radial velocity
vr will tend to zero as the object approaches the Schwarzschild radius, and it will thus take an infinite
time for the object to cross this radius. Thus, in GR, a black hole cannot swallow an object in finite time.
For the same object in the RND model, the radial velocity vr is not zero on the Schwarzschild radius,
and the object can be swallowed by a black hole in finite time. In 2019, NASA’s Transiting Exoplanet
Survey Satellite (TESS) captured a rare cosmic event—a black hole swallowing a star roughly the size
of our sun [30]. This event is easier to explain in the RND model.

This difference in the predictions for velocities could be observed on trajectories with high
eccentricity, which insures large values of ṙ. Moreover, the object must be close to the source of the
field in order that φ(r) = rs/r will not be very close to zero. As for one period of the orbit, the sign of ṙ
is positive for half of the time and negative for the other half, it can be shown that the periods for both
models are the same.

There is also a difference between GR and RND in the prediction of the speed of light, as observed
in the lab frame K. To define this speed of light at the space point P, we choose Cartesian coordinates
in which P = (x0, 0, 0). Let b = rs/x0 and denote the velocity of light by v = dr

dt = (v1, v2, v3). As for
light ds2 = 0, using the metric (24), this velocity satisfies

c2 − (v1)2 − (v2)2 − (v3)2 − b(c + v1)2 = 0. (48)

This shows that the velocities belong to an ellipsoid whose center is (− cb
1+b , 0, 0). The major axis

is in the direction of P and has size c
1+b . The other two axes are of size c√

1+b
.

Equation (48) has two solutions for velocity in the radial direction v2 = v3 = 0: the velocity
v↑(r) ≥ 0 of light moving away from the source, and the velocity v↓(r) ≤ 0 of light moving toward the
source, namely,

v↑(r) = c
1− b
1 + b

, v↓(r) = −c. (49)

For the Schwarzschild metric, v↑ = −v↓ = c(1− b) := vs(r), and light is slowed down even
moving toward the source. In RND, the light moving toward the source does not slow down,
which is logical.

Using (49), the time T for light to go radially from r1 to r2 > r1 and return back is

T =
∫ r2

r1

dr
v↑
−
∫ r1

r2

dr
v↓

=
1
c

∫ r2

r1

(
1 + φ(r)
1− φ(r)

+ 1
)

dr =
∫ r2

r1

2
c(1− φ(r))

dr = 2
∫ r2

r1

1
vs(r)

dr,

which is the same as in GR. Thus, round-trip speed of light experiments cannot distinguish between
GR and RND.

To identify which of GR or RND is the true theory of gravitation, we need an experiment
that measures one-way speeds of light. However, as communicated to us by L. Iess, “Cassini and
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BepiColombo never use (or used) one-way radio links during GR tests.” As far as we know, there are
currently no experiments that could answer this question.

In the next two sections, we describe possible experiments to verify which of GR or RND is the
true theory of gravitation.

7. Testing the RND and GR Redshift in Strong Gravitation

For a star passing close to a supermassive black hole, both RND and GR predict significant
relativistic redshift. The magnitude of the redshift RS is defined by the radial velocity of the star with
respect to the observer and the time-dilation factor. The relativistic redshift RRS measures the deviation
of RS in the relativistic models from the RS in Newtonian gravity, where there is no time dilation.
The RRS is expressed in velocity units as c(γs − 1) and c(γ− 1) for GR and RND, respectively.

We expand our relativistic redshift formulas to order less than ε2. For GR, using (32), we have

RRS = c(γs − 1) ≈ c
2

β2 +
c
2

rs

r
, (50)

which coincides with formula (1) of [31], which presents the experimental measurements of such a
shift. The corresponding formula for RND, based on (33), is

RRS = c(γ− 1) ≈ c
2

β2 +
c
2

rs

r
+ cβr

rs

r
. (51)

Thus, the difference between the relativistic redshift predicted by the two models corresponds to
a Doppler shift due to the velocity cβr

rs
r .

To observe a significant difference between the models in the RRS, the motion must be close to
the Schwarzschild radius, implying that rs/r is not too small, and on an orbit with high eccentricity, so
that βr will not be too small. Thus, we have to look for stars approaching close to a black hole and
having high eccentricity. For example, for Sagittarius A* (Srg *), the supermassive black hole of the
Milky Way galaxy, the stars SO-2 and SO-14 (also known as S2 and S14) are good candidates to test the
difference in RRS predictions between GR and RND.

Comparing (46) and (47) indicates that velocities on the trajectories predicted by RND and GR
for motion in a static, spherically symmetric field will differ significantly only when both φ(r) = rs/r
and ṙ are not very small. The stars SO-2 and SO-14 have these properties. Differences in the velocities
will also contribute to the observed RS. Thus, the difference in RS prediction by the two models is
caused by two factors: the difference due to time dilation and the difference in the predicted velocities.

