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Abstract: We report a symmetry property of the Einstein–Friedmann equations for spatially flat
Friedmann–Lemaître–Robertson–Walker universes filled with a perfect fluid with any constant
equation of state. The symmetry transformations form a one-parameter Abelian group.
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1. Introduction

In the recent literature, there have been many studies of the symmetries of the Einstein–Friedmann
equations of spatially homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW)
cosmology. These studies are ultimately inspired by (although not always directly related to) string
dualities [1–21] or by methods introduced in supersymmetric quantum mechanics [22–24]. Here, we
discuss a simpler symmetry arising in the context of pure Einstein gravity. Adopting the notation
of [25,26], we use metric signature − + ++ and units in which the speed of light and Newton’s
constant are unity.

The FLRW line element of spatially homogeneous and isotropic cosmology in comoving
coordinates(t, x, y, z) is

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (1)

where the dynamics are contained in the evolution of the cosmic scale factor a(t). The Einstein–Friedmann
equations for a spatially flat universe filled with a perfect fluid with energy density ρ(t) and isotropic
pressure P(t) are

H2 =
8π

3
ρ, (2)

ρ̇ + 3H (P + ρ) = 0, (3)

ä
a
= − 4π

3
(ρ + 3P) . (4)

These equations exhibit a special symmetry that maps a barotropic perfect fluid with equation of
state P = P(ρ) into itself, with a rescaled energy density and pressure but with the same equation of state.

2. The Symmetry Transformation

Assume that the energy content of the universe is a single perfect fluid with constant equation of
state P = wρ with w = constant; then, the Einstein–Friedmann Equations (2)–(4) assume the form
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ρ̇ + 3 (w + 1)
ȧ
a

ρ = 0, (5)

ä
a
= − 4π

3
(3w + 1) ρ. (6)

The solution of these equations is well known and easy to derive (e.g., [25]):

a(t) = a0 t
2

3(w+1) , (7)

ρ(a) =
ρ0

a3(w+1)
. (8)

The change of variables

a −→ ã = as, (9)

dt −→ dt̃ = s a
3(w+1)(s−1)

2 dt = s ã
3(w+1)(s−1)

2s dt, (10)

ρ −→ ρ̃ = a−3(w+1)(s−1)ρ, (11)

with inverse

a = ã1/s, (12)

dt =
a
−3(w+1)(s−1)

s

s
dt̃, (13)

ρ = ρ̃ ã
3(w+1)(s−1)

s (14)

leaves the Einstein–Friedmann Equations (2), (5) and (6) unchanged. In particular, the matter source,
the barotropic perfect fluid, maintains the equation of state P = wρ with the same equation of state
parameter w. This is in contrast with other symmetries of the same equations which change an
“ordinary” fluid satisfying the weak energy condition into a phantom fluid with different equation
of state parameter and are ultimately inspired by string theory dualities [1–21], and with other
solutions of the Einstein–Friedmann equations obtained using methods of supersymmetric quantum
mechanics [22–24].

To check invariance of the equations, begin from the Friedmann Equation (2), which becomes, in
terms of tilded quantities:

1
ã2/s

d
(

ã1/s
)

dt̃

2 (
dt̃
dt

)2

=
8π

3
ρ̃ ã

3(w+1)(s−1)
s (15)

or
1
s2

ã
2
s−2

ã2/s

(
dã
dt̃

)2
s2 ã

3(w+1)(s−1)
s =

8π

3
ρ̃ã

3(w+1)(s−1)
s , (16)
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which simplifies to (
1
ã

dã
dt̃

)2
=

8π

3
ρ̃ . (17)

Let us consider now the covariant conservation Equation (5), which now reads

d
dt̃

(
ρ̃ ã

3(w+1)(s−1)
s

)
dt̃
dt

+ 3(w + 1)ρ̃
ã

3(w+1)(s−1)
s

ã1/s
dt̃
dt

d
(

ã1/s
)

dt̃
= 0 . (18)

Expanding, one has

ã
3(w+1)(s−1)

s
dρ̃

dt̃
+

3(w + 1)(s− 1)
s

ã
3(w+1)(s−1)

s −1 dã
dt̃

ρ̃ +
3(w + 1)

s
ã

3(w+1)(s−1)−1
s ã

1
s−1 ρ̃

dã
dt̃

= 0 . (19)

Grouping similar terms then yields

ã
3(w+1)(s−1)

s

[
dρ̃

dt̃
+ 3 (w + 1)

1
ã

dã
dt̃

ρ̃

]
= 0. (20)

Since ã 6= 0, the conservation equation in the tilded world follows.
Coming to the acceleration Equation (6), one first notices that

da
dt

=
d
(

ã1/s
)

dt̃
,

dt̃
dt

= ã
(3w+1)(s−1)

2s
dã
dt̃

, (21)

d2a
dt2 =

dt̃
dt

d
dt̃

(
da
dt

)
= ã

(3w+1)(s−1)
s

[
(3w + 1)(s− 1)

2
ã
(

1
ã

dã
dt̃

)2
+ s

d2 ã
dt̃2

]
. (22)

Using the Friedmann equation for tilded quantities, this becomes

d2a
dt2 = ã

(3w+1)(s−1)
s +1

[
(3w + 1)(s− 1)

2
8π

3
ρ̃ +

s
ã

d2 ã
dt̃2

]
. (23)

The acceleration Equation (6) now reads

ã
(3w+1)(s−1)

s +1

ã1/s

[
(3w + 1)(s− 1)

4π

3
ρ̃ +

s
ã

d2 ã
dt̃2

]
= −4π

3
(3w + 1) ρ̃ ã

(3w+1)(s−1)
s . (24)

By simplifying a factor ã
(3w+1)(s−1)

s on both sides and collecting similar terms, one obtains

s
ã

d2 ã
dt̃2 = −4π

3
(3w + 1) ρ̃ [1 + (s− 1)] (25)

and the acceleration equation for tilded quantities follows.

