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Abstract: Symmetry properties of a nonlinear two-dimensional space-fractional diffusion equation
with the Riesz potential of the order α ∈ (0, 1) are studied. Lie point symmetry group classification
of this equation is performed with respect to diffusivity function. To construct conservation laws
for the considered equation, the concept of nonlinear self-adjointness is adopted to a certain class
of space-fractional differential equations with the Riesz potential. It is proved that the equation in
question is nonlinearly self-adjoint. An extension of Ibragimov’s constructive algorithm for finding
conservation laws is proposed, and the corresponding Noether operators for fractional differential
equations with the Riesz potential are presented in an explicit form. To illustrate the proposed
approach, conservation laws for the considered nonlinear space-fractional diffusion equation are
constructed by using its Lie point symmetries.

Keywords: space-fractional filtration equation; Riesz potential; Lie point symmetry group;
group classification; nonlinear self-adjointness; conservation laws

1. Introduction

Fractional differential equations (FDEs) with multi-dimensional spatial fractional differential
operators have attracted considerable attention during the last decade due to the possibility to describe
power-law long-range interactions in complex systems [1–3]. In particular, such equations can be
efficiently used for modelling a fluid flow in naturally fractured porous media, which is a very
important problem for the oil industry. Examples of such fractional differential models can be found
in [4,5]. Usually, the integer-order derivatives of the Riesz potential or fractional Laplacian (see,
e.g., [6,7]) are used as fractional differential operators in these models. These fractional operators are
well studied [7–9] and have a lot of similar properties. Nevertheless, there are some differences in
classes of functions for which these operators exist. As a result, FDEs corresponding to these two types
of fractional spatial operators will also have different qualitative properties (see, e.g., discussion
in [10]). Note that nowadays FDEs with the Riesz potential are much less studied than FDEs
containing fractional Laplacian. Therefore, in this paper, we restrict our attention by equations
with the Riesz potential.

Finding exact solutions to nonlinear space-fractional FDEs is a sufficiently complex problem.
Nevertheless, this problem can be significantly simplified if symmetry properties of the considered
equation are known. These properties can be studied by the methods of Lie group analysis of
differential equations [11–13]. Recently, some basic Lie symmetry group methods have been extended
to fractional differential equations with the Riemann–Liouville and Caputo fractional derivatives
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(see the survey papers [14,15] and references therein). In [16], the algorithm for finding the Lie point
symmetry group of FDEs with the Riesz potential was firstly proposed, and symmetries of the linear
two-dimensional space-fractional filtration equation with the Riesz potential were obtained.

Classification of nonlinear equations belonging to a certain class with respect to symmetry groups
is an important task of modern Lie group analysis. Fundamentals of the group classification originated
in works by Sophus Lie. An efficient approach to symmetry group classification was developed by
Ovsyannikov [17] (see also [11]). He first performed a complete group classification of the nonlinear
heat equation with the thermal conductivity treated as a function of the temperature. In [18], the group
classification of time-fractional analogues of this equation with the Riemann–Liouville and Caputo
fractional derivatives was performed. Nevertheless, the problem of group classification for the
space-fractional FDEs with the Riesz potential has never been considered. In this paper, we present the
results of Lie point symmetry group classification for a nonlinear space-fractional diffusion equation
containing the Riesz potential with respect to diffusivity function.

It is well known that there is a close connection between symmetries and conservation laws
(see, e.g., [19,20]). In 1918, Emmy Noether proved [21] that a conservation law can be obtained
by the group invariance principle from the variational integral with a Lagrangian function as
an integrand. An efficient constructive algorithm for finding conservation laws of a differential
equation possesses a Lagrangian was proposed by Ibragimov and can be found in [22]. Recently,
this algorithm was enhanced to fractional differential equations with Lagrangians depending on
fractional differential variables formed by arbitrary compositions of fractional integral operators and
integer-order differential operators [23].

To find conservation laws for differential equations without Lagrangians, the general concept of
nonlinear self-adjointness of integer-order differential equations was proposed by Ibragimov [24–26].
He also proved that the constructive algorithm proposed earlier is also applicable to find conservation
laws for nonlinear self-adjoint equations with formal Lagrangians. In [27–29], it is shown that the
concept of nonlinear self-adjointness can be enhanced to FDEs with the Riemann–Liouville and Caputo
fractional derivatives. In this paper, we extend this approach to FDEs with the Riesz potential.

The paper is organized as follows. In Section 2, we recall necessary definitions of the Lie symmetry
group theory and give essential theorems on the Riesz potential properties. In Section 3, the results of
group classification are presented for a nonlinear space-fractional diffusion equation with the Riesz
potential. Section 4 is devoted to considering the nonlinear self-adjointness of FDEs containing the
Riesz potential. In Section 5, we present a technique of finding conservation laws for such equations
using their symmetries.

2. Preliminaries

This section provides a brief introduction to the basic principles of Lie group analysis and
its application to fractional differential equations with the Riesz potential. First of all, we give
necessary definitions.

Let x0 ∈ [0, T] (T > 0) and x = (x1, . . . , xn) ∈ Rn be the time variable and the vector of spatial
variables, respectively. The function u = u(x0, x) will be considered as a dependent variable.

