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Abstract: The presented manuscript deals with the impact of manufacturing flexibility on cost-time 
investment as a function of sustainable production, which addresses the company’s sustainable 
social and environmental impact adequately. The impact of manufacturing flexibility on cost-time 
investment in the research sphere is not described, despite the fact that we know its key role in the 
high-mix low-volume production types. Recently, researchers have been addressing intensively the 
impacts of various parameters on the sustainable aspect and its dependence on manufacturing 
flexibility. The complexity of the influence parameters is reflected in the multi-criteria nature of 
optimization problems that can be solved with appropriate use of the evolutionary computation 
methods. The manuscript presents a new method of manufacturing flexibility modelling, with 
respect to the four-level architectural model, which reflected as a symmetry phenomena influence 
on the cost-time profile diagram. The solution to a complex optimization problem is derived using 
the proposed improved heuristic Kalman algorithm method. A new method is presented of 
optimization parameters` evaluation with respect to the manufacturing flexibility impacts on cost-
time investment. The large impact of appropriate multi-criteria optimization on a sustainably 
justified production system is presented, with the experimental work on benchmark datasets and 
an application case. The new method allows a comprehensive optimization approach, and 
validation of the optimization results by which we can provide more sustainable products, 
manufacturing processes, and increase the company’s total, social and environmental benefits. 

Keywords: manufacturing flexibility; multi-criteria optimization; sustainability; evolutionary 
computation; symmetry; cost-time profile 

 

1. Introduction 

In the time of Industry 4.0, where the high complexity of manufacturing systems is reflected in 
multi-criteria optimization problems that must be solved while improving the productivity and 
sustainability of the production system. Personalized products in Industry 4.0 manufacturing 
systems are represented by the high-mix low-volume production type [1]. Adequate evaluation of 
the cost-time diagram for the high-mix low-volume production type is not capable of describing fully 
the effects of multi-criteria optimization on a specified production type [2]. The impact of 
manufacturing flexibility on this production type is a key optimization parameter, that needs to be 
well known and described in order to ensure sustainable manufacturing processes [3]. The research 
problem concerns the impact of manufacturing flexibility, and the suitability of the multi-criteria 
optimization methods used on the ability to provide sustainable production [4]. The impact of the 
flexibility on the manufacturing systems and their environmental and financial justification is not 
well described. An appropriately optimized flexible manufacturing system with short flow time and 
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uniformly high machine utilization is a multi-critical optimization problem that can be solved with 
advanced evolutionary computation methods. When introducing the evolutionary computation 
method, the complexity factors in the transfer of mathematical methods should be evaluated in the 
real-world environment. The real-world environment of flexible manufacturing systems that they 
represent are presented as small and mid-sized enterprises, with specific production characteristics, 
which advocates a high ability to adapt to the market demand. The high customization level of the 
customers needs in the manufacturing system, however, results in unevenly occupied, financially 
unjustified and less sustainable manufacturing systems. Therefore, ensuring highly efficient and 
sustainable flexible manufacturing systems is very important. 

Researchers have recently been paying a lot of attention to ensuring sustainably justified 
manufacturing systems, defined as [5]: sustainable manufacturing is the creation of manufactured 
products through economically-time efficient processes that minimize negative environment impacts 
while conserving energy and natural resources [6]. In short: conserve energy (machine and workers` 
utilization, short idle times, optimized transport systems etc.), and natural resources (material 
handling, just in time systems, optimized manufacturing processes and techniques, low material and 
products scrap). Ensuring sustainable manufacturing systems increase growth and global 
competitiveness, with sustainable manufacturing optimized processes that minimize negative 
environmental impacts [7]. Optimized production methods and operations ensure continuously 
improving production system performance, cost and time efficiency, product quality, a safer working 
environment and high flexible manufacturing systems [8]. 

Ensuring sustainable production can be ensured through appropriate optimization approaches 
that optimize multi-criteria optimization problems comprehensively [9]. However, the evaluation of 
optimization methods is determined using a cost-time profile diagram [10]. In the cost-time profile 
diagram, we are talking about defining the impact of accumulated costs over the time period of 
orders. Activities, waiting times and resources define the accumulated costs that describe the 
economically time-efficient production systems, and, thus, minimize negative environmental impacts 
[11]. Evaluating the sustainability of manufacturing systems using a cost-time profile diagram 
identifies single-criteria optimization problems well [2], but is unable to identify and describe the 
manufacturing flexibility influence on the manufacturing systems [12]. The importance of the 
manufacturing flexibility impact is defined as a four level architecture model within the 
manufacturing system [13]. An individual resource level defines the flexibility of the manufacturing 
system`s resources: labor, machinery and material handling. A shop floor level relates to the 
flexibility of the production shop floor: routing and operation flexibilities. It is the operation and 
routing flexibility that defines a flexible job shop scheduling problem as a multi-criteria optimization 
problem [14]. In the third and fourth levels of flexibility, we want to define plant and functional level 
flexibilities, which describe volume, mix, products, modifications, and new product flexibilities. 
These two levels, thus, represent a typical manufacturing system in Industry 4.0, which defines a 
high-mix, low-volume production process [15]. The flexibility defined in this way is a research 
problem that consists of two parts: multi-criteria optimization of flexible manufacturing systems, and 
evaluation of the cost-time profile diagram, depending on the manufacturing flexibility [16]. An 
appropriately valued and optimized cost-time and manufacturing flexibility ratio ensures a 
sustainably justified production system that minimizes negative environmental impacts, enhances 
quality and ensures the company′s global competitive advantage [13]. 

The main contributions of the manuscript are: a new method of manufacturing flexibility 
modelling with a four-level architectural model that describes the high-mix low-volume production 
type with correlation to an Flexible Job Shop Scheduling Problem (FJSSP). Depending on the 
production type, we have defined the three machine groups mathematically, according to the 
parameters of costs, processing times, setup times, energy costs, tool cost, etc. Based on mathematical 
modelling, a new factor is presented between operational and idle costs. Using a cost-time profile 
that describes the production characteristics of activity, resources, times and costs, a simulation 
model is developed using an evolutionary computation method to determine the impact of 
manufacturing flexibility on the economic and sustainable manufacturing efficiency. The numerical 
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results obtained using the simulation scenario method and two test datasets (Kacem and 
Brandimarte) that define manufacturing flexibility, represent a new method of a cost-time-flexibility 
profile diagram, which represents the cost-time investment value as a function of manufacturing 
flexibility. The encouraging multi-criteria optimization results of the test datasets are supported by 
an example implementation of the proposed optimization method on a real-world production 
system. The proposed optimization approach is evaluated by comparing the performance of the self-
designed improved heuristic Kalman algorithm (IHKA) evolutionary computation method and the 
comparative algorithms bare bones multi-objective particle swarm optimization (BBMOPSO) and 
multi-objective particle swarm optimization (MOPSO), with C-metric measures. The optimization 
results demonstrate the high ability to use the IHKA optimization algorithm to schedule order 
optimally in FJSSP production. The proposed algorithm is considered to be the most successful, as 
confirmed by the numerical and graphical results. Numerical multi-criteria optimization results were 
transmitted using an interactive method to a simulation environment, where the dependence of the 
cost-time diagram as a function of manufacturing flexibility is shown. The presented optimization 
results of a real-world manufacturing system prove the successful transfer of the theoretical 
mathematical methods through simulation environments to a real-world manufacturing system. The 
presented research work has shown a high degree of interdependence between the cost-time and the 
adaptive component of flexibility in the manufacturing systems. 

