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Abstract: A recent effort used two rational maps on the Riemann sphere to produce polyhedral
structures with properties exemplified by a soccer ball. A key feature of these maps is their respect
for the rotational symmetries of the icosahedron. The present article shows how to build such
“dynamical polyhedra” for other icosahedral maps. First, algebra associated with the icosahedron
determines a special family of maps with 60 periodic critical points. The topological behavior of
each map is then worked out and results in a geometric algorithm out of which emerges a system
of edges—the dynamical polyhedron—in natural correspondence to a map’s topology. It does so
in a procedure that is more robust than the earlier implementation. The descriptions of the maps’
geometric behavior fall into combinatorial classes the presentation of which concludes the paper.

Keywords: icosahedron; dynamics; equivariant

1. Overview

A polynomial map on the projective space CP1—the Riemann sphere—is given by an ordered
pair of polynomials

f (x, y) = (P(x, y), Q(x, y)).

Being well-defined on the complex projective line requires the coordinates (x, y) to be
homogeneous, meaning that each term in P and Q has the same total degree—the sum of the exponents.
This total degree is the degree of f . By introducing an inhomogeneous coordinate z = x

y , we can
express f as a rational map in one variable on the space C = {(x, y) | y 6= 0}:

f (z) =
P(z, 1)
Q(z, 1)

.

At the core of the quintic-solving algorithm devised by Doyle and McMullen is the dynamics of a
special rational map with the symmetries of the icosahedron [1]. Their degree-11 map on the Riemann
sphere has a critical set that coincides with the 20 vertices of the regular dodecahedron—a special
icosahedral orbit. There is also a map of degree 19 under which the 12 icosahedral vertices are critical.

A key property of these maps is a strong form of critical-finiteness: the critical points are periodic.
The critical set of a map f = (u, v) consists of the points (a, b) where no neighborhood exists on which
the map is invertible, a condition equivalent to

∂u
∂x

(a, b) =
∂v
∂x

(a, b) = 0.

The behavior of a map’s critical orbit—where the critical points go when the map is applied
iteratively—bears strongly on the map’s global dynamics. (See [2], Chapter 9.) In the particular case
of periodic critical points, their basins of attraction have full measure on the sphere. An attracting
cycle’s basin of attraction contains all points whose dynamical orbits asymptotically approach the cycle.
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Moreover, each map gives rise to a forward invariant polyhedral structure of edges relative to which
the map has an elegant geometric description. Due to the critical sets’ achiral arrangements, the edges
lie along great circles of reflective icosahedral symmetry. Indeed, the maps are also symmetric under
reflection along the edges. Associated with the “11-map” is a dodecahedron and with the 19-map
an icosahedron.

A recent unexpected discovery revealed the existence of two icosahedrally-symmetric maps with
periodic critical sets of generic size, that is, each critical set is a 60-point orbit under the icosahedral
group [3]. The configurations of critical points take the form, in one case, of a soccer ball’s vertices
and, in the other, of the vertices on a type of dual soccer ball. For a 60-point critical set, the core
question of the current investigation is whether there are dynamically natural edges between the
vertices. A combinatorial structure of this kind has two important properties: (1) invariance as a
collection of points when the respective map is applied and (2) the wherewithal for describing in
geometric terms the respective map’s behavior. The previous effort showed a way of constructing such
a “dynamical polyhedron” for the soccer-ball map.

In the present undertaking, we will determine all icosahedral maps with internally periodic
critical sets of size 60; ‘internal’ means that the map permutes the critical points. We then study
two special cases in some detail, describing the dynamical behavior in geometric terms. Subsequent
discussion turns to the heart of the problem: edge-constructions for dynamical polyhedra. The critical
sets, hence the systems of edges, for most of the maps form chiral configurations.

On terminology and graphics: “Facts” and graphical output are computational results generated
by Mathematica. Notebooks that implement the construction are available at [4].

2. Preliminaries: Icosahedral Geometry, Invariants, and Equivariants

Detailed descriptions of the geometric and algebraic structures associated with the icosahedron
appear elsewhere [1,5]. For a brief summary of the relevant background, see [3]. The features essential
to the topic at hand will now be discussed.

First, choose coordinates in CP1 so that a pair of antipodal icosahedral vertices are at [0, 1] and
[1, 0] where square brackets indicate projective coordinates; that is, the point

[x, y] = {(α x, α y) | α ∈ C− (0, 0)}

in CP1 is an equivalence class in C2. Using an inhomogeneous coordinate z on the complex line
{y | y 6= 0} such that

[z, 1] =
[

x
y

, 1
]
= [x, y],

the respective locations of these two vertices are 0 and ∞. Rendered on the sphere, the two points can
be taken to be the south and north poles. Placing a third vertex on the real axis at 1+
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By taking triples of vertices that belong to a face of the icosahedron, we obtain 20 face-centers.
Similarly, from pairs of vertices that are endpoints of icosahedral edges that bound a face, we compute
30 edge-midpoints.

Taking the set V to be the regular icosahedron, its orientation-preserving symmetries form a group
consisting of 60 rotations that act on the Riemann sphere CP1. The icosahedral group I is isomorphic
to the alternating group A5. Furthermore, I can be extended by a reflection through a great circle to
a group Ĩ of 120 transformations half of which are orientation-reversing—that is, anti-holomorphic.

The I-invariant polynomials form an algebraic object known as a ring. Three forms F, H, and T
generate this ring. Each generator vanishes on a special icosahedral orbit, that is, F = 0 at the vertices,
H = 0 at the face-centers, and T = 0 at the edge-midpoints. Accordingly, the generating invariants
have respective degrees 12, 20, and 30. Since I permutes the vertices, the polynomial F(x, y) that takes
the value zero exactly at each vertex is I-invariant. That is,

F(A(x, y)) = F(x, y) for all A ∈ I .

