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Abstract: Let G be a simple connected graph. In this paper, we study the spectral properties of the
generalized distance matrix of graphs, the convex combination of the symmetric distance matrix
D(G) and diagonal matrix of the vertex transmissions Tr(G). We determine the spectrum of the
join of two graphs and of the join of a regular graph with another graph, which is the union of two
different regular graphs. Moreover, thanks to the symmetry of the matrices involved, we study the
generalized distance spectrum of the graphs obtained by generalization of the join graph operation
through their eigenvalues of adjacency matrices and some auxiliary matrices.
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1. Introduction

Complicated graph structures can often be built from relatively simple graphs via graph-theoretic
binary operations such as products. Graph spectrum provides a unique way of characterizing graph
structures, sometimes even identifying the entire graph classes. Moreover, using simple graph
operations, the spectra of complicated graphs may be constructed from those of small and simple
graphs. The interplay between graph spectra (including adjacency, Laplacian, etc.) and various binary
graph operations such as corona, edge corona, and disjoint union has been extensively studied in the
literature; see e.g., [1–6].

In this paper, we consider simple connected graphs [7]. A graph G is represented by
G = (V(G), E(G)), in which the set V(G) = {v1, v2, . . . , vn} represents its vertex set and E(G) is
the edge set connecting pairs of distinct vertices. The number n = |V(G)| is referred to as the order of
G and |E(G)| is the size of it. A vertix adjacent to a vertex v ∈ V(G) is called the neighborhood of v and
is presented by N(v). The degree of a vertex v is the cardinality of its neighborhood and denoted by
dG(v) or simply dv. A regular graph has the same degree for all vertices. The distance duv is the length
of a shortest path between two vertices u and v. The maximum distance between two vertices is called
the diameter of a graph. The matrix D(G) = (duv)u,v∈V(G) is called the distance matrix of G. As usual, G
is the complement of the graph G. Moreover, the complete graph Kn, the complete bipartite graph Ks,t,
the path Pn, the cycle Cn, and the wheel graph Wn are defined in the conventional way. The sum of
the distances from a vertex v to all other vertices, TrG(v) = ∑

u∈V(G)
duv, is called the transmission degree

of v. A k-transmission regular graph admits TrG(v) = k for any vertex v. Let Tri = TrG(vi). Then the
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sequence {Tr1, Tr2, . . . , Trn} is said to be the transmission degree sequence. The quantity Ti :=
n

∑
j=1

dijTrj

is referred to as the second transmission degree of vi.
The diagonal matrix Tr(G) := diag(Tr1, Tr2, . . . , Trn) characterizes the vertex transmissions of

G. For a connected graph, M. Aouchiche and P. Hansen [8,9] studied the Laplacian and the signless
Laplacian for its distance matrix. The distance Laplacian matrix DL(G) = Tr(G)−D(G) and the distance
signless Laplacian matrix DQ(G) = Tr(G) + D(G) have attracted great recent research attention due
to their usefulness in spectrum theory. Recently, Cui et al. [10] investigated a convex combination
of Tr(G) and D(G) in the form of Dα(G) = αTr(G) + (1− α)D(G), 0 ≤ α ≤ 1, which is called the
generalized distance matrix. Through the study of generalized distance matrix, not only new results can
be derived but existing results can be looked into in a new unified point of view.

Let I be the identity matrix of order n. The characteristic polynomial of Dα(G) can be written
as ψ(G : ∂) = det(∂I − Dα(G)). The generalized distance eigenvalues of G are the zeros of ψ(G : ∂).
Noting that Dα(G) is real and symmetric, we arrange the eigenvalues as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. We call
∂1 the generalized distance spectral radius of G. The generalized distance spectrum and energy have been
recently scoped in [11,12].

