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Abstract: Recently, large-scale bioinformatics and genomic data have been generated using advanced
biotechnology methods, thus increasing the importance of analyzing such data. Numerous data
mining methods have been developed to process genomic data in the field of bioinformatics. We
extracted significant genes for the prognosis prediction of 1157 patients using gene expression
data from patients with kidney cancer. We then proposed an end-to-end, cost-sensitive hybrid
deep learning (COST-HDL) approach with a cost-sensitive loss function for classification tasks on
imbalanced kidney cancer data. Here, we combined the deep symmetric auto encoder; the decoder is
symmetric to the encoder in terms of layer structure, with reconstruction loss for non-linear feature
extraction and neural network with balanced classification loss for prognosis prediction to address
data imbalance problems. Combined clinical data from patients with kidney cancer and gene data
were used to determine the optimal classification model and estimate classification accuracy by
sample type, primary diagnosis, tumor stage, and vital status as risk factors representing the state
of patients. Experimental results showed that the COST-HDL approach was more efficient with
gene expression data for kidney cancer prognosis than other conventional machine learning and
data mining techniques. These results could be applied to extract features from gene biomarkers for
prognosis prediction of kidney cancer and prevention and early diagnosis.

Keywords: data mining; machine learning; kidney cancer; bioinformatics; autoencoder; neural
network; cost-sensitive; hybrid deep learning; cancer classification

1. Introduction

Using bioinformatics approaches to identify genes that are useful for the diagnosis and prognosis
prediction of patients with cancer can foster treatment. The analysis of cancer data is important yet
difficult due to the large amounts of gene expression data available. Thus, only significant features
that can express the health condition of patients must be extracted. Additionally, the development of
efficient classification models based on the extracted genes is helpful for early diagnosis and prognosis
prediction of patients with cancer. Cancer is caused by gene modifications, which may enable a cell
to proliferate exponentially and then permeate normal surrounding cells before spreading through
the body. In utilizing deep learning methods to accurately predict the disease condition of patients
by analyzing mutations only in the gene sequence, studies have identified genes involved in spinal
muscular atrophy, hereditary nonpolyposis colon cancer, and autism [1].
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In this study, we extracted genes useful for the prognosis prediction of patients with kidney cancer
and then predicted prognosis by applying a classification algorithm based on the gene. Kidney cancer is
a primary tumor generated from the kidney, among which malignant renal cell carcinoma accounts for
over 90% of cases. Because kidney cancer shows no symptoms at the early stages, it is often diagnosed
at a progressive stage. According to registered statistics for cancer in Korea, 5043 kidney cancer cases
were diagnosed in 2016, thereby ranking 10th among all cancers. In fact, the annual incidence of
kidney cancer increased steadily from 1999 to 2019 [2]. Additionally, the symptoms and treatment of
kidney cancer decrease the quality of life of the patients by increasing the disease burden and medical
costs. Lifestyle factors, such as poor diet, physical inactivity, smoking, and alcohol consumption, are
associated with an increased risk of kidney cancer. Additionally, genetic and environmental factors
influence all of these risk factors and diseases, such as diabetes, hypertension, and obesity [3].

There have been various successful applications of machine learning and data mining techniques to
bioinformatics and genomics [4] research. For example, PathAI was implemented for digital pathology
after the analysis of image data from patients with breast cancer using artificial intelligence, which
decreased the error rate of diagnosing metastasized cancer through deep learning [5]. Additionally, a
study [6] at Emory University analyzed the survival rate of patients with brain tumors by combining
gene data with pathology image data, and this showed a very high accuracy of survival rate prediction.
It was reported that the deep learning convolutional neural networks achieved higher accuracy than
pathologist-based diagnosis in the prediction of survival rate [6]. Another study predicted the degree
of risk of approximately 20 cancers by applying machine learning and artificial intelligence to analyze
gene-related big data [7]. Over the years, various technologies for data mining have been applied.
Specifically, a deep learning method was applied to infer the expression of target genes from the
expression of landmark genes [8]. The performance of the tested method outperformed other machine
learning algorithms significantly. Recent studies were also conducted to develop a classification model
system for diagnosing disease and cancer using machine learning [9,10].