We will deal with one-parameter Lie groups of point transformations [13] given by

x̄i = f i(x0, x, u, a), f i|a=0 = xi, i = 0, 1, . . . , n;

ū = g(x0, x, u, a), g|a=0 = u,
(1)

depending on a continuous parameter a. The infinitesimal transformations of group (1) can be written as

x̄i ≈ xi + aξ i(x0, x, u), ū ≈ u + aη(x0, x, u), (2)
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where

ξ i(x0, x, u) =
∂ f i(x0, x, u, a)

∂a

∣∣∣
a=0

, η(x0, x, u) =
∂g(x0, x, u, a)

∂a

∣∣∣
a=0

.

The approximate equality f ≈ g means that f = g + o(a).
The infinitesimal generator of group (1) is the linear first-order differential operator

X = ξ i(x0, x, u)
∂

∂xi + η(x0, x, u)
∂

∂u
. (3)

Summation over repeated indices is implied in this paper.
Any group (1) with

ξ i = ξ i(x0, x), η(x0, x, u) = η0(x0, x) + η1(x0, x)u (4)

is called a linear autonomous one-parameter Lie group of point transformations [30] (see also [14,15]).
The Riesz potential [7] in n-dimensional space is defined by

Rαu(x0, x) =
1

γn(α)

∫
Rn

u(x0, µ)

|x− µ|n−α dµ, (5)

where µ = (µ1, . . . , µn) and

γn(α) = 2απn/2Γ
(α

2

)
/Γ
(

n− α

2

)
.

Remark 1. In a 1D case, the Riesz potential can be rewritten as a sum of the left-sided Iα
+u and the right-sided

Iα
−u Liouville fractional integrals on R:

Rαu(x0, x) =
Γ(α)

γn(α)
(Iα

+u + Iα
−u) , x ∈ R, (6)

where

Iα
+u =

1
Γ(α)

∫ x

−∞

u(x0, µ)

(x− µ)1−α
dµ, Iα

−u =
1

Γ(α)

∫ ∞

x

u(x0, µ)

(µ− x)1−α
dµ.

In addition, in [31], it was proved that, if u is a radial function, i.e., u = u(x0, |x|), then the Riesz potential
can be written as

Rαu(x0, x) = 2−α|x|2−n
(

I
α
2

0+s
n−α

2 −1 I
α
2
−u(x0,

√
s)
)
|s=x2 . (7)

In special cases corresponding to representations (6) and (7), equations with the integer-order
derivatives of the Riesz potential are equivalent to fractional differential equations with the
Riemann–Liouville fractional derivatives. Such equations will not be considered in this paper.

A group (1) can be prolonged to the Riesz potential (5). The corresponding prolongation formula
is given by the following theorem.

Theorem 1 ([16]). The infinitesimal transformation of the Riesz potential (5) induced by the group (1) has
the form

R̄αū ≈ Rαu + aζα, (8)

where ζα is given by the prolongation formula

ζα = Rα(η − ξ iui) + ξ iDi(Rαu).

Here, R̄α is the Riesz operator with respect to x̄, ui =
∂u
∂xi , and Di denotes the operator of total differentiation

with respect to xi.
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We will consider fractional differential equations with integer-order derivatives of the Riesz
potential (5). If such equation does not change the form when it is written in the new variables x̄i

(i = 0, 1, . . . , n) and ū defined by group (1), then the corresponding one-parameter group is called Lie
symmetry group of point transformations for this equation. The infinitesimal generator of such a group is
called an infinitesimal symmetry of this equation.

By using transformation (8), the prolongation formula for any integer-order derivative of the
Riesz potential can be constructed. We introduce the notation

(Rαu)i1 ...is =
∂s(Rαu)

∂xi1 . . . ∂xis
,

where i1, . . . , is = 0, 1, . . . , n.

Theorem 2. The infinitesimal transformation of (Rαu)i1 ...is induced by the group (1) can be written as

(R̄αū)i1 ...is ≈ (Rαu)i1 ...is + aζα
i1 ...is , (9)

where ζα
i1 ...is is given by the prolongation formula

ζα
i1 ...is = Dis . . . Di1 Rα(η − ξ iui) + ξ iDi(Rαu)i1 ...is . (10)

Let F = 0 be a fractional differential equation with the Riesz potential. We denote by X̃ an
infinitesimal generator of the Lie group of point transformations prolonged to all integer-order and
fractional-order differential variables included into the function F. Then, the necessary condition of X
to be a symmetry of the equation F = 0 can be written as

(X̃F)|F=0 = 0. (11)

Note that, contrary to integer-order differential equations, the invariance condition (11) is a
necessary but not sufficient condition for fractional differential equations (the detailed discussion of
this fact can be found in [14]).

Now we give some useful properties of the Riesz potential in two-dimensional space.
We introduce the integral operator Im,n

β by

Im,n
β f (x, y) =

1
γ2(α)

∞∫
−∞

(µ− x)m(ν− y)n f (µ, ν)[
(µ− x)2 + (ν− y)2

] β
2

dµdν. (12)

Proposition 1 ([16]). The integral operator (12) possesses the property

Im+2,n
4−α = Im,n

2−α − Im,n+2
4−α . (13)

The following theorem gives a generalization of the Leibniz rule for the two-dimensional Riesz
potential [16].