The research work is organized as follows: The second section of the manuscript defines and 
presents the manufacturing flexibility using a four-level architectural model. The individual levels 
and their characteristics are defined, together with the impact on the production process. The third 
section presents a mathematical description of a multi-criteria optimization approach that allows 
solving complex optimization problems of flexible manufacturing systems with the aim of ensuring 
sustainable production. The fourth section presents a new approach to defining manufacturing 
flexibility with respect to the optimization parameters of machine groups, costs, positions and times. 
The influence is presented of the cost-time profile diagram on the manufacturing flexibility. The 
results of the manufacturing flexibility modelling are presented in the fifth section, where a new 
method is described for cost-time investment as a function of manufacturing flexibility evaluation. In 
the sixth section, the newly proposed theoretical methods are transferred to the applied real-world 
example, where the input data of a real-world manufacturing system shows the multi-criteria 
optimization approach with the improved heuristic Kalman algorithm (IHKA) evolutionary 
computation method. The numerical and graphical results of the proposed method are presented, 
and the advantages and limitations of the proposed approach are evaluated. Section Seven concludes 
the paper, with an answer to the initial research question of manufacturing flexibility impact on the 
provision of sustainable manufacturing systems, identifies the advantages and limitations of the 
proposed method and approach, and outlines directions and options for further research. 

2. Manufacturing Flexibility 

Manufacturing flexibility is a multi-dimensional manufacturing objective with no general 
acquiescence on its definition. This is because every manufacturing enterprise looks on the 
manufacturing flexibility in its own way. Manufacturing enterprises can define manufacturing 
flexibility either in an adaptive or proactive manner. The adaptive approach represents the 
defensive/reactive use of flexibility to accommodate unknown uncertainty in a manufacturing system, 
and it addresses both the internal, as well as external, uncertainty faced by manufacturing enterprises. 
An adaptive approach can define manufacturing flexibility as a manufacturer`s ability to adapt or 
change. On the other hand, a proactive approach to the use of flexibility aids the company in gaining 
global competitiveness by raising customer anticipation and increasing the insecurity of enterprise 
rivals. With a proactive approach, we can define manufacturing flexibility as a system’s ability to 
cope with a wide range of possible dynamical environmental changes. From a sustainable enterprise 
viewpoint, manufacturing flexibility should be customer-driven, and refers to the availability of 
personalized products that meet customer needs when there is a demand. From the literature, we can 
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say that it is the ability of a manufacturing system to respond cost effectively and rapidly to changing 
product needs and requirements [3]. 

In this case, the definition reveals clearly that manufacturing flexibility is the ability of a 
manufacturing system to respond effectively and efficiently to the environmental uncertainties 
(manufacturing system and global demand). Manufacturing effectiveness related to manufacturing 
flexibility represents the ability of the system to meet product variety requirements, quantity and at 
the right time, whereas efficiency represents that all system resources must be planned and scheduled 
optimally. A general classification of manufacturing flexibility level is presented in Table 1, where 
manufacturing flexibility is divided into four levels. In our research work, we are focused on 
optimizing all four levels of manufacturing flexibility with a new, effective cost-time evaluation 
method. 

Table 1. Manufacturing flexibility classification. 

Classification 
Level Description 

Individual 
resource level 

Individual resource level refers to flexibility associated with a resource. Labor 
flexibility, machine flexibility and material handling flexibility are included. 

Shop floor level 
Shop floor level refers to flexibility associated with the shop floor. Routing 

flexibility and operation flexibility are included. 

Plant level 

Plant level refers to flexibility associated with plant. 
Volume flexibility, mix flexibility, expansion flexibility and product 

flexibility, modification flexibility and new product 
flexibility are included. 

Functional level Functional level describes manufacturing flexibility. 

The complexity of manufacturing flexibility can be described as environmental uncertainty 
referring to the occurrence of an unexpected change, both within the manufacturing system and 
external dynamic changes. Dynamic variability of products within the manufacturing process refers 
to the flexibility of an advanced personalized variety of products and carrying out different adaptive 
manufacturing techniques. The dynamic variability of manufactured products can be divided in two 
different ways. The first way refers to the range of parts produced in the current time high-mix 
production type. The second way refers to the variation of product output over time, described as the 
low-volume production type. From the defined high-mix low-volume production type, we can 
distinguish between two types of changes: planned and unplanned changes. In sustainable 
manufacturing systems, we want to have as many planned changes as possible, which happen 
because of some well-planned managing actions. On the other hand, we must eliminate unplanned 
changes, which occur independently within the manufacturing systems, with unplanned response 
times. Planned and unplanned changes in manufacturing system flexibility lead to six dimensions: 
machine, operation, routing, volume, expansion, product and process flexibility. In our research work, 
we will refer mostly to manufacturing process flexibility, described as: the ability to produce a given 
set of part types, each possibly using different material, in several different sets of part types that the 
system can produce without major set-ups [17], number and variety of products which can be 
produced without incurring high transition penalties or large changes in performance outcomes [18]. 

3. Multi-Criteria Optimization 

Multi-objective optimization is an area that deals with multi-objective decision-making of 
mathematical and combinatorial optimization problems [19]. Multi-criteria optimization problems 
involve more than one optimization function, where several variables of the optimization problem 
need to be optimized. A main characteristic of multi-objective optimization is that there is not only 
one optimal solution optimizing the optimization function, but, for these functions, there are 
infinitely many Pareto optimal solutions [20]. Pareto optimal solutions are non-dominant, Pareto 
optimal, or Pareto effective. All Pareto optimal solutions in the Pareto space are considered equally 
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appropriate. The field of multi-objective optimization is increasingly present in everyday life, due to 
the optimization problems′ complexity. Multi-objective optimization can be found in all fields of 
sciences, economics, logistics, etc., and where it is necessary to make optimal decisions in the presence 
of trade-offs between two or more conflicting goals [21]. 

