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Abstract: Recently, large-scale bioinformatics and genomic data have been generated using 
advanced biotechnology methods, thus increasing the importance of analyzing such data. 
Numerous data mining methods have been developed to process genomic data in the field of 
bioinformatics. We extracted significant genes for the prognosis prediction of 1157 patients using 
gene expression data from patients with kidney cancer. We then proposed an end-to-end, cost-
sensitive hybrid deep learning (COST-HDL) approach with a cost-sensitive loss function for 
classification tasks on imbalanced kidney cancer data. Here, we combined the deep symmetric auto 
encoder; the decoder is symmetric to the encoder in terms of layer structure, with reconstruction 
loss for non-linear feature extraction and neural network with balanced classification loss for 
prognosis prediction to address data imbalance problems. Combined clinical data from patients 
with kidney cancer and gene data were used to determine the optimal classification model and 
estimate classification accuracy by sample type, primary diagnosis, tumor stage, and vital status as 
risk factors representing the state of patients. Experimental results showed that the COST-HDL 
approach was more efficient with gene expression data for kidney cancer prognosis than other 
conventional machine learning and data mining techniques. These results could be applied to 
extract features from gene biomarkers for prognosis prediction of kidney cancer and prevention and 
early diagnosis. 

Keywords: data mining; machine learning; kidney cancer; bioinformatics; autoencoder; neural 
network; cost-sensitive; hybrid deep learning; cancer classification 

 

1. Introduction 

Using bioinformatics approaches to identify genes that are useful for the diagnosis and 
prognosis prediction of patients with cancer can foster treatment. The analysis of cancer data is 
important yet difficult due to the large amounts of gene expression data available. Thus, only 
significant features that can express the health condition of patients must be extracted. Additionally, 
the development of efficient classification models based on the extracted genes is helpful for early 
diagnosis and prognosis prediction of patients with cancer. Cancer is caused by gene modifications, 
which may enable a cell to proliferate exponentially and then permeate normal surrounding cells 
before spreading through the body. In utilizing deep learning methods to accurately predict the 
disease condition of patients by analyzing mutations only in the gene sequence, studies have 
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identified genes involved in spinal muscular atrophy, hereditary nonpolyposis colon cancer, and 
autism [1]. 

In this study, we extracted genes useful for the prognosis prediction of patients with kidney 
cancer and then predicted prognosis by applying a classification algorithm based on the gene. Kidney 
cancer is a primary tumor generated from the kidney, among which malignant renal cell carcinoma 
accounts for over 90% of cases. Because kidney cancer shows no symptoms at the early stages, it is 
often diagnosed at a progressive stage. According to registered statistics for cancer in Korea, 5043 
kidney cancer cases were diagnosed in 2016, thereby ranking 10th among all cancers. In fact, the 
annual incidence of kidney cancer increased steadily from 1999 to 2019 [2]. Additionally, the 
symptoms and treatment of kidney cancer decrease the quality of life of the patients by increasing 
the disease burden and medical costs. Lifestyle factors, such as poor diet, physical inactivity, 
smoking, and alcohol consumption, are associated with an increased risk of kidney cancer. 
Additionally, genetic and environmental factors influence all of these risk factors and diseases, such 
as diabetes, hypertension, and obesity [3]. 

There have been various successful applications of machine learning and data mining 
techniques to bioinformatics and genomics [4] research. For example, PathAI was implemented for 
digital pathology after the analysis of image data from patients with breast cancer using artificial 
intelligence, which decreased the error rate of diagnosing metastasized cancer through deep learning 
[5]. Additionally, a study [6] at Emory University analyzed the survival rate of patients with brain 
tumors by combining gene data with pathology image data, and this showed a very high accuracy of 
survival rate prediction. It was reported that the deep learning convolutional neural networks 
achieved higher accuracy than pathologist-based diagnosis in the prediction of survival rate [6]. 
Another study predicted the degree of risk of approximately 20 cancers by applying machine learning 
and artificial intelligence to analyze gene-related big data [7]. Over the years, various technologies 
for data mining have been applied. Specifically, a deep learning method was applied to infer the 
expression of target genes from the expression of landmark genes [8]. The performance of the tested 
method outperformed other machine learning algorithms significantly. Recent studies were also 
conducted to develop a classification model system for diagnosing disease and cancer using machine 
learning [9,10]. 