The rest of the paper is organized as follows. In Section 2, we study the generalized distance
spectrum of join of regular graphs. We will show that the generalized distance spectrum of join of two
regular graphs can be obtained from their adjacency spectrum. Again using adjacency eigenvalues,
we determine the generalized distance spectrum of join of a regular graph with the union of two
different regular graphs. In Section 3, we use the adjacency matrix eigenvalues and auxiliary matrices
to characterize the generalized distance spectrum of the joined union of regular graphs.

2. On the Generalized Distance Spectrum of Join of Graphs

In this section, we study the generalized distance spectrum of join of regular graphs. We
will establish new relationship between generalized distance spectrum and adjacency spectrum.
As applications, we obtain the generalized distance spectrum of some special graph classes including
complete bipartite graph, complete split graph, wheel graph and some derived graphs from a complete
graph.

Consider two disjoint vertex sets V1 and V2 with |V1| = n1 and |V2| = n2. For two graphs
G1 = (V1, E1) and G2 = (V2, E2), the union is G1 ∪ G2 = (V1 ∪V2, E1 ∪ E2). The join of them is denoted
by G1∇G2 consisting of G1 ∪ G2 and all edges joining each vertex in V1 and each vertex in V2. In other
words, the join of them can be obtained by connecting each vertex of G1 to all vertices of G2.

The following gives the generalized distance spectrum of join of two regular graphs in terms of
their eigenvalues of adjacency matrices.

Theorem 1. Let Gi be an ri-regular graph of order ni, for i = 1, 2. Let r1 = λ1, λ2, . . . , λn1 and r2 =

µ1, µ2, . . . , µn2 are the adjacency eigenvalues of G1 and G2, respectively. The characteristic polynomial of the
generalized distance matrix of G1∇G2 is given by

ψ(G1∇G2 : x) = [x2 − (γ1 + γ2 − (1− α)(n1 + n2))x + γ1γ2 − γ1n1(1− α)− γ2n2(1− α)]
n1
∏
i=2

(
x− αγ1 + (1− α)(λi + 2)

) n2
∏
j=2

(
x− αγ2 + (1− α)(µj + 2)

)
,

where γ1 = 2n1 + n2 − r1 − 2 and γ2 = 2n2 + n1 − r2 − 2.

Proof. For i = 1, 2, let Gi be an ri-regular graph of order ni. Let G = G1∇G2 be the join of the graphs
G1 and G2. It is clear that G is graph of diameter 2. Let V(Gi) = {vi1, vi2, . . . , vini} be the vertex
set of the graph Gi, then the vertex set of G is V(G) = V(G1) ∪ V(G2). For all v ∈ V(G1), we have
Tr(v) = 2n1 + n2 − r1 − 2 and for all u ∈ V(G2), we have Tr(u) = 2n2 + n1 − r2 − 2. Let us label the
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vertices of G, so that the first n1 vertices are from G1. Under this labelling, it can be seen that the
generalized distance matrix of G can be written as

Dα(G) =

(
αγ1 In1 + (1− α)(A1 + 2A1) (1− α)Jn1×n2

(1− α)Jn2×n1 αγ2 In2 + (1− α)(A2 + 2A2)

)
,

where γ1 = 2n1 + n2 − r1 − 2, γ2 = 2n2 + n1 − r2 − 2, Jn1×n2 is an all one matrix, Ini is the identity
matrix of order ni, Ai is the adjacency matrix of Gi and Ai is the adjacency matrix of the complement
Gi, for i = 1, 2.

Since Gi is an ri-regular graph, it follows that eni = (1, 1, . . . , 1)T , the all ones vector of order
ni, is an eigenvector corresponding to the eigenvalue ri of Ai and corresponding to the eigenvalue
ni − 1− ri of Ai. Let x be a vector orthogonal to en1 , satisfying A1x = λx, then A1x = (−λ− 1)x.

