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Abstract: In this paper we introduce a new method of generating fuzzy implications via known fuzzy
implications. We focus on the case of generating fuzzy implications via a fuzzy connective and at
least one known fuzzy implication. We present some basic desirable properties of fuzzy implications
that are invariant via this method. Furthermore, we suggest some ways of preservation or violation
of these properties, based in this method. We show how we can generate not greater or not weaker
fuzzy implications with specific properties. Finally, two subclasses of any fuzzy implication arise, the
so called T and S subclasses.
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1. Introduction

The generalization of the notion of implication from a classical to fuzzy topic is a known process.
Generation methods of fuzzy implications are also known and proposed in the literature [1–7].
Specifically, the generation of fuzzy implications via known fuzzy implications has also been studied
and many methods have been proposed (see [1] Chapter 6, [7] Subsection 12.2.3, [2,3,5]).

Moreover, many properties of fuzzy implications have been presented and their dependence or
independence has also been studied ([1,4] Section 3). Many classes of fuzzy implications have also
been proposed, and their properties studied extensively too [1,3].

Although, all of these are basically theoretical approaches, or they seem to be, they often have
applicable extensions. These applicable extensions were the starting point of this work. For instance, if
we need a fuzzy implication with a specific property (see [8] Equation (6)), how could we get it? Going
one step further, how could we produce new fuzzy implications with only specific properties? Both of
those questions are answered in this work.

In this work we dealt with another generation of fuzzy implications via known fuzzy implications.
Particularly, we studied the case of using fuzzy implications and fuzzy connectives, such as t-norms
and t-conorms. Two more construction methods of fuzzy implications are presented. One of their
characteristics is that they preserve some properties, such as the left neutrality property, the identity
principle, the ordering property, and the (left, right) contrapositive symmetry. Another, more important
characteristic is that we studied and proved the conditions, such that these methods produced fuzzy
implications with only specific properties from those of the left neutrality property, the identity
principle, and the ordering property. In other words, not only the preservation, but also the violation of
these properties can be controlled and achieved. One more characteristic of these methods is presented.
That is the ability to generate not greater or not weaker fuzzy implications from the given ones with
only specific properties of the aforementioned. Finally, two subclasses of any fuzzy implication arise,
the so called T and S subclass, or the “not greater” and “not weaker” subclasses respectively.
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2. Preliminaries

Definition 1 ([1,9–11]). A decreasing function N : [0, 1]→ [0, 1] is called fuzzy negation, if N(0) = 1 and
N(1) = 0.

Definition 2 (See [1] Definition 2.1.1). A function T : [0, 1]2 → [0, 1] is called a triangular norm (shortly
t-norm), if it satisfies, for all x, y, z ∈ [0, 1], the following conditions

T(x, y) = T(y, x), (1)

T(x, T(y, z)) = T(T(x, y), z), (2)

if y ≤ z, thenT(x, y) ≤ T(x, z), i.e., T(x, ·) is increasing, (3)

T(x, 1) = x. (4)

Definition 3 (See [1] Definition 2.2.1). A function S : [0, 1]2 → [0, 1] is called a triangular conorm (shortly
t-conorm), if it satisfies, for all x, y, z ∈ [0, 1], the following conditions

S(x, y) = S(y, x), (5)

S(x, S(y, z)) = S(S(x, y), z), (6)

if y ≤ z, then S(x, y) ≤ S(x, z), i.e., S(x, ·) is increasing, (7)

S(x, 0) = x. (8)

Definition 4 (See [1] Definitions 2.1.2 and 2.2.2). A t-norm T (respectively a t-conorm S) is called

(i) Idempotent, if

T(x, x) = x, for all x ∈ [0, 1],
(respectively S(x, x) = x, for all x ∈ [0, 1]),

(ii) Positive, if

T(x, y) = 0⇔ x = 0 or y = 0,
(respectively S(x, y) = 1⇔ x = 1 or y = 1).

Definition 5 ([1,12]). By Φ we denote the family of all increasing bijections from [0, 1] to [0, 1]. We say that
functions f , g : [0, 1]n → [0, 1] are Φ-conjugate, if there exists a φ ∈ Φ such that g = fφ, where

fφ(x1, x2, . . . , xn) = φ−1( f (φ(x1), φ(x2), . . . , φ(xn))), x1, x2, . . . , xn ∈ [0, 1].

Remark 1 ([1]). It is easy to prove that if φ ∈ Φ and T is a t-norm, S is a t-conorm, and N is a fuzzy negation,
then Tφ is a t-norm, Sφ is a t-conorm, and Nφ is a fuzzy negation.

Definition 6 ([1,9]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if

I is decreasing with respect to the first variable, (9)
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I is increasing with respect to the second variable, (10)

I(0, 0) = 1, (11)

I(1, 1) = 1, (12)

I(1, 0) = 0. (13)

Definition 7 (See [1] Definition 1.3.1). A fuzzy implication I is said to satisfy
(i) The left neutrality property, if

I(1, y) = y, y ∈ [0, 1]; (14)

(ii) The identity principle, if

I(x, x) = 1, x ∈ [0, 1]; (15)

(iii) The exchange principle, if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]; (16)

(iv) The ordering property, if

I(x, y) = 1⇔ x ≤ y, x, y ∈ [0, 1]. (17)

Remark 2 ([1]). It is proven that, if φ ∈ Φ and I : [0, 1]2 → [0, 1] is a fuzzy implication, then Iφ is also a
fuzzy implication.