Most studies have been conducted to extract features using genome data from patients with 
kidney cancer by data mining, statistical methods, and classification algorithms [11–13]. Various 
bioinformatics and genomic data have also been applied in algorithms based on machine learning 
[14–16]. Recently, due to the advantages of deep learning, various deep learning approaches have 
been applied to the research of cancer using gene expression data [17–19]. Deep learning approaches 
are useful for constructing predictive models and feature extraction: Where higher levels represent 
more abstract entities, they map the lowest input layer to the uppermost output layer without using 
hand-crafted features or rules [20,21]. Using data from The Cancer Genome Atlas (TCGA) [22], we 
used a deep learning approach in a prior study to extract genes related to cancer by combining RNA 
sequencing and DNA methylation data. We evaluated breast invasive carcinoma, thyroid carcinoma, 
and kidney renal papillary cell carcinoma [23]. 

In this study, we combined gene expression and clinical data from patients with kidney cancer 
from TCGA and applied our proposed deep learning, end-to-end COST-HDL approach. We 
compared the proposed approach with several traditional data mining and machine learning 
methods that are not implemented end-to-end. These methods have multiple steps such as feature 
engineering, over- and under-sampling, and classification. The objectives of this study are to extract 
deep features from gene biomarkers for precisely predicting prognosis, overcome differences in 
various types of cancer data, and develop an end-to-end prediction model by comparing and 
analyzing classification algorithms using the extracted genes. The major contributions of this paper 
can be summarized as follows: (1) We propose an end-to-end approach without any manual 
engineering, which predicts kidney cancer prognosis including sample type, primary diagnosis, 
tumor stage, and vital status. (2) We propose a non-linear transformation strategy, deep symmetric 
autoencoder, to extract deep features from gene biomarkers in kidney cancer by taking advantage of 
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deep learning structure. (3) We propose a mixed loss function for the proposed deep learning model, 
both considering compression of knowledge representation and data imbalanced problem. 

The remainder of the paper is organized as follows: Section 2 introduces the gene expression 
dataset from patients with kidney cancer and explains the proposed deep learning approach in detail. 
In Section 3, the experimental results are provided. Finally, Section 4 discusses the experimental 
analysis, and Section 5 addresses our conclusion. 

2. Materials and Methods 

2.1. Dataset 

TCGA contains a variety of gene information such as single-nucleotide polymorphism (SNP) 
and gene expression (mRNA expression) data from large numbers of patients with cancer, which are 
stored in a database [22]. We collected TCGA data from 1157 patients with kidney cancer and other 
clinical information including sample type, primary diagnosis, tumor stage, and vital status. Each 
clinical information is used as class labels in the prognosis prediction task. The degree of gene 
expression was estimated at the RNA level, and the expression data (transcriptome profiling) were 
merged and digitized after assigning transaction IDs. We used 60,483 gene expression data points 
from each patient with kidney cancer, values expressed with the Fragments Per Kilobase per Million 
mapped (FPKM) measure [24]. The kidney cancer dataset was used to extract the complex structure of 
gene biomarkers and estimate classification accuracy as risk factors by sample type, primary 
diagnosis, tumor stage, and vital status representing the state of patients. 

The statistics of the dataset are shown in Table 1. In the preprocessing step, we removed all no 
variance gene expression data and other noisy samples. Varying samples and gene expression data 
sizes were used for the prognoses, and they were split into 80% for training and 20% for testing. The 
datasets are highly imbalanced, especially the dataset of sample type prognosis, which contains 87.9% 
primary tumor samples and 12.1% solid tissue normal samples. 

In the analysis, we applied a cost function to solve this data imbalance problem and compared 
it with other sampling methods. We also used the DAE model to extract the high dimension of gene 
expression data and compared it with other feature-selection and dimension-reduction techniques. 

Table 1. Number of Class Type of the dataset. 