In a mathematical sense, a multi-objective problem is formulated as presented with Equation (1): 

min൫𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௞(𝑥)൯;  𝑥 ∈  𝑋, (1) 

where the integer k ≥ 2 represents the number of optimization parameters, and X represents the 
feasible set of decision vectors. A set of decision vectors is usually represented by constraint 
functions. A vector-valued objective function is defined as shown in Equation (2): 

𝑓: 𝑋 → ℝ௞ , 𝑓(𝑥)  =  (𝑓ଵ(𝑥), … , 𝑓௞(𝑥))் . (2) 

Minimizing function negative dependence can be made by maximizing the function. The 
element 𝑥 ∗ ∈ 𝑋 presents a workable solution or a workable decision. The vector 𝑧∗  =  𝑓(𝑥∗) ∈ ℝ௞ 
is called the function vector for the feasible solution x*. Limitation of the multi-objective optimization 
relates to no viable solution that optimizes all of the target functions at the same time. For improving 
Pareto optimal solutions, at least one compromise of the remaining functions goals must be made. 

Using the mathematical notations of Equations (3) and (4), we can conclude that the feasible 
solution x1 ∊ X Pareto is dominated by another solution x2 ∊ X in the case where: 

𝑓௜(𝑥ଵ) ≤ 𝑓௜(𝑥ଶ) for all 𝑖 ∈ {1, 2, … , 𝑘}  (3) 

𝑓௜(𝑥ଵ) < 𝑓௜(𝑥ଶ) for at least one 𝑗 ∈ {1, 2, … , 𝑘} (4) 

is a feasible solution, x* ∈ X and the associated output value f (x *) is Pareto optimal if there is no other 
solution that dominates it. The Pareto group of optimal solutions is called the Pareto front. The Pareto 
front of multi-objective optimization problems is constrained by two vectors: 

 The nadir vector is defined mathematically by Equation (5): 

𝑧௜
௡௔ௗ  =  sup

௫∈௑
𝑓௜(𝑥) for all 𝑖 =  1, … , 𝑘 (5) 

 The ideal vector is defined mathematically by Equation (6): 

𝑧௜
௜ௗ௘௔௟  =  inf

௫∈௑
𝑓௜(𝑥) for all 𝑖 =  1, … , 𝑘 (6) 

The upper and lower bounds for the optimization functions of Pareto optimal solutions are 
defined by the ideal and nadir vector components. An example of Pareto optimal solutions is shown 
in Figure 1, where there are two optimization functions, f1 and f2. The points in the coordinate system 
represent possible Pareto solutions where the point Z is not defined as the Pareto optimal solution, 
because it is dominated by the X and Y points. The points X and Y are not dominated by each other, 
so we can define both as Pareto optimal solutions. 

 
Figure 1. Pareto multi-objective solutions. 
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4. Manufacturing Flexibility Modelling 

Modelling of manufacturing flexibility was performed on the flexible job shop scheduling type 
of manufacturing system. The multi-criteria nature of the flexible job shop scheduling manufacturing 
type is described as: we have n jobs which can be performed on m machines from a set of machines 
(j = 1, …, m) suitable for carrying out the jobs. The choice of using which machine is made according 
to the machine occupancy and the suitability of the individual machines to perform the operation. 
The number of jobs n and number of machines m are given. Each job i has a specific sequence and 
number of operations Oi. The processing time of the operation pjk may vary, depending on the 
machine on which it is performed. For the multi-objective flexible job shop scheduling problem, some 
limitations must be made: 

• One machine can process only one job at a time. 
• One job can be processed only on one machine at a time. 
• When the operation starts it cannot be interrupted until the end of the operation; after  

completion, the next operation can start. 
• All the jobs and operations have equal priorities at the time zero. 
• Each machine m is ready at time zero.  
• Given an operation Oij and the selected machine m, the processing time pij is fixed. 

The multi-criteria flexible job shop scheduling optimization problem involves optimizing three 
criteria, described by Equations (7)–(9). 
• Makespan (time required to complete all jobs): 

f1 = max {Cj | j = 1, …, n} (7) 

 Maximum workload (workload of the most loaded machine): 

𝒇𝟐  =  𝒎𝒂𝒙 ෍ ෍ 𝒑𝒊𝒋𝒌𝒙𝒊𝒋𝒌, 𝒌 =  𝟏, 𝟐, … , 𝒎

𝒏𝒊

𝒋 ୀ 𝟏

𝒏

𝒊 ୀ 𝟏

 (8) 

 Total workload of all machines: 

𝒇𝟑  =  ෍ ෍ ෍ 𝒑𝒊𝒋𝒌𝒙𝒊𝒋𝒌, 𝒌 =  𝟏, 𝟐, … , 𝒎

𝒎

𝒌 ୀ 𝟏

𝒏𝒊

𝒋 ୀ 𝟏

𝒏

𝒊 ୀ 𝟏

 (9) 

where Cj is the completion time of job Ji, and xijk is a decision variable on which individual machine 
the operation will be processed.  

Considering the definition of manufacturing flexibility in Table 1, we can see that a flexible job 
shop scheduling problem is defined as manufacturing flexibility according to the shop floor level 
(routing and operation flexibility associated with a shop floor). For more detailed modelling of 
manufacturing flexibility, we must still define manufacturing flexibility with respect to the other 
three levels: individual resource level (labor machine and material handling flexibility associated 
with a resource), plant level (volume, mix, expansion and product flexibility associated with a plant) 
and functional level (manufacturing flexibility). For addressing manufacturing flexibility 
comprehensively, we present below multi-criteria optimization modelling and the impact of 
manufacturing flexibility on sustainable production systems in relation to the cost-time-flexibility 
dependency. The benchmark data sets were expanded with additional data of the production system 
related to costs, manufacturing flexibility, dimensions and setup times. Additional data were 
generated mathematically, except for the location of the machines, which was a constant. In order to 
ensure adequate data interdependence and the veracity of the results, we decided to divide the 
machines into the three groups, as shown in Table 2. With the help of additional data from the real-
world production system, we upgraded the simulation model. Such a model offers a comprehensive 
analysis, comparison, upgrade and evaluation of real-world manufacturing systems. Table 2 shows 
three machines groups, divided by the operating costs of the machine EUR/h. The three groups of 
machines are divided into small (G1), medium (G2) and large machines (G3). The price range of 
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operating hours is between 30 to 40 EUR/h for small machines, 40 to 50 EUR/h for medium and 50 to 
60 EUR/h for large machines. We assumed real values of fixed costs and recalculated the idle cost of 
the machines using the literature [22]. A detailed recalculation of machine prices is shown below. The 
recommendations given in the literature [22] have defined fixed costs as 40% in the case of a small 
machine, 50% in the case of a medium-sized machine, and 60% of a fixed cost in the case of a large 
machine. The right column of Table 2 shows the factor between fixed and recalculated idle cost values 
used by the computer program as a constant value in a mathematical calculation assignment. 