Theorem 3. Let f (x, y) be an analytic function in R2 and g(x, y) be a function such that integrals Im,n
2−αg exist

for any m, n ∈ N ∪ {0}. Then,

Rα( f g) =
∞

∑
m=0

∞

∑
n=0

1
m!n!

∂m+n f
∂xm∂yn Im,n

2−αg. (14)

From Theorem 3 and the identity (13), we infer the following.
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Corollary 1. Under assumptions of Theorem 3, the following equalities hold:

D2
xRα( f g) =

∞

∑
m=0

∞

∑
n=0

∂m+n f
∂xm∂yn Jm,n

x,2−αg, D2
yRα( f g) =

∞

∑
m=0

∞

∑
n=0

∂m+n f
∂xm∂yn Jm,n

y,2−αg, (15)

where
Jm,n
x,2−α =

1
m!n!

(
m(m− 1)Im−2,n

2−α + 2mDx Im−1,n
2−α + D2

x Im,n
2−α

)
,

Jm,n
y,2−α =

1
m!n!

(
n(n− 1)Im,n−2

2−α + 2nDy Im,n−1
2−α + D2

y Im,n
2−α

)
.

3. Group Classification of the Nonlinear Space-Fractional Porous Medium Equation

In [16], it was shown that one phase flow of viscous compressible fluid through a naturally
fractured oil reservoir can be modeled by a diffusion-type fractional differential equation with the
Riesz potential. If the viscosity of fluid depends on pressure, then this equation becomes nonlinear.
In this paper, we restrict our attention by the two-dimensional case. For convenience, we denote x0 = t,
x1 = x, x2 = y. Then, the equation in question has the form

ut = ∇ (k(u)∇Rαu) , (16)

where u = u(t, x, y), t > 0, (x, y) ∈ R2, and α ∈ (0, 1). In the linear case (k(u) = 1), the symmetry
properties of this equation has been investigated in [16]. In this paper, a group classification of
Equation (16) with respect to the function k(u) is performed.

We note that, if α = 0, then Equation (16) coincides with the classical nonlinear heat equation.
The group classification of this integer-order partial differential equation is well-known and can be
found in [11]. It is very important that this classical nonlinear heat equation has only linear autonomous
symmetries for any k(u). Numerous calculations show that, if an integer-order partial differential
equation has only linear autonomous symmetries, then the related partial fractional differential
equation inherits this property. Therefore, we will perform group classification of (16) with respect to
Lie point linear autonomous symmetries. The corresponding group generator has the form

X = ξ0 ∂

∂t
+ ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ η

∂

∂u
(17)

with
ξ0 = ξ0(t, x, y), ξ1 = ξ1(t, x, y), ξ2 = ξ2(t, x, y), η = η0(t, x, y) + η1(t, x, y)u.

It can be easily verified that Equation (16) admits the following five-parameter group of
equivalence transformations:

ū = B1u, t̄ = B2t + B1, k̄ = B−1
2 B2−α

3 k, x̄ = B3x + B4, ȳ = B3x + B5. (18)

These transformations preserve the fractional differential structure of Equation (16) but change
the form of classifying function k(u). The symmetry group classification of Equation (16) will be
performed up to these transformations.

For convenience, we rewrite Equation (16) as

ut = k(u)[D2
x(Rαu) + D2

y(Rαu)] + k′(u)uxDx(Rαu) + k′(u)uyDy(Rαu). (19)
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It can be seen that the prolongation of the generator (17) to all derivatives included in (16) has
the form

X̄ = ξ0 ∂

∂t
+ ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ η

∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux
+ ζy

∂

∂uy

+ ζα
x

∂

∂DxRαu
+ ζα

y
∂

∂DyRαu
+ ζα

xx
∂

∂D2
xRαu

+ ζα
yy

∂

∂D2
yRαu

.
(20)

Here,
ζt = Dt

(
η − ξ0ut − ξ1ux − ξ2uy

)
+ ξ0utt + ξ1utx + ξ2uty,

ζx = Dx
(
η − ξ0ut − ξ1ux − ξ2uy

)
+ ξ0utx + ξ1uxx + ξ2uyx,

ζy = Dy
(
η − ξ0ut − ξ1ux − ξ2uy

)
+ ξ0uty + ξ1uxy + ξ2uyy,

(21)

and ζα
xx, ζα

yy, ζα
x , ζα

y are obtained from (10) as

ζα
x = DxRα

[
η − ξ0ut − ξ1ux − ξ2uy

]
+ ξ0DxDt(Rαu) + ξ1D2

x(Rαu) + ξ2DxDy(Rαu),

ζα
y = DyRα

[
η − ξ0ut − ξ1ux − ξ2uy

]
+ ξ0DyDt(Rαu) + ξ1DyDx(Rαu) + ξ2D2

y(Rαu),

ζα
xx = D2

xRα
[
η − ξ0ut − ξ1ux − ξ2uy

]
+ ξ0D2

xDt(Rαu) + ξ1D3
x(Rαu) + ξ2D2

xDy(Rαu),

ζα
yy = D2

yRα
[
η − ξ0ut − ξ1ux − ξ2uy

]
+ ξ0D2

yDt(Rαu) + ξ1D2
yDx(Rαu) + ξ2D3

y(Rαu).