Prognosis # Gene # Sample Class Type Total Train Test 

Sample Type 58,404 1149 
Primary Tumor 1010 805 205 

Solid Tissue Normal 139 114 25 

Primary Diagnosis 58,409 1157 
C64.9 836 679 157 
C64.1 321 246 75 

Tumor Stage 60,483 1118 

Stage-I 528 424 104 
Stage-II 183 145 38 
Stage-III 261 204 57 
Stage-IV 146 121 25 

Vital Status 58,412 1157 
Alive 835 664 171 
Dead 322 261 61 

2.2. The COST-HDL Approach 

In the experiments, the extracted target genes were subject to classification analysis, and the 
performance was evaluated. Figure 1 shows the proposed COST-HDL approach which input the gene 
expression data of kidney cancer from the TCGA portal and output four kinds of prognoses namely, 
sample type, primary diagnosis, tumor stage, and vital status. It consists of a hybrid of DAE and NN 
models. For the RNA sequencing data, the number of variables is significantly higher than the 
number of samples. Therefore, general classification analysis is prohibited by technical challenges in 
dealing with more than 60,000 variables: it is challenging to apply the data mining and machine 
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learning algorithms to the raw dataset. Therefore, in this study, we used the 5-layer DAE model (the 
first 2 layers for encoding, the middle layer for gene extraction, and the last 2 layers for decoding) to 
extract significant genes and extract deep features from gene biomarkers as a result. The extracted 
deep features were input to the NN classification method (hidden layer + dropout [25] + Rectified 
Linear Unit (ReLU) [26] + softmax [27]). 

The DAE model employed the mean squared error (MSE) as a reconstruction loss during the 
training, while the NN model used the focal loss [28] as a balanced classification loss. Focal loss is the 
reshaping of cross-entropy loss such that it down-weights the loss assigned to well-classified 
examples. The novel focal loss focuses on training on a sparse set of hard examples and prevents the 
vast number of easy negatives from overwhelming the detector during training. The proposed COST-
HDL approach uses the sum of the reconstruction loss and balanced classification loss as a cost 
function. 

 
Figure 1. Overview of COST-HDL approach. We used kidney cancer gene expression data from the 
TCGA portal. The Deep Auto Encoder (DAE) model is used to extract deep features from gene 
biomarkers as a lower-dimensional vector. The Neural Network (NN) is used to classify sample type, 
primary diagnosis, tumor stage, and vital status. We summed the reconstruction loss (DAE) and 
balanced classification loss (NN) in the cost function. 

The experimental hardware platform was the Intel Xeon E3 (32G memory, GTX 1080 Ti). We 
used Ubuntu 18.04 as the computational environment, and Python 3.7 was used for data collection 
and analysis. Python 3.7 Library uses Scikit-Learn [29] and Pytorch [30]. The following paragraphs 
describe the DAE model for extracting deep features from gene biomarkers and the NN model for 
constructing prognosis prediction models in detail. 

2.2.1. Extracting Deep Features from Gene Biomarkers 

We utilized the training dataset to extract gene expression data by using the DAE non-linear 
feature transformation method, and we compared it with Principal Component Analysis (PCA) [31] 
linear feature transformation and the Least Absolute Shrinkage and Selection Operator (LASSO) [32] 
feature selection methods. PCA explains correlated multivariate data in a fewer number of linearly 
uncorrelated variables which are a linear combination of the original variable. Due to the linearity 
constraints, we developed a DAE with non-linear activation functions which give more accuracy in 
the reconstruction of data. However, the feature selection methods such as LASSO select the best 
features or a subset of the original feature set and do not alter the original representation of data [33]. 
Thus, they may lose some important information during a selection process when extracting a 
complex structure of cancer data. 

We developed the DAE model using Pytorch to extract deep features from gene biomarkers. The 
architecture of the DAE model consists of encoder and decoder parts. The encoder part comprised 
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one input layer, and three fully connected encoding hidden layers with 1000, 500, and 100 nodes, 
respectively. The last layer of the hidden layers was chosen to be the deep feature to extract the gene 
biomarkers. The decoder part comprised two fully connected decoding hidden layers with 500 and 
1000 nodes, respectively. The last layer of the hidden layer was chosen to be the output layer 
(reconstructed input). These are used to transpose the encoding layer weights. The procedure can be 
formulated as below: ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଵ = ሺܷܮܴ݁ ଵܹ × ݐݑ݌݊݅ + ܾଵሻ ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଶ = ሺܷܮܴ݁ ଶܹ × ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଵ + ܾଶሻ ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଷ = ଷܹ × ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଶ + ܾଷ ℎ݅݀݀݁݊_݀݁ܿ݁݀݋ଵ = ሺܷܮܴ݁ ଶܹ′ × ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଷ + ܾଶ′ሻ ݐݑ݌݊݅_݀݁ݐܿݑݎݐݏ݊݋ܿ݁ݎ = ܶܽ݊ℎሺ ଵܹ′ × ℎ݅݀݀݁݊_݀݁ܿ݁݀݋ଵ + ܾଵ′ሻ 