Taking X =

(
x
0

)
and using Jn1×n2 x = 0, we have Dα(G)X = [αγ1 − (1− α)(λ + 2)]X. This shows

that αγ1 − (1− α)(λ + 2) is an eigenvalue of Dα(G) corresponding to the eigenvalue λ of A1. Let y be

a vector orthogonal to en2 , satisfying A2y = µy, then A2y = (−µ− 1)y. Taking Y =

(
0
y

)
and using

Jn2×n1 y = 0, we have Dα(G)Y = [αγ2 − (1− α)(µ + 2)]Y. This shows that αγ2 − (1− α)(µ + 2) is
an eigenvalue of Dα(G) corresponding to the eigenvalue µ of A2. The equitable quotient matrix of
Dα(G) is

M =

(
αn2 + 2n1 − r1 − 2 (1− α)n2

(1− α)n1 αn1 + 2n2 − r2 − 2

)
.

Since the characteristic polynomial of M is x2− (γ1 + γ2− (1− α)(n1 + n2))x + γ1γ2− γ1n1(1− α)−
γ2n2(1− α) and any eigenvalue of M is an eigenvalue of Dα(G) [13], the result follows.

Let Kr,s be the complete bipartite graph. It is well-known that Kr,s = Kr∇Ks. We have the following
observation from Theorem 1, which gives the generalized distance spectrum of Kr,s.

Corollary 1. The generalized distance eigenvalues of Kr,s consists of the eigenvalue α(2r + s) − 2 with
multiplicity r − 1, the eigenvalue α(2s + r) − 2 with multiplicity s − 1 and the eigenvalues x1, x2 =
α(s+r)+2(s+r)−4±

√
(r2+s2)(α−2)2+2rs(α2−2)

2 .

Proof. Similarly as in Theorem 1, this can be proved by taking n1 = r, n2 = s, r1 = r2 = 0 and
λi = µj = 0, for all i, j.

Let Wn+1 be the wheel graph of order n + 1. It is well known that Wn+1 = Cn∇K1. Using the
fact that the adjacency spectrum of Cn is {2 cos( 2π(j−1)

n ) : j = 1, 2, . . . , n}, we have the following
observation from Theorem 1, which gives the generalized distance spectrum of Wn+1.

Corollary 2. The generalized distance eigenvalues of the wheel graph Wn+1 consists of the eigenvalues
α(2n − 3) − (1 − α)(2 + 2 cos( 2π(i−1)

2 )), i = 2, 3, . . . , n and also the eigenvalues x1, x2 =
(α+2)n+α−4±

√
[(α+2)n+α−4]2−8αn(n−1)+4n

2 .

Proof. Proof follows from Theorem 1, by taking n1 = n, n2 = 1, r1 = 2, r2 = 0 and λi = 2 cos( 2π(i−1)
n ),

for i = 2, 3, . . . , n.

The graph CSt,n−t of order n is called complete split graph. It is constructed by linking each
vertex of a clique of t vertices to each vertex of an independent set of n− t vertices. It is clear that
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CSt,n−t = Kt∇Kn−t. Using the fact that the adjacency spectrum of Kt is {t− 1,−1[t−1]}, we have the
following observation from Theorem 1, which gives the generalized distance spectrum of CSt,n−t.

Corollary 3. The generalized distance eigenvalues of CSt,n−t consists of the eigenvalues αn − 1 with
multiplicity t− 1, the eigenvalue α(2n− t)− 2 with multiplicity n− t− 1 and the eigenvalues
x1, x2 = 2n−t+αn−3±

√
θ

2 , θ = (5− 4α)t2 + (6αn− 8n− 4α + 6)t + n2(α− 2)2 + 2nα− 4n + 1.

Proof. Similarly as in Theorem 1, this can be shown by taking n1 = t, n2 = n− t, r1 = t− 1, r2 = 0,
λi = −1, for i = 2, 3, . . . , t and µj = 0, for j = 2, 3, . . . , n− t.

In the next result, we work out the relationship between the generalized distance spectrum of the
join of regular graphs and their adjacency spectra.