In homogeneous coordinates,

F(x, y) = xy(x10 − 11x5y5 − y10).

Applying the same reasoning to the face-centers and edge-midpoints yields I-invariants of
degrees 20 and 30:

H(x, y) = x20 + 228x15y5 + 494x10y10 − 228x5y15 + y20,

T(x, y) = x30 − 522x25y5 − 10, 005x20y10 − 10, 005x10y20 + 522x5y25 + y30.

An important fact in other contexts is that the generating invariants satisfy an algebraic relation
in degree 60:

T2 = H3 − 1728 F5. (1)

Associated with an I-invariant G is an I-equivariant rational map—I-map for short—whose
degree is one less than that of G. An equivariant is a map f that commutes with a group action A and
thereby respects group orbits. In symbolic terms,

f ◦ B = B ◦ f for all B ∈ A

and the group orbit A(x, y) = {B(x, y) | B ∈ A}maps to

f (A(x, y)) = A( f (x, y)),

also a group orbit. Accordingly, an I-map can be pushed down to a map on the quotient space CP1/I
consisting of equivalence classes of group orbits. We will put this property to computational use below.

In the icosahedral case, maps of degrees 11 and 19 generate the module of I-maps over the ring
of I-invariants. This module contains I-maps of the form

R · φ + S · η,

where R and S are I-invariants such that the degrees of each product are the same. Generators for
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I-maps result from applying a differential operator to the I-invariants F and H:

φ(x, y) =
(
−∂F

∂y
,

∂F
∂x

)
=(−x11 + 66x6y5 + 11xy10, 11x10y− 66x5y6 − y11),

η(x, y) =
(
−∂H

∂y
,

∂H
∂x

)
=
(
−20(57x15y4 + 247x10y9 − 171x5y14 + y19),

20(x19 + 171x14y5 + 247x9y10 − 57x4y15)
)
.

Due to the relation (1), we need not include a map derived from the invariant T.

3. Rational Maps on CP1 as Branched Self-Covers

A map f : CP1 → CP1 with a forward invariant critical set C f is a branched self-cover of CP1,
meaning that, since C f ⊂ f−1(C f ),

f : (CP1 − f−1(C f ))→ (CP1 − C f )

is a covering map. A basic problem set by William Thurston is to determine a condition on a branched
self-cover f of CP1 that reveals whether or not f is topologically conjugate to a rational map.
Thurston formulated a negative result: a branched self-cover is not conjugate to a rational map when
and only when a certain combinatorial obstruction exists [6].

In recent work, Dylan Thurston discovered a positive characterization for rationality ([7,8]).
Central to the theory is an elastic graph spine G f in CP1 − C f the existence of which is necessary and
sufficient for the self-cover to be conjugate to a rational map. (The full result applies to a class of maps
that is larger than those with periodic critical points, but such maps are the focus here.) Put briefly,
a “Thurston spine” is a graph (1) to which CP1 − C f can be continuously deformed and (2) with a
length function—giving rise to an elastic energy—defined on its edges such that when f−1 is applied
to the graph, the edges loosen in the sense of a decrease in elastic energy.

The cases of the 11-map, 19-map, and degree-31 soccer ball maps realize dynamical polyhedra
with complementary antipodal behavior. That is, the sphere is carved into a cell-division with antipodal
structure whose bounding edges form a graph G. Define a self-cover of CP1 by stretching a cell onto
the complement of its antipodal cell. Up to homotopy, the resulting map h is rational provided that it
admits a Thurston spine. In private correspondence, Peter Doyle observes that the dual graph Ĝ of
G—essentially the dual polyhedron—gives such a spine. Backward iteration of h relaxes the edges
of Ĝ.

Taking inspiration from these examples, we’ll construct, for each map f with 60 internally periodic
critical points, an approximation to a graph in CP1 with dynamical integrity. Such a graph gives
an f -invariant system of edges E f that encloses faces with 2, 3, and 5-fold symmetry and whose vertices
are the critical points. Since the maps are rational, they admit a Thurston spine. However, we can
turn the discussion around and conjecture that, for each dynamical polyhedron of a 31-map with its
topological description as a self-cover of the sphere, there is a natural Thurston spine. Note that, in the
description of the self-covering behavior, a face F maps to the complement of a cluster of faces that
contains either F or its antipodal face. Perhaps such a spine can be built by taking an I-invariant graph
that is dual to the polyhedral graph E f and thereby encloses the critical points.

In addition, self-coverings like the type discussed here might have a role to play in the problem
of synchronization in a network. The difficulty there is to determine stochastic conditions acting on
a population of agents that are favorable for the formation of consensus—a state which other states
approach asymptotically through a dynamical process [9].
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4. Icosahedral Maps with Periodic Critical Orbits

Our first task is to uncover each I-map f whose internally-periodic critical set C f consists of
a single I-orbit of size 60. For such a critically-finite map, C f is a superattracting set; that is, the iterate
f n that fixes each periodic critical point is topologically equivalent to a power map

(x, y) −→ α (xk, yk), k ≥ 2

on a neighborhood of (0, 0). Furthermore, the collective basins of attraction for the points in C f fill the
sphere in the sense of measure.

As described in [3], maps with 60-point critical sets occur in degree 31 and the family of “31-maps”
is given by

f(a,b) = a H φ + b F η.

To determine members of this family with periodic critical points, we follow a suggestion made
by Peter Doyle and consider the maps induced on the quotient space Q = CP1/I . First, note that the
quotient map

q : CP1 −→ Q

is realized, using homogeneous coordinates, by

(X, Y) = q(x, y) = (F(x, y)5, H(x, y)3).

Using an inhomogeneous parameter Z = X
Y , an I-orbit is the collection of solutions z to

Z =
F(z)5

H(z)3 .