(22)

Acting by the generator (20) on the Equation (19), we obtain the determining equation:

ζt = k(u)
(

ζα
xx + ζα

yy

)
+ k′(u)η[D2

x(Rαu) + D2
y(Rαu)]

+ k′(u)[ζxDx(Rαu) + ζyDy(Rαu) + uxζα
x + uyζα

y ] + k′′(u)η[uxDx(Rαu) + uyDy(Rαu)].
(23)

We substitute the prolongation formulae (21), (22) into Equation (23) and replace D2
y(Rαu) in view

of Equation (19) as

D2
y(Rαu) = k−1(u)

[
ut − k(u)D2

x(Rαu)− k′(u)uxDx(Rαu)− k′(u)uyDy(Rαu)
]

.

Then, we use the generalized Leibniz rule (14) and its consequences (15). Taking into account
that Rαu = I0,0

2−αu, we represent all terms with Rαu and their derivatives via integral operators (12).
By applying the recurrence relation (13), we rewrite all integrals Im,n

k−αu, Im,n
k−αut in terms of Im,n

8−αu and
Im,n
8−αut. As a result, we obtain the determining equation in which ut, ux, uy, D2

x(Rαu), Im,n
8−αu, Im,n

8−αut can
be considered as independent variables. Splitting the obtained equation by all these variables, we get
an infinite system of integer-order partial differential equations and one fractional differential equation.
We do not write here the whole obtained system due to its large size, but we present a particular result
of the splitting which leads to the classifying relation.

By equating to zero the coefficients for ut, we obtain

ξ0
x = 0, ξ0

y = 0, ξ0
t = (2− α) ξ2

y −
k′(u)
k(u)

η. (24)

Thus, ξ0 = ξ0(t). Since ξ0 and ξ2 do not depend on u, and η is a linear function with respect to u,
from the last equation in (24), we obtain the classifying relation for k(u) 6= const:(

1
K(u)

)′′
= 0, K(u) =

k′(u)
k(u)

, k′(u) 6= 0.
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This relation is exactly the same as for the integer-order nonlinear heat equation [11] and as for
the time-fractional nonlinear diffusion equation [18]. From this classifying relation, in view of the
equivalence transformations (18), we obtain that the following cases should be distinguished:

1. k(u) is an arbitrary function;
2. k(u) = eu;
3. k(u) = (u + A)σ, σ 6= 0, A = const;
4. k(u) = 1.

The subsequent analysis shows that there is no extension of the symmetry group for k(u) = eu,
and for k(u) = (u + A)σ the symmetry group is extended only with A = 0. The main reason for these
results is that the integral Rα(1) diverges.

The final results of group classification for Equation (16) are summarized in the following theorem.

Theorem 4. The nonlinear Equation (16) with an arbitrary functions k(u) has a five-parameter Lie point
symmetry group spanned by the generators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
,

X4 = (2− α)t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, X5 = y

∂

∂x
− x

∂

∂y
.

(25)

This symmetry group is extended only for k(u) = uσ (σ ∈ R):

X6 = σt
∂

∂t
− u

∂

∂u
(26)

for arbitrary σ;

X1
∞ = g(t, x, y)

∂

∂u

for σ = 0 (linear case), where g(t, x, y) is an arbitrary solution of the linear equation gt = ∆Rαg;

X2
∞ = A

∂

∂x
+ B

∂

∂y
− 2Axu

∂

∂u
(27)

for σ = −1, where A(x, y), B(x, y) are the arbitrary solutions of the system

Ax = By, Ay = −Bx.

The symmetries given in this theorem can be used for finding group invariant solutions and
conservation laws of the equation in question. We do not present here invariant solutions because
their construction is a problem for future research. Now, we focus on the problem of conservation
laws finding.

4. Nonlinear Self-Adjointness

In this section, we extend the basic notions of the concept of nonlinear self-adjointness to FDEs
with the Riesz potential and prove that Equation (16) is nonlinearly self-adjoint. We will assume that
n > 1 and u is not a radial function since otherwise known results [15,23,27] for fractional differential
equations with the Riemann–Liouville fractional derivatives can be used (see Remark 1).