Most studies have been conducted to extract features using genome data from patients with kidney
cancer by data mining, statistical methods, and classification algorithms [11–13]. Various bioinformatics
and genomic data have also been applied in algorithms based on machine learning [14–16]. Recently,
due to the advantages of deep learning, various deep learning approaches have been applied to
the research of cancer using gene expression data [17–19]. Deep learning approaches are useful for
constructing predictive models and feature extraction: Where higher levels represent more abstract
entities, they map the lowest input layer to the uppermost output layer without using hand-crafted
features or rules [20,21]. Using data from The Cancer Genome Atlas (TCGA) [22], we used a deep
learning approach in a prior study to extract genes related to cancer by combining RNA sequencing
and DNA methylation data. We evaluated breast invasive carcinoma, thyroid carcinoma, and kidney
renal papillary cell carcinoma [23].

In this study, we combined gene expression and clinical data from patients with kidney cancer
from TCGA and applied our proposed deep learning, end-to-end COST-HDL approach. We compared
the proposed approach with several traditional data mining and machine learning methods that are not
implemented end-to-end. These methods have multiple steps such as feature engineering, over- and
under-sampling, and classification. The objectives of this study are to extract deep features from gene
biomarkers for precisely predicting prognosis, overcome differences in various types of cancer data,
and develop an end-to-end prediction model by comparing and analyzing classification algorithms
using the extracted genes. The major contributions of this paper can be summarized as follows: (1) We
propose an end-to-end approach without any manual engineering, which predicts kidney cancer
prognosis including sample type, primary diagnosis, tumor stage, and vital status. (2) We propose a
non-linear transformation strategy, deep symmetric autoencoder, to extract deep features from gene
biomarkers in kidney cancer by taking advantage of deep learning structure. (3) We propose a mixed
loss function for the proposed deep learning model, both considering compression of knowledge
representation and data imbalanced problem.
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The remainder of the paper is organized as follows: Section 2 introduces the gene expression
dataset from patients with kidney cancer and explains the proposed deep learning approach in detail.
In Section 3, the experimental results are provided. Finally, Section 4 discusses the experimental
analysis, and addresses our conclusion.

2. Materials and Methods

2.1. Dataset

TCGA contains a variety of gene information such as single-nucleotide polymorphism (SNP)
and gene expression (mRNA expression) data from large numbers of patients with cancer, which
are stored in a database [22]. We collected TCGA data from 1157 patients with kidney cancer and
other clinical information including sample type, primary diagnosis, tumor stage, and vital status.
Each clinical information is used as class labels in the prognosis prediction task. The degree of gene
expression was estimated at the RNA level, and the expression data (transcriptome profiling) were
merged and digitized after assigning transaction IDs. We used 60,483 gene expression data points
from each patient with kidney cancer, values expressed with the Fragments Per Kilobase per Million
mapped (FPKM) measure [24]. The kidney cancer dataset was used to extract the complex structure of
gene biomarkers and estimate classification accuracy as risk factors by sample type, primary diagnosis,
tumor stage, and vital status representing the state of patients.

The statistics of the dataset are shown in Table 1. In the preprocessing step, we removed all no
variance gene expression data and other noisy samples. Varying samples and gene expression data
sizes were used for the prognoses, and they were split into 80% for training and 20% for testing. The
datasets are highly imbalanced, especially the dataset of sample type prognosis, which contains 87.9%
primary tumor samples and 12.1% solid tissue normal samples.

Table 1. Number of Class Type of the dataset.

Prognosis # Gene # Sample Class Type Total Train Test

Sample Type 58,404 1149
Primary Tumor 1010 805 205

Solid Tissue Normal 139 114 25

Primary Diagnosis 58,409 1157
C64.9 836 679 157
C64.1 321 246 75

Tumor Stage 60,483 1118

Stage-I 528 424 104
Stage-II 183 145 38
Stage-III 261 204 57
Stage-IV 146 121 25

Vital Status 58,412 1157
Alive 835 664 171
Dead 322 261 61

In the analysis, we applied a cost function to solve this data imbalance problem and compared it
with other sampling methods. We also used the DAE model to extract the high dimension of gene
expression data and compared it with other feature-selection and dimension-reduction techniques.

