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Abstract: In this paper, using the conditions of Taleb-Hanebaly’s theorem in a modular space where
the modular is s-convex and symmetric with respect to the ordinate axis, we prove a new generalized
modular version of the Schauder and Petryshyn fixed point theorems for nonexpansive mappings in
s-convex sets. Our results can be applied to a nonlinear integral equation in Musielak-Orlicz space Lp

where 0 < p ≤ 1 and 0 < s ≤ p.
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1. Introduction

In 1950, Nakano [1] initiated the concept of modular spaces which are natural generalizations of
Lp spaces where p > 0. Then Musielak and Orlicz [2] refined and generalized these spaces in 1959.
This idea has been studied for almost sixty years and there is a large set of known applications of them
in various parts of analysis.

The monographic exposition of the theory of Orlicz spaces may be found in the book of
Krasnoselskii and Rutickii [3]. For a current review of the theory of Musielak-Orlicz spaces and
modular spaces, the reader is referred to the book of Kozlowski [4] and the most recent paper of
Khamsi et al. [5], also see [6,7].

As a generalization of the Banach contraction principle, Taleb and Hanebaly [7] presented a fixed
point theorem of the Banach type in a modular space where the modular is s-convex, having the Fatou
property and satisfying the ∆2-condition as follows.

Theorem 1 ([7]). Let Xρ be a ρ-complete modular space. Assume that ρ is an s-convex modular satisfying
the ∆2-condition and having the Fatou property. Let B be a ρ-closed subset of Xρ and T : B → B a mapping
such that:

∃c, k ∈ R+ : c > max{1, k}, ρ(c(Tx− Ty)) ≤ ksρ(x− y) ∀x, y ∈ B. (1)

Then T has a fixed point.
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In this paper, by means of [7], we prove the existence of fixed points for a general class of
contractive mappings satisfying Schauder and Petryshyn conditions in s-modular function spaces.
We give an application of our result to a nonlinear integral equation in Musielak-Orlicz spaces.

2. Preliminaries

We begin by recalling some definitions. Let X be a linear space over C. Then we have
the following.

(1) A function ρ : X → [0,+∞] is said to be modular if
(a) ρ(x) = 0 if and only if x = 0;
(b) ρ(αx) = ρ(x) for all scalar α with |α| = 1;
(c) for all x, y ∈ X, ρ(αx + βy) ≤ ρ(x) + ρ(y) if α + β = 1 for any α, β ≥ 0;

(2) If (c) is replaced by

(c’) ρ(αx + βy) ≤ αsρ(x) + βsρ(y) if αs + βs = 1 for any α, β ≥ 0,
where, if 0 ≤ s < 1, then we say that ρ is an s-convex modular and if s = 1, then ρ is

convex modular;
(3) A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0}.

(4) The modular space Xρ can be equipped with the F−norm defined by
|x|ρ = inf{α > 0; ρ( x

α ) ≤ α}. If ρ is convex, then the functional

‖x‖ρ = inf{α > 0; ρ(
x
α
) ≤ 1}

is a norm called the Luxemburg norm in Xρ which is equivalent to the F-norm |.|ρ.
Note that, by taking α = −1 in 1(b), it follows that y = ρ(x) = ρ(−x), so that a modular is

symmetric with respect to the y-axis meaning that its graph remains unchanged under reflection about
the y-axis. It turns out that an s-convex modular keeps the same property.

Definition 1. Let Xρ be a modular space.
(a) A sequence {xn} in Xρ is said to be:

(i) ρ− convergent to x, denoted by xn
ρ→ x, i f ρ(xn − x)→ 0 as n→ ∞.

(ii) ρ− Cauchy i f ρ(xn − xm)→ 0 as n, m→ ∞.

(b) Xρ is ρ−complete if every ρ−Cauchy sequence is ρ−convergent.

(c) A subset B ⊆ Xρ is said to be ρ−closed if for any sequence {xn} ⊂ B with xn
ρ→ x, x ∈ B. Also, B is

ρ-open if Bc is ρ-closed.
(d) We say that ∂ρ(B) is the bound of a subset B of Xρ, whenever

∂ρ(B) = Bρ − int(B)

where Bρ is the closure of B and int(B) is the interior of B in the sense of ρ.
(e) A subset B ⊆ Xρ is said to be ρ−compact if every sequence in B has a convergent subsequence.
(f) A subset B ⊆ Xρ is called ρ−bounded if

δρ(B) = sup{ρ(x− y) : x, y ∈ B} < ∞,

where δρ(B) is called the ρ−diameter of B.