To understand the contribution of each factor to the difference in RS predictions and to identify
the time when the difference is maximal, we calculated these differences by simulating the motion of
the SO-2 star. For the simulation, rs was calculated by use of (22), with M = the mass of Srg *, as given
in [31]. We found r(τ) on the trajectory by solving Equation (41) numerically and using the known
initial conditions for SO-2. Then we found t(τ) by solving (46). From this, we obtained r(t). Next,
we used Equations (46) and (41) to calculate ṫ and ṙ, respectively. Finally, we calculated βr = ṙ/(cṫ)
and cβr

rs
r , expressing the difference between the relativistic redshift due to time dilation predicted by

RND and GR.
Figure 1 presents the difference between RND and GR relativistic redshift predictions due to time

dilation for SO-2 during a one-year period around the nearest approach to the black hole. We found
that this difference is significant only in this time interval.

Using the above information, we also calculated velocities of SO-2 star. Figure 2 presents the
difference between RND and GR velocity predictions for SO-2 during a one-year period around the
nearest approach to the black hole.
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Figure 1. The difference between RND and GR redshift predictions due to time dilation for the
star SO-2.

Figure 2. The difference between RND and GR velocity predictions for the star S0-2.

As we see, the difference in the predicted redshift of SO-2 caused by time dilation is approximately
50 times stronger than the difference in their velocity predictions. Thus, to identify the true model, we
have to consider only the affect of the time dilation of the redshift. The maximal difference occurs one
month before and one month after the nearest approach. The experimentally measured redshift for
this star is presented and analysed in [31–33]. An improved analysis of the data for redshift detection
in SO-2 is given in [34]. The difference in the relativistic redshift predictions in RND and GR is ~1%
of the RRS. The currently attainable accuracy is not enough to distinguish between the two models.
However, with an increase of accuracy of only one order, we hope to be able to test which of the two
models describes gravity more accurately.

For SO-14, the differences are almost twice as large, but the accuracy of the currently available
measurements is lower. Within the solar system, we may expect to measure such changes in velocities
only for sungrazing comets, which pass extremely close to the Sun at perihelion.

The difference between the RND and GR relativistic redshift predictions due to time dilation can
be tested by the data from the GREAT experiment [35], using Galileo satellites with high eccentricity
orbits. High level of accuracy in their measurements may be enough to observe the additional term
βr

rs
r of order ε3/2.
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8. Terrestrial Tests of the GR and RND Predictions

We propose two terrestrial experiments to test the difference between the GR and RND
predictions. The first one will test the difference in the one-way speed of light predictions, and the
second one will test the difference in the relativistic redshift predictions, or the breaking of time
reversal symmetry.

8.1. Testing the One-Way Speed of Light Predictions

As shown in Section 6, the total time for a radial round trip of light predicted by RND is the same
as in the Schwarzschild model. However, these models predict light rays to have different speeds
propagating toward and away from the massive object. Thus, we could test these predictions by
measuring the influence of the spherically symmetric gravitational field on the one-way speed of light.

We propose the following experimental set-up. Two short-wavelength, high-coherence lasers, A
and B, of the same frequency are placed perpendicularly, as shown in Figure 3. The two beams are
combined by a semitransparent mirror M. The interference of the two beams is measured by a detector
D. The whole system may be rotated so that in state (a) the beam from A propagates downward a
distance d, while in state (b) it propagates the same distance upward. If the speed of light in both
directions is the same, the phase shift between the beams from A and B on the path from M to D
should be the same for both states, implying the same intensity on the detector. However, if these
speeds are different, states (a) and (b) will have different phase shifts, as well as different intensities at
the detector.

Figure 3. Experiment testing RND one-way speed of light predictions: (a) the beam from A propagates
toward the Earth and interferes with the beam from B, (b) the same system is rotated 180◦ and the
beam from A propagates upward and interferes with the beam from B.

For example, we consider the 193 nm sub-mW laser [36] of Optica Photonics with coherence
length > 150 m. For the metric (34), the speed downward is the speed of light c, while the speed
upward is 1−φ(r)

1+φ(r) c ≈ (1− 2φ(r))c, where φ(r) is the dimensionless potential energy defined by (23),

which on the Earth’s surface is φ(r) = 1.4× 10−9. If we take d = 10 m, the difference in phase shifts
between states (a) and (b) should be 0.3π for this metric, which should be detectable.