(1) 

where ଵܹ, 	 ଶܹ, and ଷܹ are the weight metrics between the layers with the size of N	×	1000, 1000	×	500, and 500	×	100, respectively; N is the size of input or number of samples; ܾଵ, 	ܾଶ, and ܾଷ are the 
biases for each node; and ܴܷ݁ܮ  and ܶܽ݊ℎ  are non-linear activation functions. The terms with 
superscripts refer to the transpose metrics. The ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଷ layer was chosen to be the activity 
values of the deep features in this model. The DAE has a loss function to handle the data 
reconstruction error which can measure the error between the original data and the reconstructed 
data, and it employed the MSE as its loss function. 

2.2.2. Constructing Prognose Prediction Models 

For the prognose prediction models, we constructed a feedforward neural network, which 
contained one input layer, one hidden layer with 100 nodes, and one output layer. The deep features 
of the ℎ݅݀݀݁݊_݁݊ܿ݁݀݋ଷ in the DAE model were used as the input of the NN model. This procedure 
can be formulated as below: ℎ݅݀݀݁݊௟௔௬௘௥ = ൫ܷܮܴ݁ ସܹ × ℎ݅݀݀݁݊௘௡௖௢ௗ௘ଷ + ܾସ൯ ݐݑ݌ݐݑ݋ = ሺݔܽ݉ݐ݂݋ݏ ହܹ × ℎ݅݀݀݁݊_݈ܽݎ݁ݕ + ܾହሻ (2) 

where ସܹ and ହܹ are the weight metrics between the layers with the size of 100	×	100 and 100 × 
C, respectively; C is the size of output or number of class types; ܾସ and ܾହ are the biases for each 
node; and ܴܷ݁ܮ  and ݔܽ݉ݐ݂݋ݏ  are non-linear activation functions. The ݔܽ݉ݐ݂݋ݏ  activation 
function computes softmax cross entropy between logits and labels, and the sum of its outputs to 1 
makes an efficient probability analysis. A dropout layer was added after the ℎ݅݀݀݁݊_݈ܽݎ݁ݕ, which 
randomly set 20% of the output of that layer to 0. The NN has a loss function to handle classification 
error which can measure the error between the true class and prediction class and also addresses the 
class imbalance. The NN model employed the focal loss as its loss function. The focal loss addresses 
the class balance problem by reshaping the standard cross-entropy loss such that it down-weighs the 
loss assigned to well-classified examples. 

2.2.3. Training the Models 

The cost function ܮ was used to measure the difference between the input and the output: ܮ஽஺ா൫݅݊ݐݑ݌, ௜௡௣௨௧൯݀݁ݐܿݑݎݐݏ݊݋ܿ݁ݎ = ,ଷ݁݀݋ܿ݊݁_ேேሺℎ݅݀݀݁݊ܮ ݏݏ݋݈	ܧܵܯ ሻݐݑ݌ݐݑ݋ = ,ݐݑ݌ሺ݅݊ܮ ݏݏ݋݈	݈ܽܿ݋݂ ሻݐݑ݌ݐݑ݋ = ஽஺ாܮ +  ேேܮ

(3) 

For the optimization, we selected Adam optimizer [34], which has several arguments to be set 
freely, as the strategy to update the weights and bias so that the minima could be found. After 
running different trials, the learning rate was finally set to 0.00001, and the batch size and epoch were 
set to 128 and 2000, respectively. The models were finally trained under the parameters mentioned 
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above. We chose the checkpoint model which shows the lowest error on the training set. The activity 
values and weight metrics related to deep features were readouts. 