Expressed diagrammatically (with the parameters suppressed), f is the lift of a map f̂ on Q:

CP1 f−−−−→ CP1

q
y yq

Q f̂−−−−→ Q.

Letting

J f =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
be the Jacobian matrix of f = (u, v), the critical polynomial is C f = det J f and

C f = {C f = 0}

is the critical set.
Invariant theory tells us that C f is I-invariant and thus expressible as a polynomial in F and H.

Note that we can dispense with the invariant T in light of the degree-60 relation (1). Since C f has
degree 60, it can be expressed in terms of the quotient coordinates X = F5 and Y = H3.

Fact 1. The critical polynomial of f descends to Q as

Ĉ f = 4800 b (12 a + 19 b)X− a (11 a + 20 b)Y.
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Accordingly, Ĉ f = {Ĉ f = 0} ⊂ Q has the parametrization

Γ = (a (11 a + 20 b), 4800 b (12 a + 19 b)).

Note that, for each (a, b), C f is a single I-orbit. Hence, Ĉ f is a point in Q.
Now, we need to express the 31-maps f̂ on the quotient. First, note that composing an I-invariant

with an I-map results in an I-invariant. In the present context, we obtain

f̂ (X, Y) = f̂ (q(x, y)) = q( f (x, y)) = (F( f (x, y))5, H( f (x, y))3)
∣∣
(F5,H3)→(X,Y)

where F5 and H3 are replaced by quotient coordinates X and Y after the I-invariants F( f (x, y))
and H( f (x, y)) are expressed in terms of F and H. Computation of the lengthy expressions for the
components of f̂ can be found at [4].

To determine 31-maps with periodic critical points, we impose the condition that [1,5] fixes the
point Ĉ f projectively in Q; that is,

f̂ (Γ) = λ Γ λ ∈ C.

Note the use of homogeneous parameters (a, b), one of which is spent arranging for Γ to be fixed.
Furthermore, the fixed point condition in the quotient results in maps f on CP1 for which the critical
set is internally periodic—that is, fixed setwise. Accordingly, C f decomposes into cycles, the lengths of
which are constrained by the action of I .

Proposition 1. Suppose that v ∈ CP1 is periodic under an I-map h and that h(v) ∈ Iv (the orbit of v under
I). The period of v is either 2, 3, or 5.

Proof. Let p be the period of v so that
v = hp(v).

Furthermore, h(v) = Av for some A ∈ I . With α equal to the order of A, I-equivariance of
h yields

h2(v) = h(h(v)) = h(Av) = Ah(v) = A2v.

Continuing inductively,
hα(v) = Aαv = v

and the period of v equals the order of A which is 2, 3, or 5.

Attention now turns to the equation f̂ (Γ) = λ Γ in (a, b) whose solutions yield maps with
60 internally periodic critical points. This equation has the same solutions as one that is homogeneous
in (a, b), namely

RΓ = det

(
f̂ (Γ)

Γ

)
= 0.

Fact 2. The polynomial RΓ factors as

RΓ = a13 b21 (3 a + 5 b)31 P3 · P12 · P20 · P24,

where Pk is a degree-k polynomial in a and b.

Fact 3. The three maps determined by the explicit factors involve a degeneracy to a lower degree map. For 3 a +
5 b = 0, we get the identity ε boosted by the degree-30 invariant: T · ε. The cases where a = 0 and b = 0
produce “boosted” versions of the 11-map and 19-map: H · φ and F · η.

Some intriguing numerology appears in the next factor.
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Fact 4. The three maps obtained by solving

P3 = (12 a + 19 b)(11 a + 20 b)(33 a− 95 b) = 0

possess critical points at the orbits of size 20, 12, 30 with respective multiplicities 3, 5, 2 and respective periods 1,
1, 2.

The following three computational results treat the remaining factors in RΓ. Each root of a factor
determines a 31-map whose critical points are periodic. Thus, Pk gives k maps each of which has a
critical set that decomposes into 60/p cycles of length p.

Fact 5. Let f(a,b) be a 31-map given by a root of

P12 = 262766592a12 − 5598533376a11b− 110441517120a10b2 − 746454705120a9b3

− 2739682103040a8b4 − 6132369876696a7b5 − 8497318777952a6b6 − 6610001558770a5b7

− 1409601459875a4b8 + 2095583560000a3b9 + 1850218100000a2b10 + 570668800000ab11

+ 82308000000b12.

Then, C f(a,b)
decomposes into 30 cycles of period two.

Fact 6. Let f(a,b) be a 31-map given by a root of

P20 = 9065321296035840a20 + 297447270441615360a19b + 4657649128768576512a18b2

+ 46235338429382479872a17b3 + 326041228341692697024a16b4

+ 1734774550841580942816a15b5 + 7220847716953871556960a14b6

+ 24059872875325942865304a13b7 + 65131366971066218430264a12b8

+ 144563010855347226391998a11b9 + 264365685785827539188767a10b10

+ 398815113743172496047700a9b11 + 495241592818885105158375a8b12

+ 503322381992604482202500a7b13 + 414503811117083072721875a6b14

+ 272347425398927624962500a5b15 + 139438525290144482500000a4b16

+ 53626884106817650000000a3b17 + 14579471801821500000000a2b18

+ 2499250525650000000000ab19 + 203238205920000000000b20b12.