2.2. The COST-HDL Approach

In the experiments, the extracted target genes were subject to classification analysis, and the
performance was evaluated. Figure 1 shows the proposed COST-HDL approach which input the gene
expression data of kidney cancer from the TCGA portal and output four kinds of prognoses namely,
sample type, primary diagnosis, tumor stage, and vital status. It consists of a hybrid of DAE and
NN models. For the RNA sequencing data, the number of variables is significantly higher than the
number of samples. Therefore, general classification analysis is prohibited by technical challenges
in dealing with more than 60,000 variables: it is challenging to apply the data mining and machine
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learning algorithms to the raw dataset. Therefore, in this study, we used the 5-layer DAE model (the
first 2 layers for encoding, the middle layer for gene extraction, and the last 2 layers for decoding) to
extract significant genes and extract deep features from gene biomarkers as a result. The extracted
deep features were input to the NN classification method (hidden layer + dropout [25] + Rectified
Linear Unit (ReLU) [26] + softmax [27]).
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Figure 1. Overview of COST-HDL approach. We used kidney cancer gene expression data from
the TCGA portal. The Deep Auto Encoder (DAE) model is used to extract deep features from gene
biomarkers as a lower-dimensional vector. The Neural Network (NN) is used to classify sample type,
primary diagnosis, tumor stage, and vital status. We summed the reconstruction loss (DAE) and
balanced classification loss (NN) in the cost function.

The DAE model employed the mean squared error (MSE) as a reconstruction loss during the
training, while the NN model used the focal loss [28] as a balanced classification loss. Focal loss is the
reshaping of cross-entropy loss such that it down-weights the loss assigned to well-classified examples.
The novel focal loss focuses on training on a sparse set of hard examples and prevents the vast number
of easy negatives from overwhelming the detector during training. The proposed COST-HDL approach
uses the sum of the reconstruction loss and balanced classification loss as a cost function.

The experimental hardware platform was the Intel Xeon E3 (32G memory, GTX 1080 Ti). We
used Ubuntu 18.04 as the computational environment, and Python 3.7 was used for data collection
and analysis. Python 3.7 Library uses Scikit-Learn [29] and Pytorch [30]. The following paragraphs
describe the DAE model for extracting deep features from gene biomarkers and the NN model for
constructing prognosis prediction models in detail.

2.2.1. Extracting Deep Features from Gene Biomarkers

We utilized the training dataset to extract gene expression data by using the DAE non-linear
feature transformation method, and we compared it with Principal Component Analysis (PCA) [31]
linear feature transformation and the Least Absolute Shrinkage and Selection Operator (LASSO) [32]
feature selection methods. PCA explains correlated multivariate data in a fewer number of linearly
uncorrelated variables which are a linear combination of the original variable. Due to the linearity
constraints, we developed a DAE with non-linear activation functions which give more accuracy in
the reconstruction of data. However, the feature selection methods such as LASSO select the best
features or a subset of the original feature set and do not alter the original representation of data [33].
Thus, they may lose some important information during a selection process when extracting a complex
structure of cancer data.
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We developed the DAE model using Pytorch to extract deep features from gene biomarkers. The
architecture of the DAE model consists of encoder and decoder parts. The encoder part comprised
one input layer, and three fully connected encoding hidden layers with 1000, 500, and 100 nodes,
respectively. The last layer of the hidden layers was chosen to be the deep feature to extract the
gene biomarkers. The decoder part comprised two fully connected decoding hidden layers with 500
and 1000 nodes, respectively. The last layer of the hidden layer was chosen to be the output layer
(reconstructed input). These are used to transpose the encoding layer weights. The procedure can be
formulated as below:

hidden_encode1 = ReLU(W1 × input + b1)

hidden_encode2 = ReLU(W2 × hidden_encode1 + b2)

hidden_encode3 = W3 × hidden_encode2 + b3

hidden_decode1 = ReLU(W2
′
× hidden_encode3 + b2

′)

reconstructed_input = Tanh(W1
′
× hidden_encode1 + b1

′)

(1)

where W1, W2, and W3 are the weight metrics between the layers with the size of N × 1000, 1000 × 500,
and 500 × 100, respectively; N is the size of input or number of samples; b1, b2, and b3 are the biases
for each node; and ReLU and Tanh are non-linear activation functions. The terms with superscripts
refer to the transpose metrics. The hidden_encode3 layer was chosen to be the activity values of the deep
features in this model. The DAE has a loss function to handle the data reconstruction error which can
measure the error between the original data and the reconstructed data, and it employed the MSE as
its loss function.