Definition 8 (See [1] Definition 1.5.1). Let I be a fuzzy implication and N be a fuzzy negation. I is said to
satisfy the
(i) Law of contraposition with respect to N, if

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]; (18)

(ii) Law of left contraposition with respect to N, if

I(N(x), y) = I(N(y), x), x, y ∈ [0, 1]; (19)

(iii) Law of right contraposition with respect to N, if

I(x, N(y)) = I(y, N(x)), x, y ∈ [0, 1]. (20)

If I satisfies the (left, right) contrapositive symmetry with respect to N, then we also denote this by CP(N)
(respectively, by L-CP(N), R-CP(N)).

Lemma 1 (See [1] Lemma 1.4.14). If a function I : [0, 1]2 → [0, 1] satisfies (9), (11) and (13), then the
function NI : [0, 1]→ [0, 1] is a fuzzy negation, where

NI(x) = I(x, 0), x ∈ [0, 1].

Definition 9 (See [1] Definition 1.4.15). Let I : [0, 1]2 → [0, 1] be a fuzzy implication. The function NI
defined by Lemma 1 is called the natural negation of I.

Definition 10 (See [1] Definition 1.6.12). Let N be a fuzzy negation and I be a fuzzy implication. A function
IN : [0, 1]2 → [0, 1] defined by

IN(x, y) = I(N(y), N(x)), x, y ∈ [0, 1],

is called the N- reciprocal of I.
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3. The Main Results

3.1. Fuzzy Implications Generated by Known Fuzzy Implications

As we mentioned before, there are many methods to generate fuzzy implications via one or two
known fuzzy implications (see [1] Chapter 6, [7] Subsection 12.2.3, [2,3,5]). In this paper, firstly, we
introduce another method that generates fuzzy implications via n known fuzzy implications, where n
is any positive natural number.

Theorem 1. Let f : [0, 1]n → [0, 1] be an increasing function with respect to any of its variables, and moreover,
f (0, 0, . . . , 0) = 0 and f (1, 1, . . . , 1) = 1. If I(i), i = 1, 2, . . . , n are fuzzy implications, then the function that is
defined by

I(x, y) = f [I(1)(x, y), I(2)(x, y), . . . , I(n)(x, y)], (21)

is a fuzzy implication.

Proof. I satisfies (9) since for all x1, x2, y ∈ [0, 1] with

x1 ≤ x2 ⇒ I(i)(x1, y) ≥ I(i)(x2, y), i = 1, 2, . . . , n

⇒ f [I(1)(x1, y), I(2)(x1, y), . . . , I(n)(x1, y)] ≥ f [I(1)(x2, y), I(2)(x2, y), . . . , I(n)(x2, y)]

⇒ I(x1, y) ≥ I(x2, y).

I satisfies (10) since for all x, y1, y2 ∈ [0, 1] with

y1 ≤ y2 ⇒ I(i)(x, y1) ≤ I(i)(x, y2), i = 1, 2, . . . , n

⇒ f [I(1)(x, y1), I(2)(x, y1), . . . , I(n)(x, y1)] ≤ f [I(1)(x, y2), I(2)(x, y2), . . . , I(n)(x, y2)]

⇒ I(x, y1) ≤ I(x, y2).

I satisfies (11) since I(0, 0) = f [I(1)(0, 0), I(2)(0, 0), . . . , I(n)(0, 0)] = f (1, 1, . . . , 1) = 1.
I satisfies (12) since I(1, 1) = f [I(1)(1, 1), I(2)(1, 1), . . . , I(n)(1, 1)] = f (1, 1, . . . , 1) = 1.
I satisfies (13) since I(1, 0) = f [I(1)(1, 0), I(2)(1, 0), . . . , I(n)(1, 0)] = f (0, 0, . . . , 0) = 0.
Thus, I is a fuzzy implication.

Remark 3. The fuzzy implication I defined in (21) is denoted by I f ,I(1),I(2),. . . ,I(n) . So in the rest of this paper
when we use the symbolisms I f ,I(1),I(2),. . . ,I(n) and f , it will be understood that we refer to Theorem 1.

Proposition 1. Let I f ,I(1),I(2),. . . ,I(n) be a fuzzy implication. Then its natural negation is

NI f ,I(1) ,I(2) ,. . . ,I(n)
(x) = f [NI(1)(x), NI(2)(x), . . . , NI(n)(x)].

Proof. It is deduced by Lemma 1, Definition 9 and Theorem 1.

Proposition 2. Let I(i), i = 1, 2, . . . , n be fuzzy implications which satisfy (15) (respectively (18)–(20) with
respect to N). Then, the obtained fuzzy implication I f ,I(1),I(2),. . . ,I(n) satisfies (15) (respectively (18)–(20) with
respect to N).