3. Results 

3.1. Visualization of Feature Extraction 

The training set was utilized to analyze and extract deep features from gene biomarkers by the 
DAE model. We compared it with the PCA dimension reduction and LASSO feature selection 
methods. We extracted 100 features for each classification task for further analysis by the DAE model 
as shown in Table 2. For a fair comparison, we also extracted 100 features for each classification task 
by the PCA method as shown in Table 3. Different numbers of gene biomarkers were selected by the 
LASSO method as shown in Table 4. The testing set was utilized to evaluate the feature extraction 
from gene biomarkers. We developed the PCA and LASSO methods using Scikit-Learn and 
developed the DAE model using Pytorch. 

Table 2. The extracted the number of deep features from gene biomarkers by the DAE model. 

Prognosis # Features 
Sample Type 100 

Primary Diagnosis 100 
Tumor Stage 100 
Vital Status 100 

Table 3. The extracted number of features from gene biomarkers by PCA method. 

Prognosis # Features 
Sample Type 100 

Primary Diagnosis 100 
Tumor Stage 100 
Vital Status 100 

Table 4. The selected number of gene biomarkers by LASSO method. 

Prognosis # Gene Biomarkers 
Sample Type 22 

Primary Diagnosis 77 
Tumor Stage 263 
Vital Status 139 

For the visualization of the deep features extracted by DAE, the features extracted by PCA, and 
the features selected by LASSO, we used t-Distributed Stochastic Neighbor Embedding (TSNE) [35]. 
TSNE is a widely used non-linear dimensionality reduction technique for visualizing high-
dimensional data with clear and perfect separation on the two- (or three-) dimensional plane. 

We used the two-dimensional plane for the following visualizations of extracted features as 
shown in Figures 2–5 for each prognosis. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. Visualization of extracted features from gene biomarkers for sample type prognosis: (a) train 
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data 
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Visualization of extracted features from gene biomarkers for primary diagnosis prognosis: 
(a) train data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) 
test data extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Visualization of extracted features from gene biomarkers for tumor stage prognosis: (a) train 
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data 
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Visualization of extracted features from gene biomarkers for vital status prognosis: (a) train 
data extracted by PCA, (b) test data extracted by PCA, (c) train data extracted by LASSO, (d) test data 
extracted by LASSO, (e) train data extracted by DAE, (f) test data extracted by DAE. 

The visualization of the extracted features from the gene biomarkers for the prognosis such as 
sample type, primary diagnosis, tumor stage, and vital status are shown in Figures 2–5, respectively. 
It can be seen that the deep features extracted by the DAE model were distinguished better than the 
features extracted by the PCA method and the features selected by the LASSO method on both the 
training and testing sets. Further, other prognoses are identified by the DAE method. 
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3.2. Training Process 

We trained our COST-HDL approach with 2000 epochs. Each loss (MSE, Focal, and Total) during 
the training is shown in Figures 6–9 for each prognosis. The MSE loss continuously decreased in all 
experiments for each diagnosis. In the multi-class case, tumor stage prognosis, it decreased more 
strictly. The focal loss decreased, but it was more sensitive during the training for each prognosis. In 
the binary class case, sample type prognosis, it was most sensitive and between the values 0.6 and 1. 
This was because the model was already satisfied with 100% of performance results. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Training loss for sample type prognosis: (a) MSE loss, (b) focal loss, (c) total loss. The x axis 
indicates the number of epochs, and the y axis indicates the loss. 
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(a) 

 
(b) 

 
(c) 

Figure 7. Training loss for primary diagnosis prognosis: (a) MSE loss, (b) focal loss, (c) total loss. The 
x axis indicates the number of epochs, and the y axis indicates the loss. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Training loss for tumor stage prognosis: (a) MSE loss, (b) focal loss, (c) total loss. The x axis 
indicates the number of epochs, and the y axis indicates loss. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Training loss for vital status prognosis: (a) MSE loss, (b) focal loss, (c) total loss. The x axis 
indicates the number of epochs, and the y axis indicates the loss. 