2.2.2. Constructing Prognose Prediction Models

For the prognose prediction models, we constructed a feedforward neural network, which
contained one input layer, one hidden layer with 100 nodes, and one output layer. The deep features of
the hidden_encode3 in the DAE model were used as the input of the NN model. This procedure can be
formulated as below:

hiddenlayer = ReLU(W4 × hiddenencode3 + b4)

output = so f tmax(W5 × hidden_layer + b5)
(2)

where W4 and W5 are the weight metrics between the layers with the size of 100 × 100 and 100 × C,
respectively; C is the size of output or number of class types; b4 and b5 are the biases for each node;
and ReLU and so f tmax are non-linear activation functions. The so f tmax activation function computes
softmax cross entropy between logits and labels, and the sum of its outputs to 1 makes an efficient
probability analysis. A dropout layer was added after the hidden_layer, which randomly set 20% of
the output of that layer to 0. The NN has a loss function to handle classification error which can
measure the error between the true class and prediction class and also addresses the class imbalance.
The NN model employed the focal loss as its loss function. The focal loss addresses the class balance
problem by reshaping the standard cross-entropy loss such that it down-weighs the loss assigned to
well-classified examples.

2.2.3. Training the Models

The cost function L was used to measure the difference between the input and the output:

LDAE
(
input, reconstructedinput

)
= MSE loss

LNN(hidden_encode3, output) = f ocal loss
L(input, output) = LDAE + LNN

(3)

For the optimization, we selected Adam optimizer [34], which has several arguments to be set
freely, as the strategy to update the weights and bias so that the minima could be found. After running
different trials, the learning rate was finally set to 0.00001, and the batch size and epoch were set to 128
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and 2000, respectively. The models were finally trained under the parameters mentioned above. We
chose the checkpoint model which shows the lowest error on the training set. The activity values and
weight metrics related to deep features were readouts.

3. Results

3.1. Visualization of Feature Extraction

The training set was utilized to analyze and extract deep features from gene biomarkers by the
DAE model. We compared it with the PCA dimension reduction and LASSO feature selection methods.
We extracted 100 features for each classification task for further analysis by the DAE model as shown
in Table 2. For a fair comparison, we also extracted 100 features for each classification task by the
PCA method as shown in Table 3. Different numbers of gene biomarkers were selected by the LASSO
method as shown in Table 4. The testing set was utilized to evaluate the feature extraction from gene
biomarkers. We developed the PCA and LASSO methods using Scikit-Learn and developed the DAE
model using Pytorch.

Table 2. The extracted the number of deep features from gene biomarkers by the DAE model.

Prognosis # Features

Sample Type 100
Primary Diagnosis 100

Tumor Stage 100
Vital Status 100

Table 3. The extracted number of features from gene biomarkers by PCA method.

Prognosis # Features

Sample Type 100
Primary Diagnosis 100

Tumor Stage 100
Vital Status 100

Table 4. The selected number of gene biomarkers by LASSO method.

Prognosis # Gene Biomarkers

Sample Type 22
Primary Diagnosis 77

Tumor Stage 263
Vital Status 139

For the visualization of the deep features extracted by DAE, the features extracted by PCA, and
the features selected by LASSO, we used t-Distributed Stochastic Neighbor Embedding (TSNE) [35].
TSNE is a widely used non-linear dimensionality reduction technique for visualizing high-dimensional
data with clear and perfect separation on the two- (or three-) dimensional plane.

We used the two-dimensional plane for the following visualizations of extracted features as shown
in Figures 2–5 for each prognosis.



Symmetry 2020, 12, 154 7 of 21Symmetry 2020, 12, x FOR PEER REVIEW 7 of 20 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Visualization of extracted features from gene biomarkers for sample type prognosis: (a) train 
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data 
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE. 

Figure 2. Visualization of extracted features from gene biomarkers for sample type prognosis: (a) train
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE.
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Figure 5. Visualization of extracted features from gene biomarkers for vital status prognosis: (a) train
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE.