Proof. Let I(i), i = 1, 2, . . . , n are fuzzy implications which satisfy (15), then I f ,I(1),I(2),. . . ,I(n) satisfies (15)
since for all x ∈ [0, 1] it is

I f ,I(1),I(2),. . . ,I(n)(x, x) = f [I(1)(x, x), I(2)(x, x), . . . , I(n)(x, x)] = f (1, 1, . . . , 1) = 1.
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If I(i), i = 1, 2, . . . , n are fuzzy implications which satisfy the contrapositive symmetry (18) with
respect to N, then I f ,I(1),I(2),. . . ,I(n) satisfies (18) with respect to N since for all x, y ∈ [0, 1] it is

I f ,I(1),I(2),. . . ,I(n)(x, y) = f [I(1)(x, y), I(2)(x, y), . . . , I(n)(x, y)]

= f [I(1)(N(y), N(x)), I(2)(N(y), N(x)), . . . , I(n)(N(y), N(x))]

= I f ,I(1),I(2),. . . ,I(n)(N(y), N(x)).

The proof is similar for the left contrapositive symmetry (19) and the right contrapositive
symmetry (20) with respect to N.

Remark 4. Similar to the previous proof we deduce that the N- reciprocal of I f ,I(1),I(2),. . . ,I(n) is

(I f ,I(1),I(2),. . . ,I(n))N
= I f ,(I(1))N

,(I(2))N
,. . . ,(I(n))N

.

On the other hand, if I(i), i = 1, 2, . . . , n are fuzzy implications which satisfy (14) (respectively
(16) and (17)), then it is not ensured that I f ,I(1),I(2),. . . ,I(n) satisfies (14) (respectively (16) and (17)) as it is
presented to the following examples.

Example 1. Consider the Łukasiewicz’s implication ILK(x, y) = min{1, 1− x + y} and Gödel’s implication

IGD(x, y)=

{
1, if x ≤ y
y, if x > y

(see [1] Table 1.3) and the function f (x, y) = x · y, x, y ∈ [0, 1]. It is known that

ILK and IGD satisfy (14) and (16) (see [1] Table 1.4). On the other hand, I f ,ILK ,IGD (x, y) = ILK(x, y) · IGD(x, y)
does not satisfy (14), since for all y ∈ [0, 1] it is

I f ,ILK ,IGD (1, y) = ILK(1, y) · IGD(1, y) = y · y = y2.

The same holds for (16), since

I f ,ILK ,IGD (0.9, I f ,ILK ,IGD (1, 0.9)) = 0.7371 6= 1 = I f ,ILK ,IGD (1, I f ,ILK ,IGD (0.9, 0.9)).

Example 2. Consider the function f (x, y)=

{
1, if (x, y) ∈ (0.5, 1]2

x · y, otherwise
. It is known that ILK and IGD

satisfy (17) (see [1] Table 1.4). On the other hand,

I f ,ILK ,IGD (x, y) =

{
1, if (ILK(x, y), IGD(x, y)) ∈ (0.5, 1]2

ILK(x, y) · IGD(x, y), otherwise
,

it does not satisfy (17), since I f ,ILK ,IGD (0.7, 0.6) = 1.

Theorem 2. If φ ∈ Φ and I f ,I(1),I(2),. . . ,I(n) is a fuzzy implication, then (I f ,I(1),I(2),. . . ,I(n))φ
is a fuzzy implication,

and moreover

(I f ,I(1),I(2),. . . ,I(n))φ
= I fφ ,(I(1))φ

,(I(2))φ
,. . . ,(I(n))φ

.

Proof. Let I f ,I(1),I(2),. . . ,I(n) be a fuzzy implication; then, (I f ,I(1),I(2),. . . ,I(n))φ
is a fuzzy implication,

according to the Remark 2. So, for all x, y ∈ [0, 1], we deduce that
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(I f ,I(1),I(2),. . . ,I(n))φ(x, y) = φ−1 I f ,I(1),I(2),. . . ,I(n)(φ(x), φ(y)))

= φ−1( f (I(1)(φ(x), φ(y)), I(2)(φ(x), φ(y)), . . . , I(n)(φ(x), φ(y))))

= φ−1( f (φ(φ−1(I(1)(φ(x), φ(y))), . . . , φ(φ−1(I(n)(φ(x), φ(y)))))

= fφ((I(1))φ
(x, y), (I(2))φ

(x, y), . . . , (I(n))φ
(x, y))

= I fφ ,(I(1))φ
,(I(2))φ

,. . . ,(I(n))φ
(x, y).

3.2. Fuzzy Implications Generated by Fuzzy Connectives and Fuzzy Implications

In this section we will study the special case, where n = 2 and f is a fuzzy connective, i.e. a
t-norm or a t-conorm. So firstly we must prove that a t-norm and a t-conorm are suitable functions to
replace f ; i.e. they satisfy the properties of the function f .