(g) ρ is said to satisfy the ∆2-condition if 2xn
ρ→ 0 whenever xn

ρ→ 0.
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(h) We say that ρ has the Fatou property if ρ(x− y) ≤ lim inf ρ(xn − yn) whenever, xn
ρ→ x and yn

ρ→ y.

3. Main Results

Now, we start our work with the following definitions.

Definition 2. Let Xρ be a modular space and C ⊆ Xρ. A mapping T : C → Xρ is said to be ρ-nonexpansive if
ρ(Tx− Ty) ≤ ρ(x− y) for all x, y ∈ C.

Definition 3. A set C of a modular space X is said to be s-convex, where 0 < s ≤ 1 if the following condition
is satisfied

α
1
s x + β

1
s y ∈ C whenever x, y ∈ C , α + β = 1.

We first prove a Schauder type fixed point theorem when the mapping T is ρ-nonexpansive.

Theorem 2. Let ρ be an s-convex modular that satisfies the ∆2-condition and Fatou property, Xρ be a ρ-complete
modular space and B be a nonempty, s-convex, and ρ-closed subset of Xρ. Assume that T : B → B is a
ρ-nonexpansive operator and T(B) is a subset of ρ-compact set of B. Then T has a fixed point.

Proof. For every n ∈ N, define Tn = tn
1
s T, where {tn} ⊆ (0, 1), tn → 1 as n → ∞. If s = 1, then B is

convex set. Without loss of generality, we assume that 0 ∈ B. If s < 1, then 0 ∈ B. Thus for each n ∈ N,
Tn : B→ B. There are two cases:

Case-1: Let s = 1. By putting c = tn
−1
2 and k = tn

1
2 , we have

ρ(c(Tnx− Tny)) = ρ(tn
−1
2 (tn(Tx− Ty)))

= ρ(tn
1
2 (Tx− Ty))

≤ tn
1
2 ρ(Tx− Ty)

≤ tn
1
2 ρ(x− y)

= kρ(x− y),

for all x, y ∈ Xρ.

Case-2: Let 0 < s < 1. Set c = t−1
n and k = t

1−s
s

n , we obtain

ρ(c(Tnx− Tny)) = ρ(tn
−1(tn

1
s (Tx− Ty))

= ρ(tn
1−s

s (Tx− Ty))

≤ tn
1−sρ(Tx− Ty)

≤ tn
1−sρ(x− y)

= ksρ(x− y),

for all x, y ∈ Xρ.
Therefore, all of the assumptions of Theorem 1 hold. Thus for each n ∈ N, Tn has a fixed point

xn ∈ B, that is, xn = Tnxn = tn
1
s Txn.
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Since T(B) lies in a ρ-compact subset of B, we assume without loss of generally that there exists
u ∈ B such that ρ(Txn − u) → 0 as n → ∞. ∆2-condition follows that ρ(2

1
s (Txn − u)) → 0 as

n→ ∞. Thus,

ρ(xn − Txn) = ρ(tn
1
s Txn − Txn)

= ρ((1− tn
1
s )Txn) ≤ (1− tn

1
s )

s
ρ(Txn)→ 0 as n→ ∞.

Again ∆2- condition implies that ρ(2
1
s (xn − Txn))→ 0 as n→ ∞. Hence,

ρ(xn − u) = ρ(xn − Txn + Txn − u)

≤ 1
2

ρ(2
1
s (xn − Txn)) +

1
2

ρ(2
1
s (Txn − u))→ 0 as n→ ∞.

Since T is ρ-nonexpansive,
ρ(Txn − Tu) ≤ ρ(xn − u) as n→ ∞.

Therefore,

ρ(u− Tu) ≤ 1
2

ρ(2
1
s (u− Txn)) +

1
2

ρ(2
1
s (Tu− Txn))→ 0 as n→ ∞.

This implies that u = Tu.

Theorem 3. Let ρ be an s-convex modular that satisfies the ∆2-condition and Fatou property, Xρ be a ρ-complete
modular space and B be a nonempty, s-convex, and ρ-closed subset of Xρ. Assume that T : B → B is a
ρ-nonexpansive and I is an identity operator, and (I − T)(B) is ρ-closed. Then T has a fixed point.

Proof. Proceeding as in the proof of Theorem 2, one can prove that for each n ∈ N, Tn has a fixed point
xn. Thus

ρ(xn − Txn) = ρ(tn
1
s Txn − Txn)

= ρ((1− tn
1
s )Txn)

≤ (1− tn
1
s )

s
ρ(Txn)→ 0 as n→ ∞.