The visualization of the extracted features from the gene biomarkers for the prognosis such as
sample type, primary diagnosis, tumor stage, and vital status are shown in Figures 2–5, respectively.
It can be seen that the deep features extracted by the DAE model were distinguished better than the
features extracted by the PCA method and the features selected by the LASSO method on both the
training and testing sets. Further, other prognoses are identified by the DAE method.
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3.2. Training Process

We trained our COST-HDL approach with 2000 epochs. Each loss (MSE, Focal, and Total) during
the training is shown in Figures 6–9 for each prognosis. The MSE loss continuously decreased in all
experiments for each diagnosis. In the multi-class case, tumor stage prognosis, it decreased more
strictly. The focal loss decreased, but it was more sensitive during the training for each prognosis. In
the binary class case, sample type prognosis, it was most sensitive and between the values 0.6 and 1.
This was because the model was already satisfied with 100% of performance results.
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3.3. Evaluation of Prognose Prediction Models

To evaluate our COST-HDL approach, four indices namely, accuracy, precision, recall, and f1-score
were employed the classification performance, and they are defined as follows.

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2×Precision×Recall
Precision+Recall

(4)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and false
negatives, respectively. A true positive is an outcome where the model correctly predicts the positive
class. Similarly, a true negative is an outcome where the model correctly predicts the negative class. A
false positive is an outcome where the model incorrectly predicts the positive class, and a false negative
is an outcome where the model incorrectly predicts the negative class. In Table 5, we compared the
models with different loss functions (only MSE loss, only focal loss, and total loss). It can be seen that
the models with total loss show better performances than the other single loss models, and the models
with only MSE loss show the worst results.

Table 5. Effect of loss function of the COST-HDL approach. The best results are shown in bold.

Prognosis Loss Accuracy Precision Recall F1-Score

Sample Type

MSE 89.13 44.57 50.00 47.13

Focal 99.57 99.76 98.00 98.86

Total 100.00 100.00 100.00 100.00

Primary Diagnosis
MSE 62.93 43.86 47.89 42.63
Focal 96.55 97.13 95.01 95.97
Total 96.98 97.43 95.68 96.49

Tumor Stage
MSE 12.05 7.92 26.32 7.31
Focal 54.46 45.15 45.05 43.76
Total 56.70 49.41 46.14 46.68

Vital Status
MSE 73.71 36.85 50.00 42.43
Focal 76.29 69.00 67.05 67.83
Total 76.72 69.78 68.92 69.32

For the prediction of sample type prognosis, our COST-HDL approach with total loss achieved
the highest results: 100% accuracy, 100% precision, 100% recall, and 100% f1-score. It improved the
model with only focal loss by 0.43% of accuracy, 0.24% of precision, 2% of recall, and 1.14% of f1-score.

For the prediction of primary diagnosis prognosis, our COST-HDL approach with total loss
achieved the highest results: 96.98% accuracy, 97.43% precision, 95.68% recall, and 96.49% f1-score. It
improved the model with only focal loss by 0.43% of accuracy, 0.3% of precision, 0.67% of recall, and
0.52% of f1-score.

For the prediction of tumor stage prognosis, our COST-HDL approach with total loss achieved
the highest results: 56.70% accuracy, 49.41% precision, 46.14% recall, and 46.68% f1-score. It improved
the model with only focal loss by 2.24% of accuracy, 4.26% of precision, 1.09% of recall, and 2.92%
of f1-score.

For the prediction of vital status prognosis, our COST-HDL approach with total loss achieved the
highest results: 76.72% accuracy, 69.78% precision, 68.92% recall, and 69.32% f1-score. It improved
the model with only focal loss by 0.43% of accuracy, 0.78% of precision, 1.87% of recall, and 1.49%
of f1-score.
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We verified whether our COST-HDL approach performs better than general traditional machine
learning classifiers, such as K-Nearest Neighbors (KNN) [36], Linear Support Vector Machine (Linear
SVM) [37], Kernel Support Vector Machine (Kernel SVM) [38], Random Forest (RF) [39], and Neural
Network (NN) [40]. The traditional machine learning classifiers are followed by feature extraction
methods such as PCA dimension reduction and LASSO feature selection. To solve the data imbalance
problem, they usually employ sampling methods such as the Synthetic Minority Over-sampling
Technique (SMOTE) [41], which is an over-sampling method.