Then, C f(a,b)
decomposes into 20 cycles of period three.
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Fact 7. Let f(a,b) be a 31-map given by a root of

P24 = 668368008514130411520a24 + 26968269388994869985280a23b

+ 516933761906561865744384a22b2 + 6278245021807056570286080a21b3

+ 54379076180176433264578560a20b4 + 358425754100629430648647680a19b5

+ 1872659999168595359750108160a18b6 + 7972328332865032594746356736a17b7

+ 28193774347232727888983800320a16b8 + 83956104378578710432901041920a15b9

+ 212483231686970544746778626880a14b10 + 459795295859828838389539704000a13b11

+ 853451930517120207440229611936a12b12 + 1360052121063325875775069000720a11b13

+ 1858438540104362103609617554100a10b14 + 2170118896655411970494805557500a9b15

+ 2153136983954016201268485528125a8b16 + 1799688881704348373517523075000a7b17

+ 1251813375317007267354662750000a6b18 + 712053919708361579396920000000a5b19

+ 322926786576440355939500000000a4b20 + 112370292462764845020000000000a3b21

+ 28186054360804994760000000000a2b22 + 4537833560791747200000000000ab23

+ 352171163218176000000000000b24.

Then, C f(a,b)
decomposes into 12 cycles of period five.

In the period-2 cases, the critical sets exhibit both achiral and chiral structures. For maps with
critical cycles of length three or five, the configurations of critical points are chiral.

5. Periodic Cycles

We begin by determining which cycles occur. The proof of Proposition 1 indicates that,
when an I-map f satisfies f (x) = Ax for some A ∈ I , the cyclic orbits of x under f and A coincide.
Although the critical sets for the maps are disjoint, most of them take on a “rhombicosidodecahedral”
pattern that consists of 30 quadrilaterals, 20 triangles, and 12 pentagons. We’ll refer to such a structure
as B62. There are five exceptions: the two soccer ball maps and the maps mentioned earlier whose
critical sets degenerate into 12 pentagonal centers, 20 triangular centers, and 30 quadrilateral centers.

First, consider a “schematic” B62 as a configuration of 60 vertices and one of the 15 order-2 axes a2

through a pair of antipodal quadrilaterals. The stabilizer of a2 in I is the dihedral group D2 under
which the B62 vertices decompose into fifteen sets of four points. A schematic B62 appears in Figure 1.
With a2 at the center, the labels indicate pairings specified by the D2 action. Of course, for each label,
another pair occurs on the hidden hemisphere. There are twelve non-antipodal pairs each of which
corresponds to a root of P12 and thereby to a 31-map. For example, the map corresponding to the four
points (two are hidden from view) labeled 1 exchanges the pair on the near side as well as the pair on
the far side. The map has the same effect on the fourteen other quadruples of vertices that are in the
I-orbit of the quadruple labeled 1.

As for the eight points labeled 13, they appear in antipodal pairs and can be associated with
three maps: the special map with doubly-critical behavior at the 30-point orbit and the two soccer
ball maps. Under a map associated with label 13, the image of a critical point is its antipode.
Accordingly, the critical sets of these maps have achiral arrangements.

Similar considerations hold in the cases of 3-fold and 5-fold axes where the stabilizing subgroups
are D3 and D5. Respectively, the actions of the stabilizers decompose B62 vertices into orbits of size
six and ten. These dihedral orbits appear as ten pairs of triples and six pairs of quintuples. For each
of the two 3-cycles that a pair of triples can undergo, there’s a map given by a root of P20 that cycles
the triple in the prescribed way—as well as each triple in its I-orbit. This behavior accounts for all 20
of the maps obtained from the roots of P20. In the case of a 5-fold axis a5, each pair of quintuples can
undergo four distinct 5-cycles. Since there are six such quintuple pairs associated with a5, we count
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a total of 24 distinct 5-cycles of B62 vertices, one for each root of P24. Thus, for a 31-map obtained from
a P24 root, each B62 vertex undergoes an I-equivalent 5-cycle.

Figure 1. Schematic B62 labeled for period-2 behavior.

When a B62 configuration is chiral—as in most of the period-2 and all of the period-3 and period-5
cases, each map f (z) has a holomorphic partner f (z) = f (z), obtained by conjugating the coefficients.
In geometric terms, the critical configurations for f and f are mirror images across a great circle of
icosahedral symmetry so that, if the triples or quintuples of critical points for f undergo a cycle in one
orientation, the triples or quintuples for f are cycled in the opposite orientation, thereby producing
distinct and inverse permutations as seen on a schematic B62.

6. Special Behavior on a Fundamental Domain

Our ultimate goal is to manufacture polyhedral structures that are naturally associated with
critically-finite 31-maps. Before taking up that issue, let’s consider the elegant behavior of two such
achiral maps when restricted to a fundamental domain under the extended icosahedral group Ĩ .
Strictly speaking, the collection of fundamental domains provides a polyhedral structure, but only for
achiral maps. Subsequent constructions will be based specifically on the configuration of critical points.

Figure 2 displays critical configurations for two maps g and h; note that each set is achiral, takes on
a B62 structure, and has period-2 critical points. In homogeneous coordinates,

g ≈
(
−x(x30 − 867.9384578x25y5 − 7698.743615x20y10 + 17873.48698x15y15

− 19927.97155x10y20 − 449.0553201x5y25 + 7.069095750y30),

− 7.069095750(x30y + 63.52372862x25y6 − 2819.026967x20y11 − 2528.397919x15y16

− 1089.070496x10y21 + 122.7792759x5y26 + 0.1414608085y31)
)
.

The achirality of g and h results from the fact that g = g and h = h, which, in turn, are properties
due to these two maps arising from real roots of P12. As a result, the maps are equivariant under
reflection through the real axis (that is, complex conjugation) as well as under reflection through
each of the fourteen other great circles that form the icosahedral system of 120 triangles on the
sphere—called “235 triangles” due to the order of the subgroup of I that stabilizes one of the three
vertices. Accordingly, we can take a 235 triangle X for a fundamental domain of Ĩ . (Illustrated in
Figures 3 and 4. Note the abuse of notation here. The decomposition into fundamental domains is
rendered on the sphere, whereas Ĩ acts on the plane of complex numbers.)
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Figure 2. Achiral critical sets of g (red) and h (blue).