Note that in this experiment, there will be a change in the frequency of the light caused by the
gravitational redshift, predicted by GR and tested in the Pound–Rebka experiment [37], but we expect
that its influence will be negligible with respect to the effect we are testing.
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If it is possible to obtain coherent light of sub-angstrom wavelength, and to measure the change
of the wavelength with an accuracy of 10−9, this experiment could be performed on a chip.

8.2. Testing the Relativistic Time Dilation

Note the differences in time dilation predicted by GR and RND, as expressed by (32) and (33),
respectively. The following experiment, see Figure 4, can distinguish between these two predictions.
This will also test whether gravity is time reversible.

Figure 4. Experimental setup to test relativistic time dilation due to the velocity of the source in Earth’s
gravitation field.

The radiation from a point source S outside a rotating disc is split into two rays. One is sent left
and reflected upward by a mirror M1, attached to the rotating disc, and detected by D1. The second
ray is sent right and reflected downward by a mirror M2, attached to the same disc, and detected
by D2. The redshift observed on the detectors is v + RTD. If the GR model is true, both detectors
should measure the same shift. However, RND predicts different shifts. As the velocity of the
source—mirror M1 for the radiation reaching D1—is in the radial direction of the field, βr = v/c.
For the radiation reaching D2, however, the velocity of M2 is in the opposite direction and βr = −v/c.
Thus, from (33), there will be a difference between the radiation frequencies observed by the two
detectors. The frequency difference corresponds to a Doppler shift with velocity 2vrs/r. On the Earth’s
surface, rs/r = 1.4 · 10−9. The expected shift is v · 2.8 · 10−9, which could be measured by high accuracy
interference between the two beams.

9. The Metric of a Field from Several Sources in Whitehead’s and RND Models

In 1922, Whitehead [4] proposed a new gravitation model, which was interpreted in 1952 by
J. L. Synge [10] for a gravitational field from several non-static sources. Consider an object positioned
at a spacetime point x ∈ K, where K is an inertial frame moving in a gravitational field of several
sources sk with Schwarzschild radii rsk . Denote by (xk)s the position of the source sk at its retarded
time with respect to x, by uk the four-velocity of this source at the retarded time and by yk = x− (xk)s

the relative position of x with respect to (xk)s. It is assumed that the metric of the field is

gαβ(x) = ηαβ −∑
k

rsk

(yk · uk)3 (yk)α(yk)β. (52)

This metric coincides with the RND metric (24) for a field with a static single source.
In [6,9], it was shown that for a stationary field, such a metric satisfies Einstein’s field equations

and passes all classical tests of GR. Moreover, it was used to derive the Kerr metric of a gravitational
field of a rotating, spherically symmetric body [9], but for this they had to use a complex potential in
the metric (24).
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However, there is a problem with the metric (52), even for one nonstationary source of a
gravitational field. There is no justification for the extension of the metric from a static source to
a field generated by a moving source. The static metric (24) is defined from the potential φ(r) of
the field defined by (23). In relativity, the scalar potential of a static field is the 0-component of
the four-potential. In a system in which the source is moving, the four-potential at any point is a
4D co-vector which has non-zero components, except for the zero component. This will result in a
gravito-magnetic force [38,39], which is not present in (52). Moreover, for a field generated by several
sources, taking the deviation of the metric from flat as the sum of such deviations from each source does
not look right. From classical physics, we know that the potentials of several sources are additive, but
why should the metrics be additive? Thus, it is not surprising that Whitehead’s model for non-static
sources leads to predictions contradicting experiments [11,13].

We propose the following method to handle the motion in a field of non-static sources in
RND. From the geodesic Equation (10) and the metric (24) for the static case, it follows that the
four-acceleration is defined by the derivative of the scalar potential of the field. As shown in [24], a
field of a propagating with the speed of light generated by a moving source can be described by a
complex valued function ψ(x) on spacetime, named the pre-potential. Differentiating this pre-potential
and using a suitable conjugation we obtain complex four-potential A which is

A = ∗∇ψ =
kη

r · u (u + Su), (53)

where k is the strength of the source, u is the four-velocity of the source at the retarded time, and Su
is a spatial unit vector in the direction of the object in the frame co-moving with the charge at the
retarded time. In this approach, we do not need to assume the Newtonian limit.

The complex four-potential is a product of a scalar part k
r·u , which is the scalar potential in the

source co-moving frame, like φ(r) in (23), and a normalized null co-vector λ = η(u + Su), which is
the generalization of the direction of influence vector −ŷ as defined by (14). We propose to define the
metric of the field as

gαβ(x) = ηαβ −
k

r · u λαλβ. (54)

The difference between the proposed formula and (52) based on Whitehead’s gravity theory is
as follows. In a static field, there are two ways to view the relative direction between the object and
the source. The first way is to view it from the point of the object, as was done earlier by defining
the relative position y of the object with respect to the retarded position of the source, as defined by
(11), and normalizing this null vector in the lab frame to obtain the direction of influence ŷ as in (14).
The second way is to view the relative direction from the point of the source. The relative position
will only change sign, which does not affect the metric (15), and normalize it in the co-moving frame
of the charge, which is the lab frame in the static case. Both ways lead to the same metric. However,
if the source is moving, the co-moving frame of the source is not the lab frame, implying that the
normalization differs in the two approaches. As we are describing the field associated with the source,
it is more natural to use the co-moving frame of the source than the arbitrarily chosen lab frame.