Hence, in this paper, we compared our COST-HDL approach with a total loss to the traditional
combination of methods: feature extraction → sampling → classifier, as shown in Tables 6–9 for
each prognosis.

For the sample type prognosis, the RF classifier with LASSO feature selection and SMOTE
sampling achieved 100% accuracy, 100% precision, 100% recall, and 100% f1-score. The second-best
results were 99.57% accuracy, 98.08% precision, 99.76% recall, and 98.90% f1-score achieved by the
KNN and NN with LASSO feature selection and SMOTE sampling. The worst results were achieved
by Kernel SVM.

For the primary diagnosis prognosis, the second-best results were 95.69% accuracy, 95.37%
precision, 94.73% recall, and 95.04% f1-score achieved by the Linear SVM with LASSO feature selection
and SMOTE sampling. The worst results were achieved by Kernel SVM.

Table 6. Evaluation of prediction models for sample type. The best results are shown in bold.

Classifier Feature Sampling Accuracy Precision Recall F1-Score

KNN
PCA

No 98.70 99.28 94.00 96.45
Yes 96.52 88.46 96.29 91.87

LASSO
No 98.70 97.43 95.76 96.57
Yes 99.57 98.08 99.76 98.90

Linear SVM
PCA

No 97.39 90.32 98.54 93.90
Yes 97.83 91.67 98.78 94.84

LASSO
No 99.13 96.30 99.51 97.83
Yes 98.70 94.64 99.27 96.80

Kernel SVM
PCA

No 89.13 44.57 50.00 47.13
Yes 89.13 44.57 50.00 47.13

LASSO
No 89.13 44.57 50.00 47.13
Yes 89.13 44.57 50.00 47.13

RF
PCA

No 95.65 97.67 80.00 86.31
Yes 97.39 98.58 88.00 92.46

LASSO
No 99.13 99.52 96.00 97.67
Yes 100.00 100.00 100.00 100.00

NN
PCA

No 98.26 95.51 95.51 95.51
Yes 98.26 95.51 95.51 95.51

LASSO
No 99.13 96.30 99.51 97.83

Yes 99.57 98.08 99.76 98.90

COST-HDL 100.00 100.00 100.00 100.00



Symmetry 2020, 12, 154 17 of 21

Table 7. Evaluation of prediction models for primary diagnosis. The best results are shown in bold.

Classifier Feature Sampling Accuracy Precision Recall F1-Score

KNN
PCA

No 87.07 87.01 82.79 84.40
Yes 84.91 82.82 82.59 82.70

LASSO
No 88.79 90.21 84.06 86.24
Yes 89.66 90.35 85.74 87.52

Linear SVM
PCA

No 88.79 86.67 89.28 87.67
Yes 92.67 91.32 92.15 91.71

LASSO
No 94.40 94.03 93.07 93.53
Yes 95.69 95.37 94.73 95.04

Kernel SVM
PCA

No 67.67 33.84 50.00 40.36
Yes 67.67 33.84 50.00 40.36

LASSO
No 67.67 33.84 50.00 40.36
Yes 67.67 33.84 50.00 40.36

RF
PCA

No 90.52 93.85 85.33 88.13
Yes 94.83 96.45 92.00 93.81

LASSO
No 92.24 94.24 88.35 90.56
Yes 94.40 94.75 92.38 93.43

NN
PCA

No 89.22 88.50 86.47 87.36
Yes 88.36 87.76 85.13 86.25

LASSO
No 92.24 91.65 90.44 91.01

Yes 92.24 92.73 89.39 90.79

COST-HDL 96.98 97.43 95.68 96.49

Table 8. Evaluation of prediction models for tumor stage. The best results are shown in bold.