3.3. Evaluation of Prognose Prediction Models 

To evaluate our COST-HDL approach, four indices namely, accuracy, precision, recall, and f1-
score were employed the classification performance, and they are defined as follows. ݕܿܽݎݑܿܿܣ = ܶܲ + ܶܰܶܲ + ܶܰ + ܲܨ +  ܰܨ

݊݋݅ݏ݅ܿ݁ݎܲ = ܶܲܶܲ +  ܲܨ
(4) 
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ܴ݈݈݁ܿܽ = ܶܲܶܲ +  ܰܨ

1ܨ − ݁ݎ݋ܿݏ = 2 × ݊݋݅ݏ݅ܿ݁ݎܲ × ݊݋݅ݏ݅ܿ݁ݎ݈݈ܴܲܽܿ݁ + ܴ݈݈݁ܿܽ  

where ܶܲ, ܶܰ,  are the number of true positives, true negatives, false positives, and false ܰܨ and ,ܲܨ
negatives, respectively. A true positive is an outcome where the model correctly predicts the positive 
class. Similarly, a true negative is an outcome where the model correctly predicts the negative class. 
A false positive is an outcome where the model incorrectly predicts the positive class, and a false 
negative is an outcome where the model incorrectly predicts the negative class. In Table 5, we 
compared the models with different loss functions (only MSE loss, only focal loss, and total loss). It 
can be seen that the models with total loss show better performances than the other single loss 
models, and the models with only MSE loss show the worst results. 

Table 5. Effect of loss function of the COST-HDL approach. The best results are shown in bold. 

Prognosis Loss Accuracy Precision Recall F1-Score 

Sample Type 
MSE 89.13 44.57 50.00 47.13 
Focal 99.57 99.76 98.00 98.86 
Total 100.00 100.00 100.00 100.00 

Primary Diagnosis 
MSE 62.93 43.86 47.89 42.63 
Focal 96.55 97.13 95.01 95.97 
Total 96.98 97.43 95.68 96.49 

Tumor Stage 
MSE 12.05 7.92 26.32 7.31 
Focal 54.46 45.15 45.05 43.76 
Total 56.70 49.41 46.14 46.68 

Vital Status 
MSE 73.71 36.85 50.00 42.43 
Focal 76.29 69.00 67.05 67.83 
Total 76.72 69.78 68.92 69.32 

For the prediction of sample type prognosis, our COST-HDL approach with total loss achieved 
the highest results: 100% accuracy, 100% precision, 100% recall, and 100% f1-score. It improved the 
model with only focal loss by 0.43% of accuracy, 0.24% of precision, 2% of recall, and 1.14% of f1-
score. 

For the prediction of primary diagnosis prognosis, our COST-HDL approach with total loss 
achieved the highest results: 96.98% accuracy, 97.43% precision, 95.68% recall, and 96.49% f1-score. It 
improved the model with only focal loss by 0.43% of accuracy, 0.3% of precision, 0.67% of recall, and 
0.52% of f1-score. 

For the prediction of tumor stage prognosis, our COST-HDL approach with total loss achieved 
the highest results: 56.70% accuracy, 49.41% precision, 46.14% recall, and 46.68% f1-score. It improved 
the model with only focal loss by 2.24% of accuracy, 4.26% of precision, 1.09% of recall, and 2.92% of 
f1-score. 

For the prediction of vital status prognosis, our COST-HDL approach with total loss achieved 
the highest results: 76.72% accuracy, 69.78% precision, 68.92% recall, and 69.32% f1-score. It improved 
the model with only focal loss by 0.43% of accuracy, 0.78% of precision, 1.87% of recall, and 1.49% of 
f1-score. 

We verified whether our COST-HDL approach performs better than general traditional machine 
learning classifiers, such as K-Nearest Neighbors (KNN) [36], Linear Support Vector Machine (Linear 
SVM) [37], Kernel Support Vector Machine (Kernel SVM) [38], Random Forest (RF) [39], and Neural 
Network (NN) [40]. The traditional machine learning classifiers are followed by feature extraction 
methods such as PCA dimension reduction and LASSO feature selection. To solve the data imbalance 
problem, they usually employ sampling methods such as the Synthetic Minority Over-sampling 
Technique (SMOTE) [41], which is an over-sampling method. 
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Hence, in this paper, we compared our COST-HDL approach with a total loss to the traditional 
combination of methods: feature extraction → sampling → classifier, as shown in Tables 6–9 for each 
prognosis. 

For the sample type prognosis, the RF classifier with LASSO feature selection and SMOTE 
sampling achieved 100% accuracy, 100% precision, 100% recall, and 100% f1-score. The second-best 
results were 99.57% accuracy, 98.08% precision, 99.76% recall, and 98.90% f1-score achieved by the 
KNN and NN with LASSO feature selection and SMOTE sampling. The worst results were achieved 
by Kernel SVM. 