Theorem 2. For i = 0, 1, 2, let Gi be ri-regular with order ni. Let A(Gi) be their adjacency matrices and the
adjacency eigenvalues are λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni . We have that the generalized distance spectrum of
G0∇(G1 ∪ G2) is eigenvalues α(m + n0 + λ0,j − r0)− λ0,j − 2 for j = 2, . . . , n0, and α(2m− n0 + λi,j −
ri)− λi,j − 2, for i = 1, 2 and j = 2, 3, . . . , ni, where m = ∑2

i=0 ni, and three extra eigenvalues defined by the
eigenvalues of the following matrix Θ0 (1− α)n1 (1− α)n2

(1− α)n0 Θ1 2(1− α)n2

(1− α)n0 2(1− α)n1 Θ2

 , (1)

where Θ0 = α(m− n0) + 2n0 − r0 − 2, and Θi = α(2m− n0 − 2ni) + 2ni − ri − 2, i = 1, 2.

Proof. Given i = 0, 1, 2. Assume Gi is ri-regular and has ni vertices. Let G = G0∇(G1 ∪ G2) be the
join of the graphs G0 and G1 ∪ G2. Obviously, G has diameter 2. Let V(Gi) = {vi1, vi2, . . . , vini} be
the vertex set of the graph Gi, then the vertex set of G is V(G) = V(G0) ∪ V(G1) ∪ V(G2). For all
v ∈ V(G0), we have Tr(v) = m + n0− r0− 2, for all u ∈ V(G1), we have Tr(v) = 2m− n0− r1− 2 and
for all w ∈ V(G2), we have Tr(w) = 2m− n0 − r2 − 2. Let us label the vertices of G, so that the first n0

vertices are from G0, the next n1 vertices are from G1 and the next n2 vertices are from G2. Under this
labelling, the generalized distance matrix of G has the form

Dα(G) =

 S0 (1− α)Jn0×n1 (1− α)Jn0×n2

(1− α)Jn1×n0 S1 2(1− α)Jn1×n2

(1− α)Jn2×n0 2(1− α)Jn2×n1 S2

 ,

where S0 = α
(
(m + n0 − r0)In0 + A(G0) − 2Jn0

)
+ 2(Jn0 − In0) − A(G0), and Si = α

(
(2m − n0 −

ri)Ini + A(Gi)− 2Jni

)
+ 2(Jni − Ini )− A(Gi), for i = 1, 2.

For a regular graph Gi, the all ones vector eni = (1, 1, . . . , 1)T of order ni is an eigenvector
corresponding to the eigenvalue ri. Other eigenvectors are orthogonal to eni . Therefore, the all
ones vector en0 = (1, 1, . . . , 1)T of order n0 is an eigenvector corresponding to the eigenvalue r0.
Other eigenvectors are orthogonal to en0 . Suppose that λ be an eigenvalue of adjacency matrix of G0

and its eigenvector is x satisfying eT
n0

x = 0, then (xT 01×n1 01×n2)
T is an eigenvector of Dα(G) with

the eigenvalue α(m + n0 + λ− r0)− λ− 2. Let µ, ξ be any eigenvalues of the adjacency matrix of G1

and G2 with associated eigenvector y and z satisfying eT
n1

y = 0, eT
n2

z = 0, respectively. In a similar
way, it can be seen that the vectors (01×n0 yT 01×n2)

T and (01×n0 01×n1 zT)T are eigenvectors of
Dα(G) with corresponding eigenvalues α(2m− n0 + µ− r1)− µ− 2 and α(2m− n0 + ξ − r2)− ξ − 2,
respectively.