Corollary 1. Let T be a t-norm, and I(1) and I(2) be two fuzzy implications. Then, the function that is defined
by IT,I(1),I(2)(x, y) = T[I(1)(x, y), I(2)(x, y)] is a fuzzy implication.

Proof. Since T is a t-norm, it is increasing with respect to both of its variables. This is deduced by (3)
and (1). Furthermore, by (4) it is T(1, 1) = 1 and T(0, 1) = 0. So, since 0 ≤ 1, by (3) we deduce that
T(0, 0) ≤ T(0, 1) = 0⇒ T(0, 0) = 0. By Theorem 1 we deduce that

IT,I(1),I(2)(x, y) = T[I(1)(x, y), I(2)(x, y)]

is a fuzzy implication.

Corollary 2. Let S be a t-conorm and I(1), I(2) two fuzzy implications. Then, the function that is defined by
IS,I(1),I(2)(x, y) = S[I(1)(x, y), I(2)(x, y)] is a fuzzy implication.

Proof. Since S is a t-conorm, it is increasing with respect to both of its variables. This is deduced by (7)
and (5). Furthermore, by (8) it is S(0, 0) = 0 and S(0, 1) = 1. So, since 0 ≤ 1, by (7) we deduce that
S(0, 0) = 1 ≤ S(1, 1)⇒ S(1, 1) = 1. By Theorem 1 we deduce that

IS,I(1),I(2)(x, y) = S[I(1)(x, y), I(2)(x, y)]

is a fuzzy implication.

Corollary 3. Let I(1), I(2) be two fuzzy implications. Then the fuzzy implications IT,I(1),I(2) and IS,I(1),I(2) have,
respectively, the following natural negations

NIT,I(1) ,I(2)
(x) = T[NI(1)(x), NI(2)(x)] and NIS,I(1) ,I(2)

(x) = S[NI(1)(x), NI(2)(x)].

Proof. It is deduced by Proposition 1.

Corollary 4. Let I(1), I(2) be two fuzzy implications that satisfy (15) (respectively (18)–(20) with respect to N).
Then the fuzzy implications IT,I(1),I(2) , and IS,I(1),I(2) satisfy (15) (respectively (18)–(20) with respect to N).

Proof. It is deduced by Proposition 2.
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Proposition 3. Let I(1), I(2) be two fuzzy implications that satisfy (17). Then the fuzzy implication IT,I(1),I(2)
satisfies (17).

Proof. Let I(1), I(2) be two fuzzy implications that satisfy (17), then

I(i)(x, y) = 1⇔ x ≤ y, x, y ∈ [0, 1], i = 1, 2.

Thus, for all x, y ∈ [0, 1], if x ≤ y then IT,I(1),I(2)(x, y) = T[I(1)(x, y), I(2)(x, y)] = T(1, 1) = 1.
Vice versa; if T is a t-norm then it satisfies the equivalence

T(x, y) = 1⇔ x = y = 1.

Thus,

IT,I(1),I(2)(x, y) = 1⇒ T[I(1)(x, y), I(2)(x, y)] = 1

⇒ I(1)(x, y) = I(2)(x, y) = 1

⇒ x ≤ y.

Moreover, for properties (15), (17) and (14) we prove the following propositions.

Proposition 4. Let I(1), I(2) are two fuzzy implications.
(i) I(1), I(2) satisfy (15) if the fuzzy implication IT,I(1),I(2) satisfies (15).
(ii) I(1), I(2) satisfy (17) if the fuzzy implication IT,I(1),I(2) satisfies (17).

Proof. (i) If I(1), I(2) satisfy (15), then IT,I(1),I(2) satisfies (15) and the proof is deduced by Proposition 2.
Vice versa; if IT,I(1),I(2) satisfies (15), then for all x ∈ [0, 1] it is

IT,I(1),I(2)(x, x) = 1⇔ T[I(1)(x, x), I(2)(x, x)] = 1

⇔ I(i)(x, x) = 1, i = 1, 2.

Thus, I(i), i = 1, 2 satisfy (15).
(ii) If I(1), I(2) satisfy (17), then IT,I(1),I(2) satisfies (17) and the proof is deduced by Proposition 3.

Vice versa; if IT,I(1),I(2) satisfies (17), then for all x, y ∈ [0, 1] it is

x ≤ y⇔ IT,I(1),I(2)(x, y) = 1

⇔ T[I(1)(x, y), I(2)(x, y)] = 1

⇔ I(i)(x, y) = 1, i = 1, 2.

Thus, I(i), i = 1, 2 satisfy (17).

Proposition 5. Let I(1), I(2) be two fuzzy implications and S is a positive t-conorm. If the fuzzy implication
IS,I(1),I(2) satisfies (15), then for all x ∈ [0, 1] it is

I(1)(x, x) = 1 or I(2)(x, x) = 1.
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Proof. If IS,I(1),I(2) satisfies (15), then for all x ∈ [0, 1] it is

IS,I(1),I(2)(x, x) = 1⇔ S[I(1)(x, x), I(2)(x, x)] = 1

⇔ I(1)(x, x) = 1 or I(2)(x, x) = 1,

since S is a positive t-conorm.