The closedness of (I − T)(B) implies that 0 ∈ (I − T)(B). Therefore, there exists u ∈ B such that
Tu = u.

The following theorem is a new version of the Petryshyn theorem in s-modular function spaces.

Theorem 4. Let Xρ be a complete modular space and B a ρ-bounded, ρ-open, s-convex subset of Xρ with 0 ∈ B.
Assume that ρ is an s-convex modular satisfying the ∆2-condition and Fatou property, T : Bρ → Xρ is a
mapping satisfying (1) and the following condition:

x 6= λTx , ∀x ∈ ∂ρ(B), λ ∈ (0, 1). (2)

Then T has a fixed point.

Proof. Consider A := {λ ∈ [0, 1] : x = λTx for some x ∈ B}. Notice A is nonempty since 0 ∈ B.
We will show that A is both open and closed in [0, 1] and hence A = [0, 1].

Let α
1
s be the s-conjugate of c, i.e., 1

cs + 1
α = 1. We first show that A is closed. To see this let

{λn} ⊆ A with λn → λ as n → ∞. There exists {xn} ⊆ B with xn = λnTxn. Since 0 ∈ B and B is
ρ-bounded, there exists positive real number M0 such that ρ(x) ≤ M0 for all x ∈ B. Condition (1)
follows that for all x ∈ B, ρ(Tx) ≤ ρ(x) + 1

α ρ(α
1
s T0). By putting M = M0 +

1
α ρ(α

1
s T0), we see that M

is an upper bound for the set {ρ(Tx); x ∈ B}. For any n, m ∈ N, we have
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ρ(xn − xm) = ρ(λnTxn − λmTxm)

= ρ(
cλn(Txn − Txm)

c
+

α
1
s (λn − λm)Txm

α
1
s

)

≤ 1
cs ρ(cλn(Txn − Txm)) +

1
α

ρ(α
1
s (λn − λm)Txm).

For large enough numbers n, m, we have α
1
s |λn − λm| < 1 and so

ρ(xn − xm) ≤ (
k
c
)sρ(xn − xm) + |λn − λm|s M.

Hence,

ρ(xn − xm) ≤
M

α(1− ( k
c )

s)
|λn − λm|s → 0 as n, m→ ∞.

Since Xρ is complete, we deduce that there exists x ∈ Bρ with ρ(xn − x)→ 0 as n→ ∞. It follows
from ∆2-condition and λn → λ that

ρ(x− λTx) = ρ(x− xn + xn − λTx)

= ρ
( cλn(Txn − Tx)

c
+

α
1
s (λn − λ)Tx

α
1
s

+
α

1
s (x− xn)

α
1
s

)
≤ (

k
c
)sρ(xn − x) + |λn − λ|sρ(Tx) +

1
2α

ρ((2α)
1
s (xn − x))→ 0 as n→ ∞.

Thus λ ∈ A and A is closed in [0, 1].

Now, let λ0 ∈ A. Then there exists x0 ∈ B with x0 = λ0Tx0. Choose ε > 0 such that

εs ≤ min{α−1,
1
M

(1− (
k
c
)s)r},

where r = inf{ρ(x− x0); x ∈ ∂ρ(B)}. If λ ∈ (λ0 − ε, λ0 + ε), then for x ∈ B(x0, r)
ρ

we have

ρ(x0 − λTx) = ρ
( cλ(Tx0 − Tx)

c
+

α
1
s (λ0 − λ)Tx0

α
1
s

)
≤ (

k
c
)sρ(x0 − x) + |λ0 − λ|sρ(Tx0)

≤ (
k
c
)sr + εs M

≤ (
k
c
)sr + (1− (

k
c
)s)r = r.

Therefore λT : B(x0, r)
ρ → B(x0, r)

ρ
. It is easy to show that λT satisfies the condition (1) and

by applying Theorem 1, we can deduce that λT has a fixed point. Thus there exists x ∈ B for which
x = λTx. This shows that λ ∈ A and hence A is open in [0, 1].