Let us consider the function

F = F
(

x0, x, u, u(1), . . . , u(k), (Rαu)(1), . . . , (Rαu)(m)

)
, (28)
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where u = u(x0, x), x0 ∈ [0, T] is the time variable and x = (x1, . . . , xn) ∈ Rn is the vector of spatial
variables. In (28), we use the following notation of differential algebra (see, e.g., [13]):

v(1) = {vi1}, . . . , v(k) = {vi1 ...ik}; vi1 = Di1(v), . . . , vi1 ...ik = Dik (vi1 ...ik−1
) = Dik . . . Di1(v)

with i1, . . . , ik = 0, . . . , n. Here, Di denotes the operator of total differentiation with respect to xi.
First of all, we obtain an explicit representation for the variational derivative of the function F

in (28). The corresponding variational integral has the form

S[u] =
∫ T

0

∫
Rn

F
(

x0, x, u, u(1), . . . , u(k), (Rαu)(1), . . . , (Rαu)(m)

)
dxdx0. (29)

The first variation of the functional S[u] can be found as

δS[u] =
(

∂

∂ε
S[u + εδu]

) ∣∣∣∣
ε=0

,

where δu is a variation of the function u. As usual in calculus of variations, we will assume that
δu, Rα(δu) and all their derivatives with respect to all variables xi (i = 0, 1, . . . , n) are equal to zero
for |x| → ∞, x0 = 0 and x0 = T. Since the Riesz potential and any differential operator are linear,
after simple algebra, we obtain

δS[u] =
∫ T

0

∫
Rn

[
∂F
∂u

δu +
k

∑
s=1

∂F
∂ui1 ...is

Dis . . . Di1(δu) +
m

∑
r=1

∂F
∂(Rαu)j1 ...jr

Djr . . . Dj1(Rαδu)

]
dxdx0.

The multiple integration by parts yields

δS[u] =
∫ T

0

∫
Rn

[
∂F
∂u

δu +
k

∑
s=1

(−1)sDi1 . . . Dis

(
∂F

∂ui1 ...is

)
δu

+
m

∑
r=1

(−1)rDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)
(Rαδu)

]
dxdx0.

Let f (x) and g(x) be such functions that Rα f , Rαg, and the integral
∫

Rn f Rαgdx exist. Then, it is
easy to prove that ∫

Rn
f Rαgdx =

∫
Rn

gRα f dx.

Using this property of the Riesz potential, we get

δS[u] =
∫ T

0

∫
Rn

[
∂F
∂u

+
k

∑
s=1

(−1)sDi1 . . . Dis

(
∂F

∂ui1 ...is

)

+
m

∑
r=1

(−1)rRαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)]
(δu)dxdx0.

(30)

If, for any δu we have δS[u] = 0, then the function u extremize the functional S[u]. It
follows from (30) that this function can be found as a solution of the fractional generalization of
the Euler–Lagrange equation

δF
δu

= 0,

where

δ

δu
=

∂

∂u
+

k

∑
s=1

(−1)sDi1 . . . Dis

(
∂

∂ui1 ...is

)
+

m

∑
r=1

(−1)rRαDj1 . . . Djr

(
∂

∂(Rαu)j1 ...jr

)
(31)
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is the Euler–Lagrange operator (operator of variational derivative) for the integral (29).
Now, let us consider a fractional differential equation

F
(

x0, x, u, u(1), . . . , u(k), (Rαu)(1), . . . , (Rαu)(m)

)
= 0. (32)

Following Ibragimov [25,26], we introduce the formal Lagrangian

L = v(x0, x)F
(

x0, x, u, u(1), . . . , u(k), (Rαu)(1), . . . , (Rαu)(m)

)
,

where v(x0, x) is a new dependent variable, and define the function

F∗
(

x0, x, u, v, u(1), v(1), . . . , u(k), v(k), (Rαu)(1), Rα(v(1)), . . . , (Rαu)(m), Rα(v(m))
)
=

δ(vF)
δu

.

Then,

F∗
(

x0, x, u, v, u(1), v(1), . . . , u(k), v(k), (Rαu)(1), Rα(v(1)), . . . , (Rαu)(m), Rα(v(m))
)
= 0 (33)

is the adjoint equation to Equation (32).
Similarly to [25,26], Equation (32) will be called nonlinearly self-adjoint if the adjoint Equation (33)

will be satisfied for all solutions u(x0, x) of Equation (32) upon a substitution

v = ϕ(x0, x, u), ϕ 6= 0. (34)

Theorem 5. The nonlinear Equation (16) is nonlinearly self-adjoint.

Proof. It is easy to see that Equation (16) is a particular case of the equation

F
(

t, x, y, u, ut, ux, uy, Dx(Rαu), Dy(Rαu), D2
x(Rαu), D2

y(Rαu)
)
= 0.

Then, the Euler–Lagrange operator (31) has the form

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
− Dy

∂

∂uy
− RαDx

∂

∂(DxRαu)
− RαDy

∂

∂(DyRαu)

+ RαD2
x

∂

∂(D2
xRαu)

+ RαD2
y

∂

∂(D2
yRαu)

.

The corresponding adjoint equation

δ(vF)
δu

= 0

can be written as

− vt + k′(u)[vxDx(Rαu) + vyDy(Rαu)]− Rα[Dx(kvx) + Dy(kvy)] = 0. (35)

The substitution (34) takes the form v = ϕ(t, x, y, u). Then, Equation (35) is transformed into

− ϕt − ϕuut + k′(u)[(ϕx + ϕuux)Dx(Rαu) + (ϕy + ϕuuy)Dy(Rαu)]

− Rα[Dx(k(ϕx + ϕuux)) + Dy(k(ϕy + ϕuuy))] = 0.