Figure 3. Fundamental triangle and its image under g: On the left, we see the collection of
120 triangles into which the sphere is carved by the 15 lines of reflective icosahedral symmetry. One
such 235 triangle is filled with line segments parallel to the hypotenuse and having a color gradient
running perpendicular to the hypotenuse. Any one of the 235 triangles is fundamental relative to the
extended icosahedral action Ĩ . That is, applying the elements of Ĩ to the triangle will tile the sphere as
the plot shows. The image on the right plots the result of applying g to each of the segments in the
shaded triangle on the left. Exactly 31 of the 235 triangles are covered by the image—thus revealing g’s
topological and algebraic degrees.

Because the great circles of reflective symmetry are pointwise fixed by a reflection in Ĩ ,
general equivariant theory requires that an achiral Ĩ-map preserves such a circle setwise. It follows
that the image of a fundamental triangle X is the union of such triangles. In fact, the plot reveals
that g(X) = X ∪ Lg where Lg is the lune formed by extending the sides of X that form its right angle.
Beginning at the 2-fold vertex p, extend one edge away from the 5-fold vertex and extend the other
edge toward the 3-fold vertex. Continue the extensions along the respective great circles until they
meet at the antipode of p.
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Figure 4. Fundamental triangle and its image under h.

Referring to the image on the left in Figure 3, X is approximately foliated by line segments
parallel to its hypotenuse—the segment color varies from green to blue. The distinguished point on
the interior of the hypotenuse is critical. On the right, we see the images of the foliating segments.
The bending and attracting behavior that occurs at the critical point’s image illustrates the map’s
branching there. Since Lg is one-quarter of the sphere, it encloses 30 fundamental triangles. Hence, g
maps X to 31 fundamental triangles, a topological manifestation of g’s degree.

An exactly analogous description applies to h, depicted in Figure 4. In this case, h(X) = X ∪ Lh
and the lune Lh forms by extending the respective perpendicular sides of X from the 2-fold vertex
away from the 3-fold vertex and toward the 5-fold vertex.

7. Dynamical Polyhedra

Realizing the structure of a spherical polyhedron requires a system of edges between critical
points that appears naturally from a map’s behavior. Serving as an archetype is the soccer ball map
where the collection of edges is a forward invariant set in which the image of a single face K is a union
of faces that are canonically associated with K—namely, the complement of K’s antipodal face.

7.1. Constructing Edges

What follows is a fairly elaborate description of a method that, for a 31-map f , constructs edges
between adjacent vertices (periodic critical points). Working on the sphere, adjacency is determined by
triangular and pentagonal arrangements of critical points nearest to 3-fold and 5-fold axes. In every
case, a common heuristic element first connects adjacent vertices by a great-circle arc. Given such a
“proto-edge” T0 or P0 (depending upon whether the arc spans adjacent triangular vertices (t1, t2) or
pentagonal vertices (p1, p2), we use the image f (T0) or f (P0) to indicate a collection of edges to which
an actual edge maps. To be specific, say that we’re approximating an actual pentagonal edge P that
spans (p1,p2)—illustrated in Figure 5. The procedure generates the actual edge as a result of an infinite
number of iterative steps.

The first step identifies an ordered set of B62 vertices

(v0 = f (p1), . . . , vk, . . . , vm = f (p2))

through which f (P) is to pass. Given an adjacent pair of triangular vertices (vk−1, vk), there’s a unique
element Sk ∈ I such that either

(Sk(t1), Sk(t2)) = (vk−1, vk) or (Sk(t2), Sk(t1)) = (vk−1, vk).
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Similarly, if (vk−1, vk) is an adjacent pair of pentagonal vertices, a unique Sk ∈ I satisfies either

(Sk(p1), Sk(p2)) = (vk−1, vk) or (Sk(p2), Sk(p1)) = (vk−1, vk).

Connect (vk−1, vk) by the appropriate “pushed” proto-edge Qk
0 = Sk(Xk), where Xk is either P0 or

T0. Every (vk−1, vk) in (v0, . . . , vm) is now spanned by great circle arcs.
In order to approximate a triangular edge T, the technique gives pushed edges

(U1
0 = Z1(Y1), . . . , Un

0 = Zn(Yn)),

where Zk ∈ I is the analogue of Sk and Yk is either P0 or T0. Comparing the pushed paths (Q1
0, . . . , Qm

0 )

and (U1
0 , . . . , Un

0 ) to the respective images f (P0) and f (T0) reveals their homotopic equivalence,
as Figure 5 illustrates in the plane.

Figure 5. Homotopy between select proto-edges and the image of a proto-edge for a pentagon (left)
and a triangle (right) in a B62 under one of the 31-maps f . The images of the proto-edges P0 and T0

(blue arcs) are respectively homotopic to a chain of pushed versions of P0 and T0 (black arcs). In this
sample, the pushed edges associated with f (P0) are PPT (pentagon–pentagon–triangle) starting with
f (p1) while those associated with f (T0) are PPTPT beginning at f (t1).

There’s a degree of freedom in choosing the endpoints of the Qk
0 and Uk

0 . Here, we select endpoints
so that a map’s geometric description respects “P-caps”—a pentagonal face with its surrounding five
triangles and five quadrilaterals. Figure 6 shows a schematic P-cap in a planar B62 structure.

In step two, we use suitable branches of f−1 to pull back the pushed segments (Q1
0, . . . , Qm

0 ) to
a first generation edge P1 between (p1, p2). In practice, this is accomplished as follows:

1. Select equally-spaced points (b1
k , . . . , bnk

k ) along each Qk
0.