Proposition 6. Let I(1) and I(2) be two fuzzy implications that satisfy (17) and S is a positive t-conorm. Then
the fuzzy implication IS,I(1),I(2) satisfies (17).

Proof. Let I(1) and I(2) be two fuzzy implications that satisfy (17); then,

I(i)(x, y) = 1⇔ x ≤ y, x, y ∈ [0, 1], i = 1, 2.

Thus, for all x, y ∈ [0, 1] it is

IS,I(1),I(2)(x, y) = 1⇔ S[I(1)(x, y), I(2)(x, y)] = 1

⇔ I(1)(x, y) = 1 or I(2)(x, y) = 1

⇔ x ≤ y,

since S is a positive t-conorm.

Proposition 7. Let I(1) and I(2) be two fuzzy implications and S is a positive t-conorm. If the fuzzy implication
IS,I(1),I(2) satisfies (17), then for any x, y ∈ [0, 1] it is

x ≤ y⇔ I(1)(x, y) = 1 or I(2)(x, y) = 1.

Proof. If IS,I(1),I(2) satisfies (17), then for all x, y ∈ [0, 1] it is

x ≤ y⇔ IS,I(1),I(2)(x, y) = 1

⇔ S[I(1)(x, y), I(2)(x, y)] = 1

⇔ I(1)(x, y) = 1 or I(2)(x, y) = 1,

since S is a positive t-conorm.

Proposition 8. Let I(1) and I(2) be two fuzzy implications that satisfy (14). Then the fuzzy implication
(i) IT,I(1),I(2) satisfies (14) if T = TM = min{x, y} and
(ii) IS,I(1),I(2) satisfies (14) if S = SM = max{x, y}.

Proof. (i) Let I(1) and I(2) be two fuzzy implications that satisfy (14); then,

I(i)(1, y) = y, y ∈ [0, 1], i = 1, 2.

So, for all y ∈ [0, 1], we have

IT,I(1),I(2)(1, y) = T[I(1)(1, y), I(2)(1, y)] = T(y, y).

Thus, IT,I(1),I(2) satisfies (14), when T is idempotent. Moreover the only idempotent t-norm is
T = TM = min{x, y} (see [1] Remark 2.1.4(ii), [11] Proposition 1.9).
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Vice versa; if T = TM = min{x, y}, then

ITM ,I(1),I(2)(1, y) = TM[I(1)(1, y), I(2)(1, y)] = min{y, y} = y, y ∈ [0, 1].

(ii) Similarly, for all y ∈ [0, 1], we have

IS,I(1),I(2)(1, y) = S[I(1)(1, y), I(2)(1, y)] = S(y, y).

Thus, IS,I(1),I(2) satisfies (14), when S is idempotent. Moreover the only idempotent t-conorm is
SM = max{x, y} (see [1] Remark 2.2.5(ii)).

Vice versa; if SM = max{x, y}, then

ISM ,I(1),I(2)(1, y) = SM[I(1)(1, y), I(2)(1, y)] = max{y, y} = y, y ∈ [0, 1].

Example 3. Consider the Łukasiewicz’s implication ILK(x, y) = min{1, 1 − x + y}, Gödel’s implication

IGD(x, y) =

{
1, if x ≤ y
y, if x > y

(See [1] Table 1.3) and the positive t-conorm SP(x, y) = x + y− x · y (see [1]

Table 2.2). It is known that ILK and IGD satisfy (16) (see [1] Table 1.4). On the other hand,

ISP ,ILK ,IGD (x, y) = ILK(x, y) + IGD(x, y)− ILK(x, y) · IGD(x, y)

does not satisfy (16), since

ISP ,ILK ,IGD (0.97, ISP ,ILK ,IGD (1, 0.8)) = 0.9996 6= 0.998844 = ISP ,ILK ,IGD (1, ISP ,ILK ,IGD (0.97, 0.8)).

We have to notice at this point that the same result for the violation of (16) holds if we use a
t-norm. This is clear in Example 1, where f = TM.

Corollary 5. (i) If φ ∈ Φ and IT,I(1),I(2) is a fuzzy implication, then (IT,I(1),I(2))φ
is a fuzzy implication,

and moreover,

(IT,I(1),I(2))φ
= ITφ ,(I(1))φ

,(I(2))φ
.

(ii) If φ ∈ Φ and IS,I(1),I(2) is a fuzzy implication, then (IS,I(1),I(2))φ
is a fuzzy implication, and moreover,

(IS,I(1),I(2))φ
= ISφ ,(I(1))φ

,(I(2))φ
.

Proof. It is deduced by Theorem 2 and Corollaries 1 and 2.

Now let us explain a difference between these methods, the one with the t-norms and the other
with the t-conorms. Firstly, we prove the following proposition.

Proposition 9. For all x, y ∈ [0, 1] it is

T(x, y) ≤ x ≤ S(x, y) and T(x, y) ≤ y ≤ S(x, y).