Table 2. Machine group’s classification. 

Group Operational Cost [EUR/h] Fixed Cost [%] Idle Cost [EUR/h] Factor 
G1 30–40 40 12–16 x = 2/5 
G2 41–50 50 20.5–25 x = 1/2 
G3 51–60 60 30.6–36 x = 3/5 

The specified limits for the individual variables interval were generated by the numerically 
generated data, independently for each machine, and the data are shown in Table 3. The data are 
correlated with their correlation factors. The correlation of the generated data ensures the credibility 
of the simulation and numerical results. The data of the production system can be varied according 
to changes, and the mathematical and simulation model will adapt it automatically. The presented 
approach allows modularity and high flexibility of the entire proposed solution for simulating multi-
objective optimization problems. The key advantage is the modular composition and easy adaptation 
to different types of manufacturing or service enterprises. Table 3 shows additional numerically 
generated data from the production system, which, in addition to operational and idle costs, shows 
the locations of the machines with respect to the base coordinate system with (two) x and y axes. The 
last row of the Table lists the setup time, which plays a key role in evaluating production flexibility 
against a cost-time diagram. 

Table 3. Machinery cost determination. 

Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
Operational cost [EUR/h] 43 35 39 53 52 59 36 45 38 45 

Idle cost [EUR/h] 21.5 14 15.6 31.8 31.2 35.4 14.4 22.5 15.2 22.5 
xloc [m] 0 0 5 5 10 10 15 15 20 20 
yloc [m] 0 5 0 5 0 5 0 5 0 5 
t [min] 16 15 50 24 35 38 16 22 18 39 

Table 4 shows the determination of the variable costs of the machines according to the three 
machine groups. The calculation of variable costs was carried out using the calculation given in the 
literature [22]. The basic initial properties were assigned to the calculation: 

• The production system operates in two shifts, 
• Financing the purchase of machinery, 50% own funds, 50% loan with 8% interest, 
• Electricity value constant 0,2 EUR/kWh, 
• 4% maintenance cost, 
• Facility costs EUR 100/m2 and 
• 4% additional operating costs. 
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Table 4. Variable machinery cost determination. 

Data G1 G2 G3 

Purchase price of the machine [EUR] 20,000 70,000 200,000 
Machine power [kW] 4 10 25 

Workplace surface [m2] 10 20 30 
Depreciation period [year] 8 8 8 

Useful capacity of the machine [h/year] 3000 3200 3400 
Energy costs [EUR/kWh] 0.40 1.00 2.50 

Tool costs [EUR/h] 2 3 4 
Costs of machine [EUR/h] 3.95 8.67 18.27 

Worker gross costs [EUR/h] 8 10 12 
Additional costs [EUR/h] 0.16 0.35 0.73 
Workplace costs [EUR/h] 12.11 19.02 31.00 

Variable costs [%] 12.8 24.6 38 

The Impact of Cost-time Profile on Manufacturing Flexibility 

The main advantage of a flexible production system is its adaptability to customers demands. 
Simulation modelling of a flexible job shop scheduling problem is an almost unexplored area, so we 
wanted to prove the link between cost, time and production flexibility on all four levels of 
manufacturing flexibility by introducing functional dependency. The use of advanced optimization 
algorithms and simulation models improves and balances the interdependence between these three 
parameters significantly. As a basis for investigating the impact of production adaptability, we have 
chosen the well-known cost-time profile (CTP) method [10]. The CTP diagram is based on value 
stream architecture (VSA) [23], and for the purpose of visualizing the production process, shows the 
connection between the three main components (resources, activities and waiting times). Traditional 
cost accumulation deals only with the aspect of production, while VSA emphasizes operating 
procedures and the use of different resources, notably time, but does not take costs into account. In 
response to this shortcoming, which takes into account both cost and time considerations, researchers 
have proposed the introduction of the CTP method [2]. CTP is a graphical representation of the 
production orders costs sum in a given time unit. This model represents the source information from 
the moment the production process begins to the moment the order with the completed activities 
leaves the production process. The basic components of CTP are defined as: 

• Activities: There are two assumptions about activities. The first is that the cost of the activity is 
incurred continuously from start to finish of the activity. The second is that the resources must 
be ready for use before the activity begins. In CTP, activities are represented by a linear function 
dependence with a positive directional coefficient. 

• Resources: In CTP, sources are staged with vertical lines, as they are always available at the time 
we need them. In addition, their costs are added to the total cost of the contract immediately. 
When the cost of resources is added to the cost of the product, it is treated as part of the cost that 
has been spent, and will not be reimbursed until the completion of the order (product sale). 

• Waiting: It is defined as the sum of moments during which no activity occurs. It is assumed that, 
while waiting for the implementation of the activity, its costs do not increase. The fact that 
waiting costs do not increase in this activity is presented in the CTP as a horizontal line. Activity 
waiting periods are very important, because it is widely known that there is a considerable 
amount of time during which there is no added value to production processes. This time does 
not affect the cost of the order directly, but extends the time before the order is shipped. 

• Total cost: Total cost represents the addition of all direct costs incurred in the production of the 
contract, without already being taken into account in the CTP diagram. The total cost is reflected 
in the amount at the time the order is completed. 
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• Cost-value investment: It is represented by a surface area below the CTP line, which represents 
how and how long the costs have accumulated during the production process. The surface area 
under the CTP represents the cost-time dimension. 

• Direct costs: Represent the total amount of total costs and investment costs. 

Figure 2 shows an example of a time-value diagram with the components defined above. The 
orange colored components represent the resources, the green colored arrows represent the activity, 
and the blue colored arrows represent waiting. 

 
Figure 2. Cost-time profile diagram. 

We have expanded the two-dimensional cost-time function dependency with an additional 
feature that describes the manufacturing flexibility. We have identified the missing required data 
shown in the Tables below. Table 5 shows the mathematically assigned material cost values for 
individual orders. We labelled the values of the material costs that were allocated mathematically in 
the interval between 20 and 30 EUR per order Pm. Material costs` values had to be assigned in order 
to provide a credible CTP. The material needed to execute the order is identified as the source of the 
CTP diagram. 

Table 5. Input parameters of Rs. 

 Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR] 
Order 1 1 22 Order 2 1 23 Order 3 1 21 
Order 4 1 29 Order 5 1 25 Order 6 1 27 
Order 7 1 19 Order 8 1 24 Order 9 1 25 

Order 10 1 20 Order 11 1 18 Order 12 1 21 
Order 13 1 24 Order 14 1 30 Order 15 1 25 

Tables 6 and 7 define the number of products per order. The number of order products ranges 
from the value of one product in the reference scenario Rs, to 20 pieces of the product per single order 
in the scenario S2. The introduction of the simulation scenario method represents the possibility of 
testing and responding the simulation model to different changes in the production system. In our 
case, the three simulation scenarios define manufacturing flexibility as, fully customizable 
production in the RS scenario, where each order represents one piece of product. By increasing the 
number of products within the order in scenario S1 (1 to 10 pieces) and S2 (10 to 20 pieces), here, the 
production is defined as less flexible. The number of product pieces in Tables 5, 6 and 7 is represented 
by label Pq. The Pq values are assigned numerically according to the distribution function and the 
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interdependence of the production parameters. The simulation scenarios designed in this way allow 
us to analyze the impact of manufacturing flexibility on the cost-time profile diagram. 

Table 6. Input parameters of S1. 

 Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR] 
Order 1 6 132 Order 2 9 207 Order 3 6 126 
Order 4 1 29 Order 5 4 96 Order 6 8 216 
Order 7 1 19 Order 8 5 120 Order 9 6 150 

Order 10 8 160 Order 11 6 108 Order 12 8 168 
Order 13 2 48 Order 14 1 30 Order 15 5 125 

Table 7. Input parameters of S2. 

 Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR]  Pq [pcs] Pm [EUR] 
Order 1 11 242 Order 2 19 437 Order 3 20 420 
Order 4 15 435 Order 5 10 240 Order 6 12 324 
Order 7 13 247 Order 8 19 456 Order 9 14 350 

Order 10 11 220 Order 11 10 180 Order 12 17 357 
Order 13 16 384 Order 14 14 420 Order 15 17 425 

5. Manufacturing Flexibility Modelling Results 

Table 8 shows the simulation results of modelling the impact of the manufacturing flexibility on 
the CTP diagram. Simulation and mathematical modelling are performed using simulation scenarios 
with the aim of changing the manufacturing flexibility parameters. Simulation experiments were 
performed on five benchmark datasets (Kacem 5 × 10, Kacem 10 × 10, Kacem 15 × 10, Mk08, Mk10) 
[24,25]. Performing simulation experimentation on two different datasets allows the verifiability and 
credibility of the obtained optimization results. 

The results presented in Table 8 are crucial in evaluating the CTP diagram and the impact of 
manufacturing flexibility on it. The average machine utilization decreases as production flexibility 
increases. The above mentioned flow time in Table 8 certainly affected the machines` utilization and, 
consequently, the average throughput of the product [pcs/h], which increases with increasing 
manufacturing flexibility. The biggest impact is flexibility when it comes to costs that go down when 
we produce several identical pieces in the manufacturing process. 

Table 8. Manufacturing flexibility simulation modelling results. 

 
Number of 

Orders 
Number of Products 

[pcs] 
Flow Time [h] 

Total Cost 
[EUR/pcs] 

Scenario  RS S1 S2 RS S1 S2 RS S1 S2 
Kacem 5 × 

10 
5 5 26 75 1.76 1.63 1.55 43.8 16.3 5.3 

Kacem 10 × 
10 

10 10 54 144 1.15 1.14 1.04 24 7.2 3.4 

Kacem 15 × 
10 

15 15 76 218 1.24 1.17 1.15 12.6 2.8 0.8 

Mk08 5 5 26 75 9.32 9.26 9.2 207 65.5 15.7 
Mk10 10 10 54 144 8.39 8.33 8.27 110.9 21.8 7.2 

As a result of the proposed simulation modelling approach, with the introduction of all 
additional characteristics of the production system, Figure 3 shows the final results after simulation 
and numerical studies of the manufacturing flexibility impact on the CTP diagram. 
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Cost-Time-Flexibility Profile Diagram 

The cost-time profile diagram, depending on manufacturing flexibility, is modelled graphically 
using the numerical and simulated results shown in Table 8. We named the three-dimensional 
diagram a cost-time-flexibility profile (CTFP). As with the analysis of the IHKA optimization 
algorithm, its suitability was tested on low, medium and high dimensions. It was noted that the shape 
of the three-dimensional diagram is influenced by resources, activities and waiting times, depending 
on the flexibility of the manufacturing process, as shown in Table 8. The basic cost-time diagram uses 
linear dependencies and constant values. With the CTFP graphical results in Figure 3, we can see 
nonlinear dependencies of the three variables (cost, time and manufacturing flexibility). Unlike the 
surface that describes the cost-time investment in a two-dimensional graph, the three-dimensional 
graph is a volume that describes the cost-time investment depending on the manufacturing 
flexibility. 

For all five datasets, divided into three groups regarding dimensional difficulties, we see the 
adequacy of solving the optimization problem and the corresponding dependence between the 
variables in the CTFP diagram. We define the differences between the results of individual CTFP 
diagrams as: 

• The Kacem 5 × 10 low dimensional case shows a rapid increase in costs as production flexibility 
decreases. An additional feature of the graph is the average cost and flow times in the first third 
of the diagram, which is attributed to the small number of orders. 

• The Kacem 10 × 10 medium dimensional case shows a continuous dependence of three variables, 
with no additional features detected within the three dimensional diagram. The 
interdependence in this case shows a linear dependence, the volume of the area below CTFP 
represents a steady dependence between time-cost and manufacturing flexibility. 

• The Mk08 dataset shows a high dependence on cost, processing time and flexibility, which is 
represented by the slope of the diagram in the upper third of the diagram when flexibility is at 
its highest. An additional feature is the strong correlation between higher costs and flow time in 
the mean values. In this case, the production flexibility variable is also located in the middle 
value range. 

• High-dimensional optimization problems (Kacem 15 × 10 and Mk10) show a significant 
dependence on the three parameters mentioned above to ensure production viability. Cost 
reduction and shorter processing times are influenced significantly by the flexibility of 
production, especially when increasing the number of orders. 

In general, we find that the CTFP diagram is influenced significantly by the flexibility of 
production, and its dependence on increasing orders is demonstrated by the CTFP diagram. The 
CTFP thus proposed illustrates graphically and numerically the situation within the production 
system. From the presented optimization, the approach of multi-criteria optimization and 
manufacturing flexibility modelling, it can be summarized that: Higher and even machines` 
utilization allows energy consumption reduction at the time when the machines are waiting for the 
operation to be performed (shorter idle time). Shorter flow times without intermediate waiting times 
allow quick adaptation to demand, and a high level of customer satisfaction on short delivery times 
(shorter due dates). Properly scheduled orders, depending on the execution of individual operations, 
allow shorter and more efficient transport routes and effective just in time method use. Proper 
allocation of operations to highly efficient machines with shorter processing time and high efficiency 
ensures low waste and efficient use of materials and energy resources. Effective work assignments 
with regard to the cost of operation and waiting defined by the flexibility of production and the 
division of machines into three groups make the production system highly economically viable. 
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Figure 3. Cost-time profile as a function of manufacturing flexibility. 