What is the justification for using a complex four-potential in the metric of a gravitational field.
A gravitational field defines two accelerations: a linear 3D acceleration vector which can be measured
by an accelerometer, and a rotational acceleration, a 3D pseudo-vector, which can be measured by a
gyroscope.To combine the accelerations, we turn this pseudo-vector into a vector by multiplying it by
the pseudo-scalar i. The occurrence of a complex potential in the Kerr solution [9] is a good indication
that the complex four-potential is needed for the proper extension of the metric to non-static sources.
It was shown [24] that we can extend the notion of the pre-potential and the complex four-potential for
a field generated by several sources. The extencion is invariant under a spin-half representation of the
Lorentz group. As the pre-potential and the four-potential of a field generated by several sources is
the sum of the pre-potentials, we expect the true extension of (54) for the field generated by several
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sources be based on the combined four-potential. The direction of influence λ(x) should be defined by
the total force of all sources acting on the object.

10. Discussion

Relativistic Newtonian Dynamics (RND), presented here, is a geometric dynamics model. We
justify the use of a flat lab spacetime frame, as real astronomical measurements are done with
respect to objects far removed from the sources of the field. Also, we explain why, for motion in
a gravitational field, we should use geodesic motion with respect to a metric defined by the sources
of field. A variational principle is used to derive the metric and the dynamics equations. We do not
assume general covariance of the model and do not use field equations to define the metric.

In Section 3, we found the form of the metric of a gravitational field of a spherically symmetric
source. Assuming that the field propagates with the speed of light, we introduced the 4D influenced
direction of the field. The form of the metric follows from the fact that the field may depend only on
the strength of the source and this direction. Using that the dynamics based on this metric should
satisfy the Newtonian limit, in Section 4 we obtained explicitly the metric (26) of such a field. The time
dilation factor associated to this metric is given by (28). The derivation of our metric is much simpler
than in GR. The obtained metric has the form of the Schwarzschild metric in Eddington–Finkelstein
coordinates. In our model, the coordinates are the usual coordinates in the lab frame, which is similar
to Whitehead’s gravitation theory. We compared the derived metric and the predicted time dilation to
the Schwarzschild metric of GR by use of post-Newtonian theory. Note that, unlike the Schwarzschild
metric, our metric is not invariant under time reversal. But we are not aware of any physical reason
why relativistic gravitation should be invariant under time reversal.

In Section 5, we have shown that the trajectory equations under RND are the same as in GR, and
thus this model reproduces the known solar tests of GR. However, as shown in Section 6, the velocities
on the trajectories for both massive and massless objects predicted by the RND model differ from the
GR predictions. For example, in RND, a black hole can swallow a star in finite time, whereas in GR it
will take infinite time for such an event. As announced, such an event has been observed.

GR predicts equality of the speed of light toward and from a spherically symmetric massive
object, which contradicts our intuition. This is not implied from the symmetry of the problem. In RND,
the speed of light toward the gravitating object remains c, as expected. As the time for a radial round
trip in both models is the same and currently only such timing has been tested, we cannot conclude
which of the two theories describes gravity more accurately.

In Section 7, we found that experiments testing the relativistic redshift of stars with high
eccentricity in the neighborhood of a black hole and for sungrazing comets can be used to test
RND. The accuracy of the current experiment [31] is only one order shy of being able to distinguish
between GR and RND. In Section 8, we proposed two terrestrial experiments to test the difference
between the GR and RND predictions. The first one tests the difference in the one-way speed of
light predictions in the gravitational field of the Earth, and the second one tests the difference in the
relativistic redshift predictions and the breaking of time reversal symmetry due to the velocity of the
source in Earth’s gravitation field.

We identified the shortcomings in extending Whitehead’s model to non-static sources and
proposed a method of extending the model properly by use of a complex valued pre-potential of a
field propagating with the speed of light. The following is needed to turn RND into a complete theory
of gravity.

• Extend RND to the field of a rotating, axially-symmetric massive object (similarly to the
Kerr approach)

• Explore the implications of the metric (54) of a gravitational field of a moving source
• Compute the RND metric of a binary and compare with the observational data
• Find the RND metric for a field generated by several sources.
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