2. Compute the elements in f−1(b`k) for ` = 1, . . . , nk.
3. Extract from f−1(b`k) the inverse image points (a1

k , . . . , ank
k ) that minimize the sum of the distances

to p1 and p2.
4. Taylor expand f about a`k for ` = 1, . . . , nk.
5. Obtain the desired single-valued branch γ`

k of f−1 by inverting the Taylor series for f at a`k.
The choice of branch yields

γ`
k(b

`
k) = a`k.
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6. Compute the “pulled” segmented paths that span (p1, p2):

P1
1 =

(
γ1

1(Q
1
0), . . . , γn1

1 (Q1
0)
)

...

Pm
1 =

(
γ1

m(Q
m
0 ), . . . , γnm

m (Qm
0 )
)
.

Figure 6. A P-cap in a B62.

Notice that, in a pulled segment, different branches of the inverse map are applied to the same
parametrized segment Qk

0. We arrive at the appropriate pulled segment by selecting a subinterval of
the parameter interval. In the triangular case, we get first-generation pulled edges (T1

1 , . . . , Tn
1 ).

Step three begins an iteration of the process by moving the pulled segments to the pushed
locations: (

Q1,1
1 = S1(X1

1), Q1,2
1 = S1(X2

1), . . . , Qm,m
1 = Sm(Xm

1 )
)

and (
U1,1

1 = Z1(Y1
1 ), U1,2

1 = Z1(Y2
1 ), . . . , Un,n

1 = Zn(Yn
1 )
)
,

where Xk
1 and Yk

1 are either Pk
1 or Tk

1 . Observe that the subscript of P, Q, T, and U is the generation
number. The group elements Sk and Zk act on each component of the respective Xk

1 or Yk
1 . For example,

Qk,`
1 = Sk(P`

1 ) =
(
Sk(γ

1
k(Q

`
0)), . . . , Sk(γ

nk
k (Q`

0))
)
.

Applying the push transformations Sk to the centers of Taylor expansion ar
` produces a fresh set

of points (
b`,1

k = Sk(a1
`), . . . , b`,nk

k = Sk(ank
` )
)

on the pushed segments Qk,`
1 . Inverse images of the b`,i

k then become a new set of Taylor centers a`,i
k

with associated branches γ`,i
k of f−1.

Next, the fourth step constructs second-generation segments at (p1, p2) and (t1, t2) by pulling
back the pushed edges. For a pentagonal edge,

Pk,`
2 =

(
γ`,1

k (Qk,`
1 ), . . . , γ

`,nk
k (Qk,`

1 )
)
.
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The second-generation approximation of P is the collection of segments(
(P1,1

2 , . . . , P1,n1
2 ), . . . , (Pm,1

2 , . . . , Pm,nm
2 )

)
.

As before, when the second-generation segments are pushed and then pulled, the group elements
distribute over components, whereas the components distribute over the branches of f−1 .

Letting the number of iterations of the push–pull algorithm grow without bound, the edge
P emerges: ⋃

(ki)

· · · ◦
(
γkr ,...,k1

kr+1
◦ Skr+1

)
◦
(
γ

kr−1,...,k1
kr

◦ Skr

)
◦ · · · ◦

(
γk1

k2
◦ Sk2

)
(P0) = P,

where (ki) ranges over all permissible sequences. Grouping the push–pull action as
(
γ ◦ S

)
produces

a set that spans the endpoints of P0. A similar dynamic yields a triangular edge T.
Evidently, for a selected (ki), the procedure converges due to the collection{

γ
kr−1,...,k1
kr

◦ Skr

}
being a normal family ([2], Theorem 9.2.1). In more geometric terms, under f , a proto-edge undergoes
a net expansion. As exemplified in Figure 5, P0 experiences roughly a three-fold stretch and T0

expands approximately by a factor of five. The expanding behavior occurs on the complement of
a neighborhood of the superattracting periodic points. When pulled back, the pieces of the pushed
proto-edges that are bounded away from the critical points undergo a net contraction reciprocal to the
expansion under forward iteration. In each push–pull cycle, this contraction occurs away from points
in the pre-critical set ∪k f−k(C f ), while the push transformation is a spherical isometry. The iterative
effect of this contraction is clustering among the pulled-back points.

With P and T in hand, the icosahedral action produces a system of edges for a dynamical
polyhedron: E f = I(P) ∪ I(T). Graphical constructions of second-generation approximations
for the 31-maps appear in the following section. This construction satisfies a key property of
a dynamical polyhedron.

Proposition 2. The system of edges E f is forward invariant under f .

Proof. The push–pull construction of P iterates the map γ ◦ S where, for ease of description, indices are
suppressed. That is,

(γ ◦ S)r(P0)
r→∞−−−→ A ⊂ P.

(Since the γ maps are local inverses of f , the limit set A is only contained in P.) Applying f gives

f ◦ (γ ◦ S)r(P0)
r→∞−−−→ f (A)

f ◦ (γ ◦ S) ◦ (γ ◦ S)r−1(P0)
r→∞−−−→ f (A)

( f ◦ γ) ◦ S ◦ (γ ◦ S)r−1(P0)
r→∞−−−→ f (A)

S ◦ (γ ◦ S)r−1(P0)
r→∞−−−→ f (A).

Since
S ◦ (γ ◦ S)r−1(P0)

r→∞−−−→ S(A),

f (A) = S(A) ⊂ I(P). Of course, a similar result holds for a triangular edge T.

Worth noting here is that we can view a dynamical polyhedron as a graph on the sphere or
plane that covers itself under its associated map. As such, the B62 geometry of a graph determined by
a 31-map would appear to be non-hyperbolic [10].
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7.2. Combinatorial Classification

Here, we’ll treat the behavior of the 56 maps that result from solving the parameter equations
P12 = 0, P20 = 0, and P24 = 0. For a map f , the computational graphics displayed in Section 8 solves
a combinatorial problem: Given a face A of f ’s polyhedron, what collection of faces does f (A) cover?