Hence, we obtained eigenvectors (xT 01×n1 01×n2)
T , (01×n0 yT 01×n2)

T and (01×n0 01×n1

zT)T . They are m− 3 eigenvectors. It is easy to see that they are orthogonal to (eT
n0

01×n1 01×n2)
T ,
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(01×n0 eT
n1

01×n2)
T and (01×n0 01×n1 eT

n2
)T . All other three eigenvectors of Dα(G) can be

represented by (βeT
n0

γeT
n1

θeT
n2
)T for some (β, γ, θ) 6= (0, 0, 0).

Suppose that ν is an eigenvalue of the matrix Dα(G) with associated eigenvector X =

(βeT
n0

, γeT
n1

, θeT
n2
)T . Recall that Dα(G)X = νX, and A(Gi)eni = rieni (i = 0, 1, 2). We obtain:

(α(m− n0) + 2n0 − r0 − 2)β + (1− α)n1γ + (1− α)n2θ = νβ,

(1− α)n0β + (α(2m− n0 − 2n1) + 2n1 − r1 − 2)γ + 2(1− α)n2θ = νγ,

(1− α)n0β + 2(1− α)n1γ + (α(2m− n0 − 2n2) + 2n2 − r2 − 2)θ = νθ.

These equations admit a nontrivial solution only if (1) has an eigenvalue ν. Moreover, any nontrivial
solution of the equations is an eigenvector of Dα(G) associated to ν. As the remaining three eigenvectors
of Dα(G) are formed like this, it is obvious that any eigenvalue of (1) is also an eigenvalue of Dα(G).

Consider the graph G(n0, n1, n2) = Kn0∇(Kn1 ∪ Kn2). We have the following observation from
Theorem 2, which gives the generalized distance spectrum of G(n0, n1, n2).

Corollary 4. The generalized distance eigenvalues of G(n0, n1, n2) consists of eigenvalue αm − 1,
with multiplicity n0 − 1, the eigenvalue α(2m − n0 − n1) − 1, with multiplicity n1 − 1, the eigenvalue
α(2m− n0 − n2)− 1, with multiplicity n2 − 1 and three more eigenvalues which are the eigenvalues of the
matrix α(m− n0) + n0 − 1 (1− α)n1 (1− α)n2

(1− α)n0 α(2m− n0 − 2n1) + n1 − 1 2(1− α)n2

(1− α)n0 2(1− α)n1 α(2m− n0 − 2n2) + n2 − 1

 ,

where m = ∑2
i=0 ni.

Proof. Proof follows from Theorem 2, by taking r0 = n0 − 1, r1 = n1 − 1, r2 = n2 − 1, λi,j = −1, for all
i = 0, 1, 2 and j = 2, 3, . . . , ni.

Suppose we have a complete graph Kn of order n. The graph Kn − e is obtained by removing an
edge e from Kn. Taking n0 = n− 2, n1 = n2 = 1 and m = n, in Corollary 4, we obtain the generalized
distance spectrum of the graph Kn − e given by {αn− 1[n−3], x1, x2, x3}, where x1, x2 and x3 are the
roots of the equation f (x) = x3 − [2α(n + 1) + n− 3]x2 + [(n2 + 2n)α2 + 2n(n− 1)α− 2n]x− [(n3 +

n2 + 4)α2 − 2α(n2 + 4) + 4] = 0.

3. The Generalized Distance Spectrum of the Joined Union

In this section, we describe the relationship between generalized distance spectrum and the
adjacency spectrum of the joined union of regular graphs.

The spectrum of a graph may determine the class of graphs that share the same properties. There
have been some different names for the binary graph operation to be introduced below. We will call
it joined union following [4,6]. This operation is also called generalized composition [14] or H-join
[3]. Let G = (V, E) have order n and Gi = (Vi, Ei) have order mi, for i = 1, . . . , n. The joined union
G[G1, . . . , Gn] is the graph H = (W, F) satisfying:

W =
n⋃

i=1

Vi

and F =
n⋃

i=1

Ei ∪
⋃

{vi ,vj}∈E

Vi ×Vj.
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Clearly, the joined union graph can be constructed by taking the union of G1, . . . , Gn and linking
any pair of vertices between Gi and Gj if vi and vj are neighbors in G. By this definition, the usual join
of G1 and G2 can be viewed as K2[G1, G2], which is a special joined union graph.