6. Manufacturing Flexibility Case Study 

With the proposed comprehensive approach and associated methods in the previous sections, 
we proved the high ability to solve multi-criteria optimization problems of flexible manufacturing 
systems, so we decided to test the whole approach in the case of multi-criteria optimization of a real-
world manufacturing system. 

The ability to solve a multi-criteria optimization problem of a real-world manufacturing system 
(data set labelled as RW_PS) is presented in Section Six. The first part of the section presents the real-
world input data of the manufacturing system, which enables multi-criteria optimization of flexible 
job shop production. In the real-world case, only relevant and credible input provides the ability to 
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achieve reliable optimization results. The following is an example of solving the scheduling of fifteen 
orders and comparing the results of the IHKA algorithm with the optimization solutions of the bare 
bones multi-objective particle swarm optimization (BBMOPSO) and multi-objective particle swarm 
optimization (MOPSO) algorithms. The transfer of optimization results to the simulation 
environment is presented following the previously proposed method of evaluating the sequence of 
machine operations determined by the IHKA algorithm. A modular and flexible simulation model 
has been built to provide an automated and easy interface to handle the simulation model [26]. The 
following is the analysis and evaluation of the simulation model using the CTFP diagram, which is 
proposed as part of a comprehensive multi-criteria optimization approach of the manufacturing 
system. 

6.1. Manufacturing System Input Data 

The selected data were obtained from a European medium-sized company that manufactures 
custom products (high-mix, low-volume production type). Orders received in the company, ordered 
by the subscribers, must be scheduled optimally on the available machines within the production 
system. The orders input data are presented in Table 9. The orders consist of three different product 
types with different processing times, machine usage cost, machine idle rates, setup times and 
number of operations. The information provided by the company and the updated recalculated usage 
and idle cost values of the machines is formulated mathematically, as presented in the previous 
section. According to the literature [22], real-world production type is defined as flexible job shop 
production type. Compared to the Kacem and Brandimarte [24,25] test datasets, we have found that 
different product types add additional complexity of the RW_PS optimization problem. A parallel 
can be drawn between the Brandimarte datasets and the inputs of the real-world production system 
(RW_PS), both of which data sets allow operations to be performed on only a few specific machines 
within the production system. 

For real production system data, machines marked M1 to M12 represent the following operations: 

• M1 and M2 cutting of raw material, 
• M3 to M6 manual welding, 
• M7 and M8 robotic welding, 
• M9 is a color coating operation, 
• The assembly operation is performed on two available machines M10 and M11, 
• The M12 is a final control operation. 

The main task of the optimization algorithm is to determine the order of operations on the 
available machine optimally. In doing so, the algorithm must determine which of the machines will 
execute which order, while optimizing three key parameters: makespan, maximum machine 
utilization and eliminating any bottlenecks in the manufacturing system. 

Table 9. Input data for product type. 

Product 1 
Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

Process time [min] 20 24 40 45 38 47 20 25 11 22 20 12 
Usage cost [EUR] 45 45 35 35 35 35 52 52 59 43 43 35 

Idle cost [EUR] 22.5 22.5 14 14 14 14 31.2 31.2 35.4 21.5 21.5 15 
xloc [m] 8 8 12.5 18.5 24.5 30.5 36 36 24.5 19.5 27.5 20 
yloc [m] 9.5 4.5 0 0 0 0 5.5 10.5 16.5 12 12 7 

Setup time [min] 10 10 15 15 15 15 8 8 18 7 7 3 
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6.2. IHKA Multi-Criteria Optimisation 

The production system input data shown in Table 9 and the order input data, performs multi-
criteria optimization of custom production scheduling using the IHKA algorithm [26]. In Figure 4, 
the Gantt chart provides a solution for scheduling orders and individual operations according to the 
machines available. The IHKA optimization algorithm performed the optimization with three key 
parameters: makespan, total machine utilization and utilization of the most busy (bottleneck 
elimination). The Gantt chart in Figure 4 shows that all orders are executed within 348 min. In order 
to determine the performance of the IHKA algorithm in solving real-world optimization problems, 
an analysis and comparison of optimization results was performed, with the currently most up-to-
date algorithms for solving the flexible manufacturing scheduling of MOPSO and BBMOPSO. 

 
Figure 4. Gantt chart of the improved heuristic Kalman algorithm (IHKA) optimization algorithm 
solutions. 

A performance measures analysis was performed of the proposed IHKA optimization algorithm 
and the comparative algorithms BBMOPSO and MOSPO. Due to the complexity of the optimization 
problem, the comparison of the algorithms` performance was performed using the C-metric method 
[27]. Numerical results of thirty interactions calculation for the C-metric performance measures 
method and the labels meaning are presented in Table 10: 

 Min value represents the worst Pareto front position obtained from the state of the subject 
algorithm which dominates the object algorithm in a certain number of percentages. 

 Max value represents the best Pareto front obtained by the subject algorithm, which dominates 
the object algorithm in a certain number of percentages. 

 Mean value represents the performance of the algorithm in the subject column, and its dominance 
over the algorithm in the object column. The higher the value, the higher the performance of the 
algorithm in the subject column is. 

 Std value represents the performance of the algorithm in the subject column and its stability 
relative to the algorithm in the object column. The lower the value, the higher the stability of the 
algorithm in the subject column is. 

Table 10 shows the numerical results of the C-metric performance measures analysis within 
thirty interactions, comparing the obtained results of the individual algorithms: 

 The IHKA algorithm with 95.9% dominates the BBMOPSO algorithm with associated high 
stability of 6.17%. High performance of the IHKA algorithm is also proved in comparison with 
the MOPSO algorithm, which IHKA dominates with 85.94%, with stability percentage of 43.33%. 

 The BBMOPSO algorithm dominates the IHKA algorithm only with 6.03%, which shows a low 
degree of dominance, with a corresponding 13.24% stability percent. The BBMOPSO and MOPSO 
comparative algorithms dominate each other, with 10.28%, and a stability percentage of 20.02%. 

 The MOPSO algorithm has a low degree of dominance compared to the proposed IHKA 
algorithm, and the stability percentage is also high, which shows low stability. Cross-referencing 
the comparison algorithms shows the dominance of the MOPSO algorithm, with 75.64% versus 
BBMOPSO and a stability percentage of 29.47%. 
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Numerical results shows high performance with respect to the dominance and stability criteria 
of the proposed IHKA optimization algorithm compared to the comparative algorithms. The 
proposed algorithm demonstrates a high degree of capability and robustness of solving multi-criteria 
optimization problems. 

Table 10. C-metric performance measures of IHKA, multi-objective particle swarm optimization 
(MOPSO) and bare bones multi-objective particle swarm optimization (BBMOPSO) algorithms. 