Proof. For all x, y ∈ [0, 1] it is 0 ≤ y ≤ 1 and by (3) and (4) we deduce that

T(x, y) ≤ T(x, 1)⇒ T(x, y) ≤ x
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and similarly by (7), (8), and (5) we deduce that

S(x, 0) ≤ S(x, y)⇒ S(0, x) ≤ S(x, y)⇒ x ≤ S(x, y).

Thus, for all x, y ∈ [0, 1] it is

T(x, y) ≤ x ≤ S(x, y) and (obviously) T(x, y) ≤ y ≤ S(x, y).

Proposition 9 testifies to the importance of the method presented, since if we have two fuzzy
implications I(1), I(2) and we want to generate a not greater fuzzy implication of them, a solution is
the fuzzy implication IT,I(1),I(2) . On the other hand, if we want a not weaker fuzzy implication, then
the solution is IS,I(1),I(2) . Moreover, since TD ≤ T ≤ TM ≤ SM ≤ S ≤ SD (see [1] Remarks 2.1.4(ix) and
2.2.5(viii)), where TD is the drastic product t-norm (see [1] Table 2.1) and SD the drastic sum t-conorm
(see [1] Table 2.2), we deduce that

ITD ,I(1),I(2) ≤ IT,I(1),I(2) ≤ ITM ,I(1),I(2) ≤ I(i) ≤ ISM ,I(1),I(2) ≤ IS,I(1),I(2) ≤ ISD ,I(1),I(2) , i = 1, 2.

3.3. Fuzzy Connectives’ Classes of Fuzzy Implications

In this section in an attempt to simplify a previous theoretical approach; we show the special
case, where I(1) = I(2) = . . . = I(n). Then the corresponding fuzzy implication is denoted by I f

(1)
instead of I f ,I(1),I(2),. . . ,I(n) . Moreover, if f is a fuzzy connective, i.e., a t-norm or a t-conorm, then the

corresponding fuzzy implication is denoted by IT
(1) and respectively IS

(1).
It is obvious that all the previous Theorems, Propositions, Corollaries, and results hold

case-by-case for these implications, since they are special cases of the previous we have mentioned.
We just mentioned these cases due to their simplicity, since we used only one and not two fuzzy
implications. The previous results of those cases, when we used a fuzzy connective, were transformed
to the following corollaries, which are presented without proofs due to their simplicity.

Corollary 6. Let I(1) be a fuzzy implication that satisfies (15) (respectively (18)–(20) with respect to N). Then,
the fuzzy implications IT

(1) and IS
(1) satisfy (15) (respectively (18)–(20) with respect to N).

Corollary 7. Let I(1) be a fuzzy implication.
(i) I(1) satisfies (15) if the fuzzy implication IT

(1) satisfies (15).

(ii) I(1) violates (15) if the fuzzy implication IT
(1) violates (15).

(iii) I(1) satisfies (17) if the fuzzy implication IT
(1) satisfies (17).

(iv) I(1) violates (17) if the fuzzy implication IT
(1) violates (17).

Corollary 8. Let I(1) be a fuzzy implication and S be a positive t-conorm.
(i) I(1) satisfies (15) if the fuzzy implication IS

(1) satisfies (15).

(ii) I(1) violates (15) if the fuzzy implication IS
(1) violates (15).

(iii) I(1) satisfies (17) if the fuzzy implication IS
(1) satisfies (17).

(iv) I(1) violates (17) if the fuzzy implication IS
(1) violates (17).

Corollary 9. Let I(1) be a fuzzy implication that satisfies (14). Then the fuzzy implication
(i) IT

(1) satisfies (14) if T = TM.

(ii) IT
(1) violates (14) if T 6= TM.

(iii) IS
(1) satisfies (14) if S = SM.

(iv) IS
(1) violates (14) if S 6= SM.
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Furthermore, two subclasses of every fuzzy implication were created. The first one is the T
subclass of a fuzzy implication I(1). If we consider as T the set of t-norms, then the T subclass of I(1) is
defined as IT(1) = ∪T∈T{IT

(1)}. We must notice that IT(1) contains fuzzy implications that are not greater

than I(1). Moreover, since I(1) = ITM
(1) , I(1) ∈ IT(1) ⇒ IT(1) 6= ∅, and I(1) is the greatest fuzzy implication

that is contained in IT(1). On the other hand it is obvious that the weakest fuzzy implication that is

contained in IT(1) is ITD
(1) .

The second one is the S subclass of a fuzzy implication I(1). If we consider as S the set of t-conorms,
then the S subclass of I(1) is defined as IS(1) = ∪S∈S{IS

(1)}. We must notice that IS(1) contains fuzzy

implications that are not weaker than I(1). Moreover, since I(1) = ISM
(1) , I(1) ∈ IS(1) ⇒ IS(1) 6= ∅ and I(1)

is the weakest fuzzy implication that is contained in IS(1). On the other hand, it is obvious that the

greatest fuzzy implication that is contained in IS(1) is ISD
(1) .

By the previous results it is obvious that IT(1) ∩ IS(1) = {I(1)}. Furthermore these two subclasses

construct the fuzzy connectives’ class of a fuzzy implication I(1), which is defined by IC(1) = IT(1) ∪ IS(1) =

∪C∈C{IC
(1)}, where C is the set of fuzzy connectives.