For the primary diagnosis prognosis, the second-best results were 95.69% accuracy, 95.37% 
precision, 94.73% recall, and 95.04% f1-score achieved by the Linear SVM with LASSO feature 
selection and SMOTE sampling. The worst results were achieved by Kernel SVM. 

For the tumor stage prognosis, the second-best results were 55.36% accuracy, 55.87% precision, 
39.11% recall, and 39.07% f1-score achieved by the RF with LASSO feature selection and without 
SMOTE sampling. The worst results were achieved by the Linear SVM with PCA and SMOTE 
sampling. 

For the vital status prognosis, the second-best results were 75.00% accuracy, 66.56% precision, 
58.79% recall, and 59.33% f1-score achieved by the RF with LASSO feature selection and without 
SMOTE sampling. The worst results were achieved by the Linear SVM with PCA and SMOTE 
sampling. 

Table 6. Evaluation of prediction models for sample type. The best results are shown in bold. 

Classifier Feature  Sampling Accuracy Precision Recall F1-Score 

KNN 
PCA 

No 98.70 99.28 94.00 96.45 
Yes 96.52 88.46 96.29 91.87 

LASSO 
No 98.70 97.43 95.76 96.57 
Yes 99.57 98.08 99.76 98.90 

Linear SVM 
PCA 

No 97.39 90.32 98.54 93.90 
Yes 97.83 91.67 98.78 94.84 

LASSO 
No 99.13 96.30 99.51 97.83 
Yes 98.70 94.64 99.27 96.80 

Kernel SVM 
PCA 

No 89.13 44.57 50.00 47.13 
Yes 89.13 44.57 50.00 47.13 

LASSO 
No 89.13 44.57 50.00 47.13 
Yes 89.13 44.57 50.00 47.13 

RF 
PCA 

No 95.65 97.67 80.00 86.31 
Yes 97.39 98.58 88.00 92.46 

LASSO 
No 99.13 99.52 96.00 97.67 
Yes 100.00 100.00 100.00 100.00 

NN 
PCA 

No 98.26 95.51 95.51 95.51 
Yes 98.26 95.51 95.51 95.51 

LASSO 
No 99.13 96.30 99.51 97.83 
Yes 99.57 98.08 99.76 98.90 

COST-HDL 100.00 100.00 100.00 100.00 

Table 7. Evaluation of prediction models for primary diagnosis. The best results are shown in bold. 

Classifier Feature Sampling Accuracy Precision Recall F1-Score 

KNN 
PCA 

No 87.07 87.01 82.79 84.40 
Yes 84.91 82.82 82.59 82.70 

LASSO 
No 88.79 90.21 84.06 86.24 
Yes 89.66 90.35 85.74 87.52 

Linear SVM PCA No 88.79 86.67 89.28 87.67 
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Yes 92.67 91.32 92.15 91.71 

LASSO 
No 94.40 94.03 93.07 93.53 
Yes 95.69 95.37 94.73 95.04 

Kernel SVM 
PCA 

No 67.67 33.84 50.00 40.36 
Yes 67.67 33.84 50.00 40.36 

LASSO 
No 67.67 33.84 50.00 40.36 
Yes 67.67 33.84 50.00 40.36 

RF 
PCA 

No 90.52 93.85 85.33 88.13 
Yes 94.83 96.45 92.00 93.81 

LASSO 
No 92.24 94.24 88.35 90.56 
Yes 94.40 94.75 92.38 93.43 

NN 
PCA 

No 89.22 88.50 86.47 87.36 
Yes 88.36 87.76 85.13 86.25 

LASSO 
No 92.24 91.65 90.44 91.01 
Yes 92.24 92.73 89.39 90.79 

COST-HDL 96.98 97.43 95.68 96.49 

Table 8. Evaluation of prediction models for tumor stage. The best results are shown in bold. 