Subject Object Min [%] Max [%] Mean [%] Std [%] 
IHKA BBMOPSO 77.78 100 95.9 6.17 
IHKA MOPSO 0 100 58.94 43.33 

BBMOPSO IHKA 0 50 6.03 13.24 
BBMOPSO MOPSO 0 66.67 10.28 20.02 

MOPSO IHKA 0 100 32.98 39.74 
MOPSO BBMOPSO 11.11 100 75.64 29.47 

Figure 5 and Table 11 shows the graphical and numerical optimization results of the three 
optimization algorithms, the proposed IHKA algorithm (mark x) and the comparative two MOPSO 
(mark *) and BBMOPSO (mark +).  

In order to prove the robustness of the optimization results, all three algorithms were tested in 
thirty interactions, and the average values of the optimization results are presented in Table 11. 
Considering the graphical results shown in Figure 5, we can conclude that the IHKA algorithm has 
proven to be the most appropriate for solving a real-world optimization problem. In its final 
interaction, it obtained the most optimal solution, which ensures the shortest makespan (MC) of 
orders and a consistent, high utilization of all machines (TW), without any bottlenecks in the 
manufacturing system (MW). 

 
Figure 5. Graphical optimization results of the IHKA, MOPSO and BBPMOPSO algorithms. 

Optimization algorithms numerical results of the thirty interactions′ average values shows that 
the IHKA algorithm generated most optimal results at the two optimization parameters, at the 
orders` makespan and the total machine utilization. In optimizing the machine utilization parameter 
of the most work loaded machine, the IHKA algorithm performed worst on average MW, in which 
parameter the BBMOPSO algorithm dominated. The IHKA algorithm compensated for the MW 
reduced ability to achieve the optimum result for the TW parameter, which is controlled by the 
appropriate scheduling of individual operations on the available machines. 
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The presented graphical and numerical results confirm the high capabilities and reliability of 
solving multi-criteria optimization problems of flexible manufacturing systems with the IHKA 
algorithm. The algorithm has been shown to be capable of solving complex optimization problems 
from a real-world environment. 

Table 11. Numerical optimization results of the IHKA, MOPSO and BBMOPSO algorithms. 

Algorithm Mark Optimization Parameter 
  MC [min] TW [min] MW [min] 

IHKA x 392.45 1800.73 217.98 
BBMOPSO + 422.21 1807.1 210.76 

MOPSO * 400.48 1800.76 214.48 

Table 12 shows the example (for J1 and J2) of the IHKA output optimization results generated in 
the MATLAB software environment. The output optimization results of the optimization algorithm 
assign individual operation to the available machine, a start and finish time, and the machine 
sequence order in which it performs operations on the machine. The order of performing operations 
on the machine is performed according to the proposed method of its own decision logic [26], which 
bypasses the integrated decision logic of the simulation environment. The automated transfer of 
numerical optimization results to the simulation environment allows the user to determine their own 
units of measurement according to the real-world manufacturing system. 

Table 12. Optimization results of the real-world production system (RW_PS) dataset. 

Order Operation Machine Start Time [min] Finish Time [min] Machine Sequence 
J1 O1,1 M1 102 124 6 
 O1,2 M4 131 174 3 
 O1,3 M8 177 200 5 
 O1,4 M9 211 223 10 
 O1,5 M10 223 248 4 
 O1,6 M12 268 282 10 

J2 O2,1 M1 82 102 5 
 O2,2 M5 116 154 3 
 O2,3 M7 159 179 4 
 O2,4 M9 200 211 9 
 O2,5 M11 216 236 5 
 O2,6 M12 239 251 8 

6.3. Validation of Optimisation Results Using the CTFP Diagram 

In the stage of optimization results` validation, an analysis of the optimization results was 
performed using the above presented CTFP diagram. Using the CTFP diagram, we can analyze the 
interdependence between three key parameters of flexible manufacturing systems: Time, costs and 
manufacturing flexibility interdependency. Manufacturing flexibility is defined using the previously 
defined approach in section five, where the mathematical distribution function was created to 
demonstrate the appropriateness of a new CTFP diagram method. For a simulation model of a real-
world manufacturing system with fifteen orders and additional data that affect manufacturing 
flexibility, the values of the number of pieces in a single order product were determined with random 
function, from Tables 6 and 7. With the introduction of the flexibility parameter, a dependency 
analysis was performed between the number of products, flow time and total order costs. The 
numerical results shown in Table 13 and the graphical results shown in Figure 6, show the 
optimization results` correlation of the performed CTFP analysis between the Kacem 15 × 10, Mk10 
test datasets and the RW_PS real production system dataset. All three datasets can be defined as high-
dimensional cases, which means that a partial match is foreseen, especially in the graphical results 
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that determine the typical CTFP format. It was found that the high-dimensional optimization 
problems of Kacem 15 × 10, Mk10 and the real-world manufacturing system dataset RW_PS show a 
significant dependence of the three mentioned parameters in ensuring production eligibility, while 
reducing production costs and shorter processing times significantly. The steep surface of the graph 
is particularly pronounced as the number of orders increases. The CTFP diagram in Figure 6 shows 
that, by extending the flow time with a lower number of individual order products, this correlation 
affects the overall costs involved adversely. A well-optimized production process is crucial to 
ensuring the economic and process viability of custom production. 

Table 13. Applied production flexibility simulation modelling results with a CTFP diagram. 

 
Number of 

Orders 
Number of Products [pcs] Flow Time [h] 

Total Cost 
[EUR/pcs] 

Scenario  RS S1 S2 RS S1 S2 RS S1 S2 

RW_PS 15 15 76 218 0.34 0.23 0.21 356.6 251.5 
218.6

1 

 
Figure 6. Cost-time diagram in relation to manufacturing flexibility of a real-world production 
system. 

The impact of manufacturing flexibility on a sustainable production process is reflected in short 
flow times, high reliability of delivery due dates, low stocks, and a favorable cost-time profile linked 
to manufacturing flexibility and justified value stream architecture. These key production goals, 
which can only be achieved through appropriate multi-criteria optimization and additional 
objectives, are reflected in cost reduction through the rational and continuous use of workplaces, 
materials and machines, thereby ensuring a sustainably justified production system. With the help of 
graphical and numerical analysis of the CTFP diagram, we can see areas where the production system 
justifies the cost-time investment evenly, depending on the manufacturing flexibility. Based on the 
presented optimization approach, the company is able to adapt quickly to the global needs and 
demand of customers, while providing sustainable eligible production that increases total social and 
environmental benefits. 