Our interest is focused on T and S subclass of a fuzzy implication. Firstly we must notice that
if we use two valued fuzzy implications, such as IRS, I0, I1, I3, I4, I6, I10, I15, I18 (see [1] Table 1.3,
Proposition 1.1.7 and [13]), then IC(1) = IT(1) = IS(1) = {I(1)}. This means that these fuzzy implications
are invariant via this method and there is nothing to study and mention about these cases.

Moreover, according to Corollary 9, (14) is invariant only if we use an idempotent t-norm or
t-conorm. On the other hand, as we mentioned before for any fuzzy implication I(1) it is I(1) = ITM

(1) =

ISM
(1) . So another characteristic of these three sets is that if I(1) satisfies (14), then IC(1)−{I(1)}, IT(1)−{I(1)}

and IS(1) − {I(1)}, when they are not empty, they are sets that contain only fuzzy implications that
violate (14).

At this point let us give an example which explains the aforementioned theoretical approach.

Example 4. Consider the Łukasiewicz’s implication ILK(x, y) = min{1, 1− x + y} that satisfies (14), (16),
(15), and (17) (see [1] Table 1.4). If we are looking for a weaker fuzzy implication that satisfies (15), (17) and
violates (14), this could be ITLK

LK , where TLK(x, y) = max{x + y− 1, 0} (see [1] Table 2.1). So, it is

ITLK
LK (x, y) = TLK(ILK(x, y), ILK(x, y))

= max{ILK(x, y) + ILK(x, y)− 1, 0}
= max{2ILK(x, y)− 1, 0}
= max{2min{1, 1− x + y} − 1, 0}
= max{min{1, 1− 2x + 2y}, 0}

=


0, if x− y ≥ 0.5
1− 2x + 2y, if 0 ≤ x− y ≤ 0.5
1, if x ≤ y

Moreover, ITLK
LK violates (16) since

ITLK
LK (0.9, ITLK

LK (1, 0.8)) = 0.4 6= 0.6 = ITLK
LK (1, ITLK

LK (0.9, 0.8)).
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If we consider TD(x, y) =

{
0, if x, y ∈ [0, 1)
min{x, y}, otherwise

(see [1] Table 2.1), then the weakest fuzzy

implication we can generate with this method is

ITD
LK (x, y) = TD(ILK(x, y), ILK(x, y))

=

{
0, if ILK(x, y) ∈ [0, 1)
min{ILK(x, y), ILK(x, y)}, otherwise

=

{
0, if x > y
ILK(x, y), otherwise

=

{
0, if x > y
1, if x ≤ y

= IRS(x, y),

where IRS is the Rescher’s fuzzy implication (see [1] Table 1.3). Also, IRS satisfies (15), (17) and does not satisfy
(14) and (16) (see [1] Table 1.4).

On the other hand, if we are looking for a greater fuzzy implication that satisfies (15) and does not satisfy
(14), this could be ISLK

LK , where SLK(x, y) = min{x + y, 1} the Lukasiewicz’s t-conorm (see [1] Table 2.2). So, it
is

ISLK
LK (x, y) = SLK(ILK(x, y), ILK(x, y))

= min{ILK(x, y) + ILK(x, y), 1}
= min{2ILK(x, y), 1}
= min{2min{1, 1− x + y}, 1}
= min{min{2, 2− 2x + 2y}, 1}
= min{2− 2x + 2y, 1}

=

{
2− 2x + 2y, if x− y ≥ 0.5
1, otherwise

Moreover, ISLK
LK violates (17) and (16), since

ISLK
LK (1, 0.8) = 1 and ISLK

LK (0.9, ISLK
LK (0.95, 0.1)) = 0.8 6= 0.9 = ISLK

LK (0.95, ISLK
LK (0.9, 0.1)).

If we consider SD(x, y) =

{
1, if x, y ∈ (0, 1]
max{x, y}, otherwise

(see [1] Table 2.1), then the greatest fuzzy

implication we can generate with this method is

ISD
LK (x, y) = SD(ILK(x, y), ILK(x, y))

=

{
1, if ILK(x, y) ∈ (0, 1]
max{ILK(x, y), ILK(x, y)}, otherwise

=

{
1, if x− y < 1
ILK(x, y), if x− y = 1

=

{
0, if x = 1 and y = 0
1, otherwise

= I1(x, y),
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where I1 is the greatest fuzzy implication (see [1] Proposition 1.1.7 and [13]). I1 obviously satisfies (15) and does
not satisfy (14). Moreover, it does not satisfy (17) since I1(0.9, 0.8) = 1, and it is easy to prove that satisfies (16).

Because of the previous example, we have to notice that since we do not use positive t-conorms,
(17) must be checked by the result every time and we cannot predict it a priori. Nevertheless, this
check is an easy process.

4. Conclusions

We believe that the above production machine of fuzzy implications will play a crucial role in
many areas, theoretical and applied ones. For instance, we refer to the theoretical topic of subsethood
measures and applied topics such as artificial intelligence and pattern recognition (see [8,14,15]).