3. A Group of Symmetry Transformations

The transformations (9)–(11) form a commutative group, as shown below. First, we show that the
composition of two such transformations is a change of variables of the same form. Let

L̂s : (a, dt, ρ) −→ (ã, dt̃, ρ̃) =

(
as, s a

3(w+1)(s−1)
2 dt, a−3(w+1)(s−1) ρ

)
, (26)

L̂p : (a, dt, ρ) −→
(

˜̃a, d ˜̃t, ˜̃ρ
)
=

(
ap, p a

3(w+1)(p−1)
2 dt, a−3(w+1)(p−1) ρ

)
; (27)
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then, the composition of the two transformation gives

a→ ã→ ˜̃a = ãp = aps ≡ ar, (28)

dt→ dt̃→ d ˜̃t = pã
3(w+1)(p−1)

2 dt̃ = pa
3(w+1)(p−1)s

2 sa
3(w+1)(s−1)

2 dt = psa
3(w+1)(ps−1)

2 dt ≡ ra
3(w+1)(r−1)

2 dt, (29)

ρ→ ρ̃→ ˜̃ρ = ã−3(w+1)(p−1) ρ̃ = a−3(w+1)(p−1)sa−3(w+1)(s−1)ρ = a−3(w+1)(r−1)ρ, (30)

where r = ps. Therefore, the composition of two transformations gives the same kind of transformation
and the order of these two operations does not matter:

L̂s ◦ L̂p = L̂p ◦ L̂s ≡ L̂sp ≡ L̂r. (31)

There is a neutral element for the operation of composition of maps: the transformation L̂1 with
s = 1 is the identity since

L̂1 : (a, dt, ρ) −→ (ã, dt̃, ρ̃) = (a, dt, ρ) . (32)

Finally, each transformation L̂s with s 6= 0 has a (left and right) inverse L̂1/s since

L̂s ◦ L̂1/s = L̂1/s ◦ L̂s = L̂(s·1/s) = Îd. (33)

Therefore, the transformations L̂s given by Equations (9)–(11) form a one-parameter Abelian
group parametrized by the real number s 6= 0.

4. Symmetry of the Solutions

Since the form of the Einstein–Friedmann Equations (2), (5) and (6) does not change under the
symmetry operation (9)–(11), the solution corresponding to the same perfect fluid will still be given by
Equations (7) and (8) but now with tilded scale factor:

ã(t) = a0 t̃
2

3(w+1) , (34)

ρ̃(ã) =
ρ0

ã3(w+1)
. (35)

Let us verify this property explicitly. We have, using Equation (7),

dt̃ = s a
3(w+1)(s−1)

2 dt = s a
3(w+1)(s−1)

2
0 ts−1dt (36)

and, integrating,

t̃ =
∫

dt̃ = a
3(w+1)(s−1)

2
0 ts, (37)

where we set to zero an additive integration constant assuming that t̃(0) = 0 if s > 0 (apart from
dimensions, the multiplicative constant on the right-hand side of Equation (37) is not physically
relevant because it can be absorbed into a rescaling of the time coordinate). Inverting this relation yields

t =
t̃1/s

a
3(w+1)(s−1)

2
0

. (38)
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Therefore, it is

ã(t̃) = as = as
0 t

2s
3(w+1) = a

2s2−3(w+1)s+3(w+1))
2s

0 t̃
2

3(w+1) ≡ ã0 t̃
2

3(w+1) . (39)

Similarly, one checks that

ρ̃(ã) = a3(w+1)(s−1)ρ = a3(w+1)(s−1) ρ0

a3(w+1)
=

ρ0

ã3(w+1)
. (40)

5. Conclusions

We have reported a symmetry property of the Einstein–Friedmann equations for a spatially flat
FLRW universe filled with a single barotropic perfect fluid with constant equation of state P = wρ.
It is easy to check that this symmetry does not hold for spatially curved universes.

As for the physical meaning of this symmetry, let us note that the scale factor and the comoving
time scale as

a → as, (41)

t → ts, (42)

respectively. This scaling could be superficially interpreted by saying that the scaling of proper spatial
distances and the proper time of observers comoving with the cosmic perfect fluid by the same power
points to some scale-invariance property of the Einstein–Friedmann equations for spatially flat sections,
with this property failing when a spatial scale associated with the curvature of the three-dimensional
spatial sections is present. However, these equations are definitely not scale invariant, and this is the
meaning of the completely different scaling of the energy density (11) (in the units used, in which
energy and mass have the dimensions of a length, energy density should scale as the inverse square
of a length `−2s, but it does not). This fact simply reflects the lack of scale invariance of the Einstein
equations even in vacuo or in the presence of conformally invariant matter (such as, e.g., a radiation
fluid with w = 1/3).

Next, one could be tempted to view the symmetry of the Einstein–Friedmann Equations (2), (5)
and (6) as deriving from a conformal transformation of the spacetime metric ds2 → ds̃2 = Ω2ds2 for
some conformal factor Ω(xµ), followed by a suitable redefinition of the comoving time coordinate, but
this is not possible in general, as it is easy to check.

The symmetry map (9)–(11) for the special case of a radiation fluid with equation of state parameter
w = 1/3 was already noted in the context of an analogy between the cosmic radiation era and the
freezing of bodies of water in environmental physics [27].
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