Referring to the graphical results, the second-generation system of edges E f appears in white.
(Note the change in usage: here, E f refers to an approximation of the actual system of edges.) Gaps
around the critical points are due to the large expansion under the pullback. Given a point z0 on
an edge, we pull back to f−1(z0) by solving f (z) = z0. In the plot on the left side, the gray curves
correspond to the inverse image f−1(E f ). The pulled-back edges reveal the beginnings of a fractal
structure: within each face A, there is a collection of “pre-faces” that indicates what face-types f (A)

covers. Note that E f is close to being a subset of f−1(E f )—visual evidence that E f is approximately
f -invariant.

Using a map-coloring procedure, we can discern which faces f (A) covers. Given a map f (z) on
C, define color functions for hue and luminosity

H f (z) =
Arg( f (z))

2 π
and L f (z) = 2−| f (z)|,

where Arg(z) ∈ [0, 2 π] is a branch of the argument taken modulo 2 π. Each function takes on values
in [0, 1] with hue varying from blue to green and luminosity from bright to dark.

The plots on the right show E f overlaid on a reference coloring for the identity map I. On the left,
we see the pulled-back faces on top of the coloring for a 31-map f . By matching the color properties of
a pre-face on the left with those of a face on the right, we can determine which face turns out to be its
image. That is, f (z) = w when

(H f (z), L f (z)) = (HI(w), LI(w)).

For instance, the point at infinity is the center of a pentagonal face P∞. As a consequence, | f (z)| is
large and dark pentagonal pre-faces cover P∞.

The maps are classified according to their combinatorial and topological descriptions.
Pullback structures within a class are topologically equivalent.

By way of illustrating the combinatorics and topology, we consider the map g introduced
previously. Its critical set realizes an achiral B62 configuration whereby the critical points lie on
the mirrors of reflective icosahedral symmetry. As is the case for all of the 31-maps, the centers of
a pentagon and triangle are fixed by g while a quadrilateral’s center is sent to its antipode.

The geometric behavior of g differs from that of the two soccer ball maps—which are not included
here since their dynamical polyhedra do not have B62 structure and they have been considered
elsewhere. A face does not map to the complement of an antipodal face, as that would require the
degree to be 61. Computational graphics (plots at the top of Class I) reveal that g wraps a face onto
a union of P-caps that is icosahedrally associated with the face. The image of a pentagonal face P
covers the cap to which it belongs as well as the five caps that intersect P’s cap. For a triangular face
T, g(T) covers the three caps whose intersection includes T. Finally, the image of a quadrilateral Q
covers the complement of four P-caps two of which intersect Q while the other two caps intersect the
former two caps.

Using its geometric description, we can work out g’s topological degree by counting inverse
images. The relevant data are recorded in Table 1 as the number of faces of each type that belong to the
g-image of a given face-type. For instance, the first row reports that a pentagon maps to six caps the
union of which contains six pentagons, fifteen triangles, and twenty quadrilaterals.
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Table 1. Images of faces under g.

P T Q

P −→ 6 15 20
T −→ 3 10 12
Q −→ 8 8 15

The number of times a pentagonal face is covered equals the total number of pentagons that
appear as images of faces divided by the number of pentagonal faces. Reading down the P column,

12 · 6 + 20 · 3 + 30 · 8
12

= 31.

Similar treatment of triangular and quadrilateral faces yields the number of faces in the inverse
image of the respective face:

12 · 15 + 20 · 10 + 30 · 8
20

=
12 · 20 + 20 · 12 + 30 · 15

30
= 31.

The gallery of plots places the maps into combinatorial classes, with three exceptions. Each class
has a complementary class for which the topological description replaces “n P-caps about X” by
“complement of n P-caps about X̃” and “complement of n P-caps about X” by “n P-caps about X̃”
where X̃ is the antipode of X. Of course, a chiral map f and its heterochiral partner f (not shown)
belong to the same class.

8. Periodic Table

Tables 2 to 14 record the combinatorial data regarding the covering behavior of each class of maps.
Class I

P −→ six P-caps about P

T −→ three P-caps about T

Q −→ complement of four P-caps about Q

the map g discussed in Section 6 period 2, achiral
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period 3

period 5

period 5
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Table 2. Class I

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 15 20 12 · P←− 12 · 6 + 20 · 3 + 30 · 8 = 12 · 31
T −→ 3 10 12 20 · T ←− 12 · 15 + 20 · 10 + 30 · 8 = 20 · 31
Q −→ 8 8 15 30 ·Q←− 12 · 20 + 20 · 12 + 30 · 15 = 30 · 31

Class Ic

P −→ complement of six P-caps about P̃

T −→ complement of three P-caps about T̃

Q −→ four P-caps about Q̃

the map h discussed in Section 6 period 2, achiral

period 2
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period 3

period 3

Table 3. Class Ic

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 5 10 12 · P←− 12 · 6 + 20 · 9 + 30 · 4 = 12 · 31
T −→ 9 10 18 20 · T ←− 12 · 5 + 20 · 10 + 30 · 12 = 20 · 31
Q −→ 4 12 15 30 ·Q←− 12 · 10 + 20 · 18 + 30 · 15 = 30 · 31
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Class II

P −→ one P-cap about P

T −→ three P-caps about T

Q −→ complement of two P-caps about Q

period 3

period 5

period 5
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Table 4. Class II

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 1 5 5 12 · P←− 12 · 1 + 20 · 3 + 30 · 10 = 12 · 31
T −→ 3 10 12 20 · T ←− 12 · 5 + 20 · 10 + 30 · 12 = 20 · 31
Q −→ 10 12 21 30 ·Q←− 12 · 5 + 20 · 12 + 30 · 21 = 30 · 31