4. Application

In this section, we give an application of Theorem 4 to the following integral equation:

u(t) = u0 +
∫ t

0
G(t, r) f (r, u(r))dr; t ∈ I = [0, 1], (3)
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in a modular space C = C([0, 1], Lp), where 0 < p ≤ 1, 0 < s ≤ p and

Lp = Lp([0, 1])

= { f : f : [0, 1]→ R is measurable and ρ( f ) =
∫ 1

0
| f (t)|pdt < ∞},

u0 ∈ B and B is an s-convex, ρ-closed, ρ-bounded subset of Lp with 0 ∈ B.
Notice that the s-convexity of ρ implies the following lemma.

Lemma 1 ([8]). Let 0 < p ≤ 1, a ≥ 0, b ≥ 0, then (a + b)p ≤ ap + bp and |ap − bp| ≤ |a− b|p.

We denote by X = C(I, B) the space of all ρ-continuous functions from I to B, endowed with the
modular ρX defined by ρX(u) = supt∈I ρ(u(t)). Using Proposition 2.1 of [7], one can show that X is
s-convex, ρX-bounded, ρX-closed of ρX-complete space C = C(I, Lp) and ρX satisfies the ∆2-condition
and Fatou property.

Consider the following assumptions:
(i) f : I × B→ B is ρ-continuous and satisfies

∃γ > 1 ρ( f (t, u)− f (t, v)) ≤ γρ(u− v) ; ∀t ∈ I and u, v ∈ B.

(ii) G : I × I → R is a measurable mapping such that the map r 7→ G(t, r) is continuous for
almost all t ∈ I, and also

∫ 1
0 |G(t, r)|dr < 1 for all t ∈ I.

Theorem 5. Under the conditions (i) and (ii), if for some positive number λ > 1 we have λ
∫ 1

0 |G(t, r)|dr <

γ
−1
s , then a mapping F defined on X as

Fu(t) = u0 +
∫ t

0
G(t, r) f (r, u(r)) dr

is a self-adjoint operator which satisfies (1).

Proof. First we show that F : X → X is a self-adjoint operator. Suppose tn, t0 ∈ [0, 1] and tn → t0

as n→ ∞. Since u is ρ-continuous in t0 and condition (i) holds, by ∆2-condition f is |.|ρ-continuous
where |.|ρ is the F-norm generated by modular ρ. Hence, Fu is |.|ρ-continuous. On the other hand, the
topologies generated by |.|ρ and ρ are equivalent, therefore, Fu is ρ-continuous at t0.

Fix t ∈ [0, 1]. Let λ > 0 and T = {t0, t1, . . . , tn} be any subdivision of [0, t]. It can be seen that
∑n−1

i=1 λ(ti+1 − ti)G(t, ti)u(ti) is ρ-convergent to
∫ 1

0 λG(t, r)u(r)dr when

|T| = sup{|ti+1 − ti|; 0 ≤ i ≤ n− 1} → 0 as n→ ∞.

By the Fatou property, condition (ii) and s-convexity of ρ, we have

ρ
( ∫ t

0
λG(t, r)u(r)dr

)
≤ lim inf ρ

( n−1

∑
i=1

λ(ti+1 − ti)G(t, ti)u(ti)
)

≤ λs
( ∫ 1

0
|G(t, r)|dr

)s
ρ(u(ti))

≤ λs
( ∫ 1

0
|G(t, r)|dr

)s
ρX(u).
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This implies that

ρ(λ(Fu− Fv)(t)) = ρ
( ∫ t

0
λG(t, r)

(
f (r, u(r))− f (r, v(r))

)
dr
)

≤ λs
( ∫ 1

0
|G(t, r)|dr

)s
ρ
(

f (t, u(t))− f (t, v(t))
)

≤ λs
( ∫ 1

0
|G(t, r)|dr

)s
γ ρ(u(t)− v(t))

= λs
( ∫ 1

0
|G(t, r)|dr

)s
γ ρX(u− v).

Therefore,

ρX(λ(Fu− Fv)) ≤ λs
( ∫ 1

0
|G(t, r)|dr

)s
γ ρX(u− v).

By putting c = λ and k = λ
( ∫ 1

0 |G(t, r)|dr
)

γ
1
s , the operator F satisfies the condition (1).

Theorem 6. Under the conditions (i) and (ii), suppose there exists ρX-bounded open U ⊆ X with 0 ∈ U such
that if u solves the integral equation

u(t) = ku0 +
∫ t

0
kG(t, r) f (r, u(r)) dr (4)

for some k ∈ (0, 1), then u 6∈ ∂ρX (U). Then (3) has a unique solution in UρX .

Proof. Evidently F : UρX → X satisfies in (1). If we apply Theorem 4 and consider the fact that
condition (2) occurs because of (4), we get the required result.
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