It is evident that this equation holds identically for ϕ = c (c = const). Therefore, Equation (16) is
nonlinearly self-adjoint.
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5. Conservation Laws

We will use the classical definition of a conservation law (see, e.g., [11]) since it is suitable for most
applications. In such a way, the conservation law for Equation (32) can be written as

Di(Ci) = 0, i = 0, 1, . . . , n, (36)

where C = (C0, . . . , Cn) is the so-called conserved vector. Other approaches for fractional differential
equations can be found in [32–34].

In [22], it is shown that the components of a conserved vector can be found as

Ci = N iL, (37)

where L is a classical or formal Lagrangian, and N i (i = 0, 1, . . . , n) are the so-called Noether operators.
These operators are defined by the fundamental operator identity

X̃ + Di(ξ
i)I = W

δ

δu
+ Di(N i), (38)

where X̃ is an appropriate prolongation of the Lie point group generator to all dependent
variables in the considered equation, I is the identity operator, W = η − ξ iui, and δ

δu is the
Euler–Lagrange operator.

For Equation (32), the prolonged generator X̃ can be written in the form

X̃ = ξ i ∂

∂xi + η
∂

∂u
+

k

∑
s=1

ζi1 ...is
∂

∂ui1 ...is
+

m

∑
r=1

ζα
j1 ...jr

∂

∂(Rαu)j1 ...jr
, (39)

where i1, . . . , ik = 0, 1, . . . , n and j1, . . . , jm = 0, 1, . . . , n. The functions ζi1 ...is and ζα
j1 ...jr are given by the

prolongation formulae
ζi1 ...is = Dis . . . Di1(W) + ξ l Dl(ui1 ...is),

ζα
j1 ...jr = Djr . . . Dj1(RαW) + ξ l Dl((Rαu)j1 ...jr ).

By applying (38) to the function F defined in (28) and using (31), we get

Di(N iF) = X̃F + Di(ξ
i)F−W

δF
δu

= ξ i ∂F
∂xi + η

∂F
∂u

+
k

∑
s=1

[Dis . . . Di1(W) + ξ l Dl(ui1 ...is)]
∂F

∂ui1 ...is

+
m

∑
r=1

[Djr . . . Dj1(RαW) + ξ l Dl((Rαu)j1 ...jr )]
∂F

∂(Rαu)j1 ...jr
+ Di(ξ

i)F− (η − ξ iui)
∂F
∂u

−W
k

∑
s=1

(−1)sDi1 . . . Dis

(
∂F

∂ui1 ...is

)
−W

m

∑
r=1

(−1)rRαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)
.

Note that

Di(F) =
∂F
∂xi + ui

∂F
∂u

+
k

∑
s=1

ui1 ...isi
∂F

∂ui1 ...is
+

m

∑
r=1

(Rαu)j1 ...jr i
∂F

∂(Rαu)j1 ...jr

and
ξ iDi(F) + Di(ξ

i)F = Di(ξ
iF).
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Then, we have

Di(N iF) = Di(ξ
iF) +

k

∑
s=1

[
Dis . . . Di1(W) · ∂F

∂ui1 ...is
− (−1)sW · Di1 . . . Dis

(
∂F

∂ui1 ...is

)]

+
m

∑
r=1

[
Djr . . . Dj1(RαW) · ∂F

∂(Rαu)j1 ...jr
− (−1)rW · RαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)]
.

(40)

For the first sum on the right-hand side of Equation (40), we can use the known
representation [22,26]

k

∑
s=1

[
Dis . . . Di1(W) · ∂F

∂ui1 ...is
− (−1)sW · Di1 . . . Dis

(
∂F

∂ui1 ...is

)]

= Di

[
W

(
∂F
∂ui

+
k−1

∑
s=1

(−1)sDi1 . . . Dis
∂F

∂uii1 ...is

)

+
k−1

∑
r=1

Dl1 . . . Dlr (W)

(
∂F

∂uil1 ...lr
+

k−1−r

∑
s=1

(−1)sDi1 . . . Dis
∂F

∂uil1 ...lr i1 ...is

)]
.

(41)

The second sum on the right-hand side of Equation (40) contains the Riesz operator and therefore
a new approach is needed. In [23,27], it is shown that, for equations with the Riemann–Liouville and
Caputo fractional derivatives, the corresponding Noether operators can be written in an explicit form
by using special integral operators. Similar but more complex operators can be introduced for the
equations with the Riesz potential.