Class IIc

P −→ complement of one P-cap about P̃

T −→ complement of three P-caps about T̃

Q −→ two P-caps about Q̃

period 3

period 3
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period 5

Table 5. Class IIc

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 11 15 25 12 · P←− 12 · 11 + 20 · 9 + 30 · 2 = 12 · 31
T −→ 9 10 18 20 · T ←− 12 · 15 + 20 · 10 + 30 · 8 = 20 · 31
Q −→ 2 8 9 30 ·Q←− 12 · 25 + 20 · 18 + 30 · 9 = 30 · 31

Class III

P −→ six P-caps about P

T −→ nine P-caps about T

Q −→ complement of eight P-caps about Q

period 3
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period 3

period 5

Table 6. Class III

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 15 20 12 · P←− 12 · 6 + 20 · 9 + 30 · 4 = 12 · 31
T −→ 9 19 27 20 · T ←− 12 · 15 + 20 · 19 + 30 · 2 = 20 · 31
Q −→ 4 2 5 30 ·Q←− 12 · 20 + 20 · 27 + 30 · 5 = 30 · 31

Class IIIc

P −→ complement of six P-cap about P̃

T −→ complement of nine P-caps about T̃

Q −→ eight P-caps about Q̃
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period 3

period 5

period 5
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Table 7. Class IIIc

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 5 10 12 · P←− 12 · 6 + 20 · 3 + 30 · 8 = 12 · 31
T −→ 3 1 3 20 · T ←− 12 · 5 + 20 · 1 + 30 · 18 = 20 · 31
Q −→ 8 18 25 30 ·Q←− 12 · 10 + 20 · 3 + 30 · 25 = 30 · 31

Class IV

P −→ P = complement of 11 P-caps about P̃

T −→ complement of nine P-caps about T̃

Q −→ ten P-caps about Q̃

period 5

period 5
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Table 8. Class IV

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 1 0 0 12 · P←− 12 · 1 + 20 · 3 + 30 · 10 = 12 · 31
T −→ 3 1 3 20 · T ←− 12 · 0 + 20 · 1 + 30 · 20 = 20 · 31
Q −→ 10 20 29 30 ·Q←− 12 · 0 + 20 · 3 + 30 · 29 = 30 · 31

Class IVc

P −→ complement of P̃ = 11 P-caps about P

T −→ nine P-caps about T

Q −→ complement of ten P-caps about Q

period 2

Table 9. Class IVc

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 11 20 30 12 · P←− 12 · 11 + 20 · 9 + 30 · 2 = 12 · 31
T −→ 9 19 27 20 · T ←− 12 · 20 + 20 · 19 + 30 · 0 = 20 · 31
Q −→ 2 0 1 30 ·Q←− 12 · 30 + 20 · 27 + 30 · 1 = 30 · 31

Class V

P −→ one P-cap about P

T −→ complement of nine P-caps about T̃

Q −→ complement of 7-block about Q (7-block = Q-cap− 2 ·Q)
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period 2

Table 10. Class V

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 1 5 5 12 · P←− 12 · 1 + 20 · 3 + 30 · 10 = 12 · 31
T −→ 3 1 3 20 · T ←− 12 · 5 + 20 · 1 + 30 · 18 = 20 · 31
Q −→ 10 18 27 30 ·Q←− 12 · 5 + 20 · 3 + 30 · 27 = 30 · 31

Class Vc

P −→ complement of one P-cap about P̃

T −→ nine P-caps about T

Q −→ 7-block about Q̃

period 5
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Table 11. Class Vc

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 11 15 25 12 · P←− 12 · 11 + 20 · 9 + 30 · 2 = 12 · 31
T −→ 9 19 27 20 · T ←− 12 · 15 + 20 · 19 + 30 · 2 = 20 · 31
Q −→ 2 2 3 30 ·Q←− 12 · 25 + 20 · 27 + 30 · 3 = 30 · 31

Exceptional cases

P −→ six P-caps about P

T −→ complement of three P-caps at T̃

Q −→ two P-caps ∪ 2 · P ∪ 2 ·Q about Q̃

period 2

Exceptional cases

P −→ six P-caps about P

T −→ complement of three P-caps at T̃

Q −→ two P-caps ∪ 2 · P ∪ 2 ·Q about Q̃

period 2



Symmetry 2020, 12, 177 29 of 30

Table 12. Exceptional case

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 15 20 12 · P←− 12 · 6 + 20 · 9 + 30 · 4 = 12 · 31
T −→ 9 10 18 20 · T ←− 12 · 15 + 20 · 10 + 30 · 8 = 20 · 31
Q −→ 4 8 11 30 ·Q←− 12 · 20 + 20 · 18 + 30 · 11 = 30 · 31

P −→ one P-cap about P

T −→ T

Q −→ 18 T-caps about Q̃ (complement of Q ∪ 2 · T)

period 3

Table 13. Exceptional case

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 1 5 5 12 · P←− 12 · 1 + 20 · 0 + 30 · 12 = 12 · 31
T −→ 0 1 0 20 · T ←− 12 · 5 + 20 · 1 + 30 · 18 = 20 · 31
Q −→ 12 18 29 30 ·Q←− 12 · 5 + 20 · 0 + 30 · 29 = 30 · 31

P −→ complement of six P-caps about P̃

T −→ complement of six P-caps about T̃

Q −→ six P-caps about Q̃
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period 5

Table 14. Exceptional case

P T Q a · X ←− Total Number of Times X Faces Are Covered

P −→ 6 5 10 12 · P←− 12 · 6 + 20 · 6 + 30 · 6 = 12 · 31
T −→ 6 4 9 20 · T ←− 12 · 5 + 20 · 4 + 30 · 16 = 20 · 31
Q −→ 6 16 21 30 ·Q←− 12 · 10 + 20 · 9 + 30 · 21 = 30 · 31
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