Classifier Feature  Sampling Accuracy Precision Recall F1-Score 

KNN 
PCA 

No 47.77 38.39 33.62 32.66 
Yes 41.07 33.60 33.14 32.91 

LASSO 
No 45.09 32.25 30.07 28.96 
Yes 40.18 34.27 35.24 34.13 

Linear SVM 
PCA 

No 29.91 27.61 27.15 24.73 
Yes 26.34 39.21 32.28 25.64 

LASSO 
No 40.62 37.24 40.47 34.28 
Yes 50.00 43.01 38.21 36.61 

Kernel SVM 
PCA 

No 46.43 11.61 25.00 15.85 
Yes 46.43 11.61 25.00 15.85 

LASSO 
No 46.43 11.61 25.00 15.85 
Yes 46.43 11.61 25.00 15.85 

RF 
PCA 

No 51.34 51.20 33.43 32.12 
Yes 54.46 48.20 44.30 44.77 

LASSO 
No 55.36 55.87 39.11 39.07 
Yes 53.12 45.43 45.56 44.47 

NN 
PCA 

No 46.88 38.89 38.65 38.75 
Yes 47.32 40.36 40.81 40.45 

LASSO 
No 41.52 35.67 35.33 35.23 
Yes 45.54 38.23 37.98 38.01 

COST-HDL 56.70 49.41 46.14 46.68 

Table 9. Evaluation of prediction models for vital status. The best results are shown in bold. 

Classifier Feature  Sampling Accuracy Precision Recall F1-Score 

KNN 
PCA 

No 70.69 57.64 54.81 54.64 
Yes 65.09 54.75 54.70 54.72 

LASSO 
No 66.38 51.15 50.83 50.29 
Yes 65.52 55.10 54.99 55.04 

Linear SVM 
PCA 

No 64.66 57.54 58.62 57.71 
Yes 58.19 52.62 53.18 52.05 

LASSO No 73.71 63.48 57.38 57.60 
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Yes 72.84 62.39 58.38 58.94 

Kernel SVM 
PCA 

No 73.71 36.85 50.00 42.43 
Yes 73.71 36.85 50.00 42.43 

LASSO 
No 73.71 36.85 50.00 42.43 
Yes 73.71 36.85 50.00 42.43 

RF 
PCA 

No 73.71 62.50 53.16 50.42 
Yes 70.26 58.66 56.62 56.95 

LASSO 
No 75.00 66.56 58.79 59.33 
Yes 73.28 65.73 66.05 65.88 

NN 
PCA 

No 62.07 53.38 53.71 53.41 
Yes 58.62 53.68 54.53 53.04 

LASSO 
No 61.21 54.86 55.76 54.69 
Yes 58.19 54.23 55.29 53.31 

COST-HDL 76.72 69.78 68.92 69.32 

4. Discussion and Conclusions 

In this study, we showed that unsupervised non-linear DAE is an effective model to extract 
meaningful deep features of gene expression data from patients with kidney cancer. These features 
were significantly associated with the kidney cancer prognosis such as sample type, primary 
diagnosis, tumor stage, and vital status representing the state of patients. We also showed that the 
end-to-end hybrid deep learning architecture is more effective than the traditional machine learning 
analysis flow: feature extraction, sampling, classification. 

We compared the proposed COST-HDL approach with other traditional approaches, and it 
achieved better results for all prognosis on gene expression data. The deep features extracted by the 
DAE model were distinguished better than the features extracted by the PCA method and the 
features selected by the LASSO method on both the training and testing sets. Further, another class 
label was identified by the DAE method. The results obtained can be applied to extract deep features 
from gene biomarkers for prognosis prediction of kidney cancer from various causes and; hence, it is 
useful for preventing kidney cancer and early diagnosis. 

This study can be improved in three ways. The first is to develop unsupervised deep symmetric 
autoencoder methods such as stacking more layers, denoising, or variational functions. The second 
is to modify loss function which can also handle the imbalance problem, reconstruction, and 
classification error. The third is to improve the classifier instead of using the only neural network, 
and add more layers or replace existing ones by other methods such as random forest, support vector 
machine, k nearest neighbor, etc. Although the experimental results show that the proposed hybrid 
approach has the potential to improve the prognosis prediction of kidney cancer, the identification 
of significant biomarkers and interpretability of the deep learning model is limited in our research. 
In the healthcare field, interpretability is one of the primary problems with deep learning, known as 
black-box. The proposed approach can be extended by addressing the problem of interpretability and 
the human-readability of deep learning models. We will explore these ideas in future analysis. 
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