Classifier Feature Sampling Accuracy Precision Recall F1-Score

KNN
PCA

No 47.77 38.39 33.62 32.66
Yes 41.07 33.60 33.14 32.91

LASSO
No 45.09 32.25 30.07 28.96
Yes 40.18 34.27 35.24 34.13

Linear SVM
PCA

No 29.91 27.61 27.15 24.73
Yes 26.34 39.21 32.28 25.64

LASSO
No 40.62 37.24 40.47 34.28
Yes 50.00 43.01 38.21 36.61

Kernel SVM
PCA

No 46.43 11.61 25.00 15.85
Yes 46.43 11.61 25.00 15.85

LASSO
No 46.43 11.61 25.00 15.85
Yes 46.43 11.61 25.00 15.85

RF
PCA

No 51.34 51.20 33.43 32.12
Yes 54.46 48.20 44.30 44.77

LASSO
No 55.36 55.87 39.11 39.07
Yes 53.12 45.43 45.56 44.47

NN
PCA

No 46.88 38.89 38.65 38.75
Yes 47.32 40.36 40.81 40.45

LASSO
No 41.52 35.67 35.33 35.23

Yes 45.54 38.23 37.98 38.01

COST-HDL 56.70 49.41 46.14 46.68
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Table 9. Evaluation of prediction models for vital status. The best results are shown in bold.

Classifier Feature Sampling Accuracy Precision Recall F1-Score

KNN
PCA

No 70.69 57.64 54.81 54.64
Yes 65.09 54.75 54.70 54.72

LASSO
No 66.38 51.15 50.83 50.29
Yes 65.52 55.10 54.99 55.04

Linear SVM
PCA

No 64.66 57.54 58.62 57.71
Yes 58.19 52.62 53.18 52.05

LASSO
No 73.71 63.48 57.38 57.60
Yes 72.84 62.39 58.38 58.94

Kernel SVM
PCA

No 73.71 36.85 50.00 42.43
Yes 73.71 36.85 50.00 42.43

LASSO
No 73.71 36.85 50.00 42.43
Yes 73.71 36.85 50.00 42.43

RF
PCA

No 73.71 62.50 53.16 50.42
Yes 70.26 58.66 56.62 56.95

LASSO
No 75.00 66.56 58.79 59.33
Yes 73.28 65.73 66.05 65.88

NN
PCA

No 62.07 53.38 53.71 53.41
Yes 58.62 53.68 54.53 53.04

LASSO
No 61.21 54.86 55.76 54.69
Yes 58.19 54.23 55.29 53.31

COST-HDL 76.72 69.78 68.92 69.32

For the tumor stage prognosis, the second-best results were 55.36% accuracy, 55.87% precision,
39.11% recall, and 39.07% f1-score achieved by the RF with LASSO feature selection and without
SMOTE sampling. The worst results were achieved by the Linear SVM with PCA and SMOTE sampling.

For the vital status prognosis, the second-best results were 75.00% accuracy, 66.56% precision,
58.79% recall, and 59.33% f1-score achieved by the RF with LASSO feature selection and without
SMOTE sampling. The worst results were achieved by the Linear SVM with PCA and SMOTE sampling.

4. Discussion and Conclusions

In this study, we showed that unsupervised non-linear DAE is an effective model to extract
meaningful deep features of gene expression data from patients with kidney cancer. These features
were significantly associated with the kidney cancer prognosis such as sample type, primary diagnosis,
tumor stage, and vital status representing the state of patients. We also showed that the end-to-end
hybrid deep learning architecture is more effective than the traditional machine learning analysis flow:
feature extraction, sampling, classification.

We compared the proposed COST-HDL approach with other traditional approaches, and it
achieved better results for all prognosis on gene expression data. The deep features extracted by the
DAE model were distinguished better than the features extracted by the PCA method and the features
selected by the LASSO method on both the training and testing sets. Further, another class label was
identified by the DAE method. The results obtained can be applied to extract deep features from gene
biomarkers for prognosis prediction of kidney cancer from various causes and; hence, it is useful for
preventing kidney cancer and early diagnosis.

This study can be improved in three ways. The first is to develop unsupervised deep symmetric
autoencoder methods such as stacking more layers, denoising, or variational functions. The second is
to modify loss function which can also handle the imbalance problem, reconstruction, and classification
error. The third is to improve the classifier instead of using the only neural network, and add more
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layers or replace existing ones by other methods such as random forest, support vector machine, k
nearest neighbor, etc. Although the experimental results show that the proposed hybrid approach has
the potential to improve the prognosis prediction of kidney cancer, the identification of significant
biomarkers and interpretability of the deep learning model is limited in our research. In the healthcare
field, interpretability is one of the primary problems with deep learning, known as black-box.
The proposed approach can be extended by addressing the problem of interpretability and the
human-readability of deep learning models. We will explore these ideas in future analysis.
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