Theorem 3. Suppose G is a graph with diameter at most 2 over V(G) = {v1, . . . , vn}. Denote by Gi an
ri-regular graph of order mi and adjacency eigenvalues λi1 = ri ≥ λi2 ≥ . . . ≥ λimi , where i = 1, 2, . . . , n. The
generalized distance spectrum of the joined union G[G1, . . . , Gn] consists of the eigenvalues α(2m + λik −m′i −

ri)− λik − 2 for i = 1, . . . , n and k = 2, 3, . . . , mi, where m =
n

∑
i=1

mi and m′i = ∑
vivj∈E(G)

mj. The remaining n

eigenvalues are given by the matrix
M1,1 (1− α)m2dG(v1, v2) . . . (1− α)mndG(v1, vn)

(1− α)m1dG(v2, v1) M2,2 . . . (1− α)mndG(v2, vn)
...

...
. . .

...
(1− α)m1dG(vn, v1) (1− α)m2dG(vn, v2) . . . Mn,n

 , (2)

where Mi,i = α(2m− 2mi −m′i) + 2mi − ri − 2.

Proof. Let G be a graph over V(G) = {v1, . . . , vn} and let V(Gi) = {vi1, . . . , vini} be the vertex set
of graph Gi, for i = 1, 2, . . . , ni. Suppose that H = G[G1, . . . , Gn] is the joined union of the graphs
G1, G2, . . . , Gn. By appropriately labelling the vertices of the graph H, we see that the generalized
distance matrix Dα(H) of the graph H can be put into the form

Dα(H) =


S1 (1− α)dG(v1, v2)Jn1×n2 . . . (1− α)dG(v1, vn)Jn1×nn

(1− α)dG(v2, v1)Jn2×n1 S2 . . . (1− α)dG(v2, vn)Jn2×nn
...

...
. . .

...
(1− α)dG(vn, v1)Jnn×n1 (1− α)dG(vn, v2)Jnn×nn−1 . . . Sn

 ,

where for i = 1, 2, . . . , n,

Si = (1− α)(2(Jni − Ini )− A(Gi)) + α(2m− 2− ri −m′i)Ini

= α
(
(2m− ri −m′i)Ini − 2Jni + A(Gi)

)
+ 2Jni − 2Ini − A(Gi),

Jni is the all-one matrix, A(Gi) is the adjacency matrix, and Ini is the identity matrix of order ni.
Since Gi is ri-regular, the all-one vector emi is an eigenvector of A(Gi) associated to eigenvalue

ri. The rest of the eigenvectors turn out to be orthogonal to emi . We do not require connectivity of Gi
and likewise we do not require ri to be a simple eigenvalue. Suppose that λ is an eigenvalue of A(Gi)

associated with the eigenvector X = (xi1, xi2, . . . , xini )
T satisfying eT

mi
X = 0. Note that X is essentially

defined over V(Gi) and allows a correspondence from vij to xij. Namely, X(vij) = xij (i = 1, 2, . . . , n,
j = 1, 2, . . . , ni). Given the vector Y = (y1, y2, . . . , ym)T , where

yj =

{
xij if vij ∈ V(Gi)

0 otherwise.

It can seen that the vector Y is an eigenvector of Dα(H) corresponding to the eigenvalue α(2m + λ−
m′i − ri) − λ − 2. There exists a total of m − n mutually orthogonal eigenvectors of Dα(H) in this
manner. They turn out to be orthogonal to the vectors 1i = (zi

1, zi
2, . . . , zi

m)
T , where i = 1, . . . , n, and

zi
j =

{
1 if vij ∈ V(Gi)

0 otherwise.
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This implies that the rest n eigenvectors of Dα(H) are spanned by the vectors 11, 12, . . . , 1n, which due
to the fact that 11, 12, . . . , 1n appear to be linearly independent, suggests that the rest eigenvectors of

Dα(H) are
n

∑
i=1

βi1i for some coefficients β1, . . . , βn.