We define the operator Jα
(i) (α ∈ (0, 1)) acting on an ordered pair of functions { f (x0, x), g(x0, x)}

(x0 ∈ [0, T], x ∈ Rn) by

Jα
(i){ f (x0, x), g(x0, x)} = 1

γn(α)

∫ xi

−∞

∫
Rn

f (x0, x)|xi=ρg(x0, µ)

(|x− µ|n−α) |xi=ρ

dµdρ

+
1

γn(α)

∫ ∞

xi

∫
Rn

f (x0, µ)g(x0, x)|xi=ρ

(|x− µ|n−α) |xi=ρ

dµdρ

(42)

for i = 1, . . . , n, and by

Jα
(0){ f (x0, x), g(x0, x)} = 1

γn(α)

∫ x0

0

∫
Rn

f (ρ, x)g(x0, µ)

|x− µ|n−α
dµdρ +

1
γn(α)

∫ T
x0

∫
Rn

f (x0, µ)g(ρ, x)
|x− µ|n−α

dµdρ, (43)

for i = 0. It is easy to show by the direct computation that the following equality holds:

Di(Jα
(i){ f (x), g(x)}) = f Rαg− gRα f (44)

(here (i) means that there is no summation with respect to i). In Equation (44), we assume that f (x0, x)
and g(x0, x) belong to an appropriate class of functions such that all integrals exist. For completeness,
we will assume that

J0
(i){ f (x0, x), g(x0, x)} = 0, i = 0, 1, . . . , n.

By using (42) and (44), we obtain

Di(RαW) · ∂F
∂(Rαu)i

+ W · RαDi

(
∂F

∂(Rαu)i

)
= Di

(
RαW · ∂F

∂(Rαu)i
+ Jα

(i)

{
W, Di

(
∂F

∂(Rαu)i

)})
. (45)
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By using (41), we can rewrite the second sum on the right-hand side of Equation (40) in the form

m

∑
r=1

[
Djr . . . Dj1(RαW) · ∂F

∂(Rαu)j1 ...jr
− (−1)rW · RαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)]

= Di

[
(RαW)

(
∂F

∂(Rαu)i
+

m−1

∑
r=1

(−1)rDj1 . . . Djr
∂F

∂(Rαu)ij1 ...jr

)

+
m−1

∑
s=1

Dl1 . . . Dls(RαW)

(
∂F

∂(Rαu)il1 ...ls
+

m−1−s

∑
r=1

(−1)rDj1 . . . Djr
∂F

∂(Rαu)il1 ...ls j1 ...jr

)]

+
m

∑
r=1

(−1)rRαW · Dj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)
−

m

∑
r=1

(−1)rW · RαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)
.

In view of Equality (44), the two last terms in this expression can be written as

m

∑
r=1

(−1)rRαW · Dj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)
−

m

∑
r=1

(−1)rW · RαDj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)

= −Di

[
m

∑
r=1

(−1)r Jα
(i)

{
W, Dj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)}]
.

By substitution of all obtained expressions for sums into the right-hand side of the Equality (40),
we derive the following explicit representations for the Noether operators:

N iF = ξ iF + W

(
∂F
∂ui

+
k−1

∑
s=1

(−1)sDi1 . . . Dis
∂F

∂uii1 ...is

)

+
k−1

∑
r=1

Dl1 . . . Dlr (W)

(
∂F

∂uil1 ...lr
+

k−1−r

∑
s=1

(−1)sDi1 . . . Dis
∂F

∂uil1 ...lr i1 ...is

)

+ (RαW)

(
∂F

∂(Rαu)i
+

m−1

∑
r=1

(−1)rDj1 . . . Djr
∂F

∂(Rαu)ij1 ...jr

)

+
m−1

∑
s=1

Dl1 . . . Dls(RαW)

(
∂F

∂(Rαu)il1 ...ls
+

m−1−s

∑
r=1

(−1)rDj1 . . . Djr
∂F

∂(Rαu)il1 ...ls j1 ...jr

)

−
m

∑
r=1

(−1)r Jα
(i)

{
W, Dj1 . . . Djr

(
∂F

∂(Rαu)j1 ...jr

)}
. (46)

Thus, the conservation laws for any fractional differential equation of the form (32) can be obtained
by (37) with (46). To illustrate this approach, we construct conservation laws for the nonlinear fractional
diffusion Equation (16).

The conservation law (36) for Equation (16) takes the form

Dt(Ct) + Dx(Cx) + Dy(Cy) = 0.

In the previous section, it is proved that Equation (16) is nonlinearly self-adjoint and the
substitution (34) is v = c = const. Without loss of generality, we can set c = 1 because any conservation
law is linear with respect to conserved vector’s components. Then, the formal Lagrangian coincides
with the equation:

L = F ≡ ut − k(u)[D2
x(Rαu) + D2

y(Rαu)]− k′(u)uxDx(Rαu)− k′(u)uyDy(Rαu). (47)
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For this function, the Noether operators (46) takes a more simple form:

N tF = ξ0F + W
∂F
∂ut

,

N xF = ξ1F + W
∂F
∂ux

+ RαW
[

∂F
∂(DxRαu)

− Dx

(
∂F

∂(D2
xRαu)

)]
+ Dx(RαW)

∂F
∂(D2

xRαu)

+Jα
(1)

{
W, Dx

(
∂F

∂(DxRαu)

)}
− Jα

(1)

{
W, D2

x

(
∂F

∂(D2
xRαu)

)}
,

N yF = ξ2F + W
∂F
∂uy

+ RαW

[
∂F

∂(DyRαu)
− Dy

(
∂F

∂(D2
yRαu)

)]
+ Dy(RαW)

∂F
∂(D2

yRαu)

+Jα
(2)

{
W, Dy

(
∂F

∂(DyRαu)

)}
− Jα

(2)

{
W, D2

y

(
∂F

∂(D2
yRαu)

)}
.