Moreover, many properties of fuzzy implications are proposed by the literature (see [1,3,4]). All
these properties and many of the construction methods of fuzzy implications are generalizations from
classical to fuzzy topic. We could claim in a point of view that we think classically and we apply fuzzy
methods. A classical thinking of a part of our study in this paper may be the classical tautologies

p ≡ p ∧ p and p ≡ p ∨ p. (22)

The real question we asked ourselves to begin this research was whether or not some properties
of fuzzy implications are desirable. Moreover, we asked—how do we totally control them? For
instance, as we mentioned in the Introduction in [8], (17) was desirable in the construction of the fuzzy
implication IZ (see [8] Equation (6)). The truth is that there are a lot of fuzzy implications that satisfy
(17), but are they enough? What if we want only one or some of (14), (15) and (17)?

All the previous thoughts lead us to introduce the aforementioned method of generating fuzzy
implications via known fuzzy implications and a function f , which has some properties as they are
mentioned in Theorem 1. The properties of fuzzy implications that are preserved via this method were
also presented.

Moreover, the special case of generating fuzzy implications via two known fuzzy implications
and a fuzzy connective, such as a t-norm or a t-conorm, was studied. This method is very important,
since it gives us a tool to generate not greater or not weaker fuzzy implications than the preliminaries
we use. Another advantage is that we can control many properties of these induced implications, such
as (14), (15) and (17).

As it is proven in Corollary 4, (18)–(20) with respect to N and (15) are preserved by this production
of fuzzy implications. The same happens for (17), when the applying fuzzy connective is any t-norm
or positive t-conorm, according to Propositions 4 and 6. Moreover, the same happens for (14) only
when we use TM or SM, according to Proposition 8. On the other hand, (16) is not generally preserved
by this method, at least when we use a fuzzy connective of the Definition 4 (see Examples 1 and 3; and
in [1] Tables 2.1 and 2.2, and Remark 6.1.5).

We have to note that these are important results, but Propositions 5–8 are also very important. All
these Propositions in other words give us the following statements:

• If we want a fuzzy implication that satisfies the (left, right) contrapositive symmetry (18)–(20)
with respect to N we construct it by two fuzzy implications I(1), I(2) that respectively satisfy
(18)–(20) with respect to N and any t-norm or t-conorm.

• If we want a fuzzy implication that satisfies (15), its construction is completed by two fuzzy
implications I(1), I(2) that satisfy (15) and any t-norm or t-conorm. On the other hand, if we
want to construct a fuzzy implication that violates (15), we can construct it by two ways. The
first way is to consider IT,I(1),I(2) , where T is any t-norm and at least one of I(1), I(2) violate (15),
according to Proposition 4. The second way is to consider IT,I(1),I(2) , where S is any positive
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t-conorm and the choice of the fuzzy implications I(1), I(2) is made, such that there exists at least
one x ∈ (0, 1), such that

I(1)(x, x) 6= 1 and I(2)(x, x) 6= 1,

according to Proposition 5.

• If we want a fuzzy implication that satisfies (17), its construction is achieved similar to the
previous ones, if we consider two fuzzy implications I(1), I(2) that satisfy (17) and any t-norm or
any positive t- conorm. On the other hand, the construction of a fuzzy implication that does not
satisfy (17) is achieved by two ways. The first way is to consider IT,I(1),I(2) , where T is any t-norm
and at least one of I(1), I(2) violate (17), according to Proposition 4. The second way is to consider
IS,I(1),I(2) , where S is any positive t- conorm and the choice of the fuzzy implications I(1), I(2) will

be done, such that there exist at least one (x, y) ∈ [0, 1]2, such

x ≤ y⇔ I(1)(x, y) 6= 1 and I(2)(x, y) 6= 1,

according to Proposition 7.

• If we want a fuzzy implication that satisfies (14) its construction is given in Proposition 8. On the
other hand, the construction of a fuzzy implication that does not satisfy (14) is given by the same
Proposition. This construction is achieved by using two implications I(i), i = 1, 2 that satisfy (14)
and any t-norm or t-conorm, except TM and SM.

Another characteristic of this method is that if we use a t-norm, we achieve the construction of
a not greater fuzzy implication than the preliminaries. On the other hand, if we use a t-conorm we
achieve the construction of a not weaker fuzzy implication than the preliminaries.

Finally, the simpler case we use one preliminary fuzzy implication, and a fuzzy connective is
studied too. This case lead us to two subclasses of fuzzy implications the so called T an S subclasses,
or the not greater and not weaker subclasses respectively, of a fuzzy implication. The findings of this
case are presented in detail in Section 3.3.

This theoretical approach gives us many advantages, since a priori we can construct fuzzy
implications from known ones that violate or preserve any property of (14), (15) and (17) we want.
At this point we must note that (17)⇒(15). In other words, a fuzzy implication that satisfies (17) and
violates (15) is impossible by definition to be constructed. Moreover, another characteristic of this
approach is that if the preliminary fuzzy implications satisfy (14), we have a generator that violates it,
except in the case we use TM or SM.
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