Assume that µ is an eigenvalue of Dα(H) associated to an eigenvector
n

∑
i=1

βi1i. As A(Gi)emi = riemi ,

(i = 1, . . . , n,)

Dα(H)
n

∑
i=1

βi1i =
n

∑
i=1

βiDα(H)1i

=
n

∑
i=1

βi

(
α(2m− 2mi −m′i) + 2mi − ri − 2

)
1i + ∑

k 6=i
dG(vk, vi)mi1k

=
n

∑
i=1

(
(α(2m− 2mi −m′i) + 2mi − ri − 2)βi + ∑

k 6=i
dG(vk, vi)mkβk

)
1i

= µ
n

∑
i=1

βi1i.

We derive the following equations involving β1, . . . , βn :(
α(2m− 2mi −m′i) + 2mi − ri − 2− µ

)
βi + ∑

k 6=i
dG(vk, vi)mkβk = 0, i = 1, . . . , n. (3)

This set of equations admits a nontrivial solution only if µ becomes an eigenvalue of (2). Moreover,
any nontrivial solution of (3) appears to be an eigenvector of Dα(H) associated to the eigenvalue µ. We
see that each eigenvalue of (2) must also be an eigenvalue of Dα(H) since the rest n eigenvectors of
Dα(H) are represented in this manner.

The lexicographic product G[H] of two graphs G and H can be constructed in the following way.
The vertex set of G[H] is equivalent to the product set V(G)×V(H). If ab ∈ E(G), or a = b and xy ∈
E(H), then (a, x) and (b, y) are connected, namely, they form an edge in E(G[H]). We know that
G[H] is a special case of joined union G[G1, G2, . . . , Gn] with Gi = H (1 ≤ i ≤ n). When Gi = K1,
it can be seen that G[K1, K1, . . . , K1] = G. In view of Theorem 3, the generalized distance spectrum
of the joined union G[G1, G2, . . . , Gn] can be written using eigenvalues of A(Gi)’s as well as those of
(2). The relationship between the eigenvalues of A(G) and the generalized distance spectrum of the
joined union G[G1, G2, . . . , Gn] is not explicit though. The following example should shed a light on
this relationship. When both G and H are regular graphs and G is a graph of diameter less than or
equal to 2, the general distance spectrum of G[H] can be calculated via Theorem 3.

Corollary 5. Suppose that G is s-regular over n vertices with adjacency eigenvalues µ1 = s ≥ µ2 ≥
. . . ≥ µn and diameter less than or equal to 2. Assume that H is r-regular over m vertices with adjacency
eigenvalues λ1 = r ≥ λ2 . . . ≥ λm. Therefore, the generalized distance spectrum of Dα(G[H]) contains
α(2nm + λk − r− sm)− λk − 2 for 2 ≤ k ≤ m each (n times) together with the eigenvalues of the matrix
m(1− α)(2J− A(G)) + (α(2nm− sm)− r− 2)I, which are 2nm− sm− r− 2 and α(2nm + mµj − sm)−
mµj − r− 2 for 2 ≤ j ≤ n.

It is clear that the complete t-partite graph Km1,m2,...,mt is a joined union of the graphs Gi = Kmi ,
when the parent graph is G = Kt. That is, Km1,m2,...,mt = Kt[Km1 , Km2 , . . . , Kmt ]. The following
observation is a result of Theorem 3 and gives the generalized distance spectrum of, Km1,m2,...,mt ,
the complete t-partite graph.
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Corollary 6. The generalized distance spectrum of Km1,m2,...,mt with m =
t

∑
i=1

mi consists of the eigenvalue

α(m + mi)− 2, for i = 1, 2, . . . , t each mi( times) and the k eigenvalues of the matrix
M1,1 (1− α)m2 . . . (1− α)mn

(1− α)m1 M2,2 . . . (1− α)mn
...