(48)

Substituting (47) and (48) into (37), in view of the equation F = 0, we obtain

Ct = W,

Cx = −[k′(u)WDx(Rαu) + k(u)Dx(RαW)],

Cy = −[k′(u)WDy(Rαu) + k(u)Dy(RαW)].

Here, we use the linearity of operators Jα
(i):

Jα
(1)

{
W, Dx

(
∂F

∂(DxRαu)

)}
− Jα

(1)

{
W, D2

x

(
∂F

∂(D2
xRαu)

)}
= Jα

(1)

{
W, Dx

(
∂F

∂(DxRαu)

)
− D2

x

(
∂F

∂(D2
xRαu)

)}
= Jα

(1)

{
W, Dx(−k′(u)ux)− D2

x(−k(u))
}
= Jα

(1){W, 0} = 0.

The similar equality holds for Jα
(2).

Let us consider the case when k(u) is an arbitrary function. Then, Equation (16) admits
five-parameter Lie point symmetry group with the basis (25). For these basis operators, we have

W1 = −ut, W2 = −ux, W3 = −uy, W4 = (α− 2)tut − xux − yuy, W5 = xuy − yux.

The conservation law corresponding to W1 is trivial. Indeed, in view of the Equation (16), we have

Ct
1 = −ut = −Dx(k(u)DxRαu)− Dy(k(u)DyRαu),

Cx
1 = k′(u)utDx(Rαu) + k(u)Dx(Rαut),

Cy
1 = k′(u)utDy(Rαu) + k(u)Dy(Rαut).

Then, the conservation law reads

Dt(Ct
1) + Dx(Cx

1 ) + Dy(C
y
1) = Dt[−Dx(k(u)DxRαu)− Dy(k(u)DyRαu)]

+ Dx[k′(u)utDx(Rαu) + k(u)Dx(Rαut)] + Dy([k′(u)utDy(Rαu) + k(u)Dy(Rαut)])

= Dx[k′(u)utDx(Rαu) + k(u)Dx(Rαut)− Dt(k(u)DxRαu)]

+ Dy[k′(u)utDy(Rαu) + k(u)Dy(Rαut)− Dt(k(u)DyRαu)] ≡ 0

because DtRαu = Rαut.
Similarly, it is easy to prove that conservation laws corresponding to W2 and W3 are trivial too.
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For W4 after equivalent transformations, we find

Ct
4 = u, Cx

4 = k(u)Dx(Rαu), Cy
4 = k(u)Dy(Rαu). (49)

The corresponding conservation law is non-trivial, and it coincides with the considered
Equation (16).

For W5, we have
Ct

5 = xuy − yux = Dy(xu)− Dx(yu).

Then,

Dt(Ct
5) + Dx(Cx

5 ) + Dy(C
y
5) = Dt[Dy(xu)− Dx(yu)] + Dx(Cx

5 ) + Dy(C
y
5)

= Dx(Cx
5 − yut) + Dy(C

y
5 + xut).

Now, we can replace ut in view of Equation (16). Since the components Cx
5 and Cy

5 do not depend
on ut, we obtain that Ct = 0. After transformations, we find

Cx = k[Dy(Rαu)− Dx(Rα(xuy − yux))− yD2
x(Rαu) + xDxDy(Rαu)],

Cy = k[−Dx(Rαu)− Dy(Rα(xuy − yux)) + xD2
y(Rαu) + yDxDy(Rαu)].

Now, let k(u) be a power function: k(u) = uγ. Then, Equation (16) has one additional symmetry
X6 defined by (26). For this symmetry, we have W6 = −u− γtut. It can be shown that, in this case
after transformations, one can get a conserved vector with the components (49).

For k(u) = u−1, we have an infinite number of symmetries X∞ defined by (27). In this case, we
have W∞ = −2Axu− Aux − Buy. Then,

Ct
∞ = W∞ = −2Axu− Dx(Au) + Axu− Dy(Bu) + Byu = −Dx(Au)− Dy(Bu),

since Ax = By. Thus, we have Ct
∞ = 0 and

Cx = u−2uy[ADy(Rαu)− BDx(Rαu)] + u−1[Dx(Rα(2Axu + Aux + Buy))− A∆Rαu− 2AxDx(Rαu)],

Cy = u−2ux[BDx(Rαu)− ADy(Rαu)]− u−1[Dy(Rα(2Axu + Aux + Buy)) + B∆Rαu + 2AxDy(Rαu)].

Thus, several different conservation laws have been found for the nonlinear space-fractional
diffusion equation with the Riesz potential.

In conclusion, we note that, despite the fact that we consider nonlinear space-fractional diffusion
Equation (16) only in two-dimensional space, all results for nonlinear self-adjointness and explicit
forms of the Noether operators are valid for arbitrary dimension n. The proposed technique gives one
the opportunity to construct conservation laws for a wide class of fractional differential equations with
the Riesz potential.
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