7. Conclusions 

In the presented research work, we have presented the importance of a manufacturing flexibility 
and multi-criteria optimization method on the sustainable justified manufacturing systems. The 
initial research question was related to the ability to model manufacturing flexibility and its impact 
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on cost-time investment, correlated with sustainable manufacturing processes, more sustainable 
products and social and environmental benefits [2]. The main purpose of the research was to 
demonstrate a new approach to manufacturing flexibility modelling, based on a comprehensive 
consideration of all parameters with respect to a four-level architectural model [13]. A mathematical 
method is presented for calculating the characteristics of a flexible job sop production system and 
determining the interdependencies between cost, time and manufacturing flexibility. A cost-time 
profile diagram and its impact on the production system are defined for the purpose of optimization 
results validation. Advantages and limitations are shown which relate to the ability to validate only 
single-criteria optimization problems. For the purpose of eliminating the shortcomings and 
extending the method, an experimental model based on the simulation scenario method is presented, 
which can be used to evaluate the impact of manufacturing flexibility on a sustainable justified 
production system. The optimization results are shown of multi-criteria optimization of five Kacem 
and Brandimarte test datasets [24,25] solved using the IHKA evolution method [20] and the 
production adaptability modelling method. Based on the obtained numerical results, a graphical 
representation of the cost-time profile diagram influence on the manufacturing flexibility was 
performed, called the cost-time-flexibility profile diagram. The numerical and graphical results 
representation and validation are divided into three groups, according to the complexity of the solved 
problems (low, medium and high dimensional optimization problems). The validation approach 
presented here has advantages and limitations related to the three parameters of cost-time and 
manufacturing flexibility dependence, which are described and presented numerically and 
graphically. 

In times of complex production systems, the transfer of theoretical methods to the real-world 
environment is especially important if we want to make our production systems sustainable. 
Therefore, an example is presented of an applied application of the proposed method to a medium-
sized European high-mix low-volume manufacturing company. With the help of the proposed 
evolutionary computation method [20], modelling of manufacturing flexibility and validation of cost-
time investment, depending on the manufacturing flexibility, optimization and validation of the 
production system was performed, in order to define the sustainable orientation of the 
manufacturing company. Based on the numerical and graphical results, the IHKA evolutionary 
computational method best solved the multi-criteria optimization problem of a flexible job shop 
scheduling problem, represented by the RW_PS real-world dataset and evaluated by C-metric 
performance measures. The obtained optimization results make it possible to perform simulation 
modelling of the manufacturing flexibility impact on the cost-time investment. Using the simulation 
scenario method, a numerical analysis of the manufacturing flexibility impact on the optimization 
parameters was performed, which affected the sustainability of the production system critically. 
Based on the presented method, we find that it serves companies in order to optimize existing 
manufacturing systems and to construct or design new manufacturing systems optimally, in order 
to correlate costs, time and manufacturing flexibility properly. Adequate CTFP ensures sustainable 
production from the energy and natural resource consumption, equal workload of workers and 
machines, improvement of product quality and customer satisfaction point of view. By achieving a 
balanced CTFP chart, we ensure sustainable business growth, and provide increases in a company’s 
total, social and environmental, benefits. 

The presented research work has limitations that relate to the evaluation and modelling of the 
presented method solely for flexible job shop types of manufacturing systems. At the same time, 
using the cost-time profile diagram, it can evaluate just about every production system. It should be 
emphasized that the impact of manufacturing flexibility is the most significant in the devalued type 
of production, and is more difficult, or even not present, in other types of production (mass 
production, etc.). In order to ensure the robustness of the proposed CTFP diagram approach, it would 
be appropriate to transfer and evaluate it to other production types in order to ensure the wide 
applicability of the proposed method.  

The presented methods and results of mathematical and simulation modelling in correlation 
with the methods of defining cost-time investment and their correlation with the manufacturing 
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flexibility, and multi-criteria optimization using IHKA optimization method, provide sustainably 
and financially justified production systems. Compared to the results of other researchers evaluating 
dynamic, flexible manufacturing systems and different decision models, the presented manuscript 
deals with the meaning of multi-criteria optimization of production system scheduling. The 
considered research case is formulated mathematically with the input parameters covering the 
majority of characteristics of production systems (makespan, process time, setup time, operational 
costs, idle costs, energy cost, order quantity, machine power, etc.). The optimization parameters are 
divided into three groups regarding the machine classification, based on which it is possible to 
describe the manufacturing system in detail using evolutionary computation methods, to allocate the 
work orders optimally to the appropriate, available highly-utilized machine. The presented 
comprehensive optimization method enables both numerical and graphical representation of 
optimization results. The modular structure enables interaction between the IHKA decision model, 
the simulation model and the graphical CTFP representation of the optimization results by means of 
cost-time investment, depending on manufacturing flexibility. Of course, devoting to optimizing only 
the FJSSP production type, for example with other researchers [28], is a limitation. Given that, other 
research focuses on demonstrating the impact of flexible line redesign planning problems [28] and 
determining the impact of the market uncertainty [29] on the adaptability and feasibility of using 
flexible and dedicated machines on the occupancy of manufacturing utilization using the Monte 
Carlo simulation method. The presented research work represents the originality with the economical 
and sustainable optimization approach. Other research works cite as a complexity a very wide range 
of optimization parameters that need to be defined properly mathematically, and their 
interdependence must be described; that limitation is well presented in described research work. The 
presented research work is, thus, an original contribution, with a comprehensive multi-criteria 
optimization approach and associated simulation modelling methods, using the simulation scenario 
approach, graphical and numerical definitions of optimization results by means of cost-time 
investment depending on manufacturing flexibility. The holistic approach is rounded off by an 
appropriately sustainable and economically justified method for ensuring optimized, highly flexible 
manufacturing processes that are increasingly present in the current era of Industry 4.0. 

Thus, this research represents the basic research work for the further development of the 
manufacturing flexibility dependence on cost-time investment and, consequently, on sustainable 
orientation manufacturing systems. The influence of different parameters and, thus, solving multi-
criteria optimization problems is crucial in ensuring economically, socially and environmentally 
sustainable production systems, which is defined clearly in this research work. The presented 
importance of optimizing highly flexible manufacturing systems opens up many possibilities for 
further research work. The introduction of collaborative workplaces into production systems 
represents a new research area, where the flexibility of collaborative robots allows high adaptability 
of manufacturing capacities with respect to the ability to perform different operations at different 
workplaces. The introduction of highly flexible workplaces also increases the complexity of multi-
criteria optimization problems, that can be solved using the proposed evolutionary computation 
methods. Consideration of the feasibility of introducing and implementing collaborative workplaces 
from the economic and sustainable eligibility point view has not yet been investigated. Further 
research and implementation of the presented methods will allow evaluation of the justification for 
the introduction of the highly flexible workplaces in different types of production systems, thus 
ensuring optimized, sustainable and economically viable production systems. 
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