...
. . .

...
(1− α)m1 (1− α)m2 . . . Mn,n

 ,

where Mi,i = α(m−mi) + 2mi − 2.

Proof. Proof follows from Theorem 3 by using ri = 0, m
′
i = m−mi and the fact that the eigenvalues of

Kmi are 0 with multiplicity mi ( i = 1, 2, . . . , t).

Example 1. Considering the family of graphs F = {G1, G2, G3} as depicted in Figure 1 and the graph G = P3,
the path of order 3, the generalized distance matrix Dα(H) of the joined union H = P3[G1, G2, G3] is a block
matrix of the form  S1 J(1− α) 2J(1− α)

J(1− α) S2 J(1− α)

2J(1− α) J(1− α) S3

 ,

where Si = α(14I − 2J + A(Gi)) + 2J − 2I − A(Gi), i = 1, 3 and S2 = α(10I − 2J + A(G2)) + 2J − 2I +
A(G2).

Since the adjacency spectrums of G1, G2, G3 are specA(G1) = {(−1)[2], 2}, specA(G2) = {−1, 1} and
specA(G3) = {−2, 0[2], 2}, respectively, then from Theorem 3, the generalized distance spectrum of H, consists
of the eigenvalues

{
13α− 1[2], 14α− 2[2], 9α− 1, 12α

}
, also with the eigenvalues of the matrix

 10α + 2 2(1− α) 8(1− α)

3(1− α) 7α + 1 4(1− α)

6(1− α) 2(1− α) 8α + 4

 .

Therefore, specDα(H) =
{

13α− 1[2], 14α− 2[2], 9α− 1, 12α, 16α− 4, 9α+11±
√

81α2−202α+137
2

}
.

Note that, as D0(H) = D(H), then the distance spectrum of H is

specD(H) =

{
−1[2],−2[2],−1, 0,−4,

11±
√

137
2

}
.

Also, as D 1
2
(H) = 1

2 DQ(H), then the distance signless Laplacian spectrum of H is

specDQ(H) =
{

8[2], 10[2], 11[2], 7, 12, 23
}

.

Figure 1. The joined union H = P3[G1, G2, G3].



Symmetry 2020, 12, 169 9 of 9

Author Contributions: Formal analysis, A.A., M.B., H.A.G. and Y.S.; Funding acquisition, Y.S.; Supervision, A.A.;
Writing—original draft, A.A., M.B, H.A.G. and Y.S.; Writing—review & editing, A.A. and Y.S. All authors have
read and agreed to the published version of the manuscript.

Funding: Y. Shang was supported in part by the UoA Flexible Fund No. 201920A1001 from Northumbria
University.

Acknowledgments: The authors would like to thank the academic editor and the three anonymous referees for
their constructive comments that helped improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barik, S.; Sahoo, G. On the distance spectra of coronas. Linear Multilinear Algebra 2017, 65, 1617–1628.
2. Barik, S.; Pati, S.; Sarma, B.K. The spectrum of the corona of two graphs. SIAM J. Discrete Math. 2007,

24, 47–56.
3. Cardoso, D.M.; de Freitas, M.A.; Martins, E.A.; Robbiano, M. Spectra of graphs obtained by a generalization

of the join graph operation. Discrete Math. 2013, 313, 733–741.
4. Neumann, M.; Pati, S. The Laplacian spectra of graphs with a tree structure. Linear Multilinear Algebra 2009,

57, 267–291.
5. Shang, Y. Random lifts of graphs: Network robustness based on the Estrada index. Appl. Math. E-Notes 2012,

12, 53–61.
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