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Abstract: In the paper, we extend known results concerning crossing numbers of join products of
small graphs of order six with discrete graphs. The crossing number of the join product G∗ + Dn

for the graph G∗ on six vertices consists of one vertex which is adjacent with three non-consecutive
vertices of the 5-cycle. The proofs were based on the idea of establishing minimum values of crossings
between two different subgraphs that cross the edges of the graph G∗ exactly once. These minimum
symmetrical values are described in the individual symmetric tables.
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1. Introduction

An investigation on the crossing number of graphs is a classical and very difficult problem. Garey
and Johnson [1] proved that this problem is NP-complete. Recall that the exact values of the crossing
numbers are known for only a few families of graphs. The purpose of this article is to extend the
known results concerning this topic. In this article, we use the definitions and notation of the crossing
numbers of graphs presented by Klešč in [2]. Kulli and Muddebihal [3] described the characterization
for all pairs of graphs which join product of a planar graph. In the paper, some parts of proofs are
also based on Kleitman’s result [4] on the crossing numbers for some complete bipartite graphs. More
precisely, he showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, for m ≤ 6.

Again, by Kleitman’s result [4], the crossing numbers for the join of two different paths, the join of
two different cycles, and also for the join of path and cycle, were established in [2]. Further, the exact
values for crossing numbers of G + Dn and of G + Pn for all graphs G on less than five vertices were
determined in [5]. At present, the crossing numbers of the graphs G + Dn are known only for few
graphs G of order six in [6–9]. In all these cases, the graph G is usually connected and includes at least
one cycle.

The methods in the paper mostly use the combinatorial properties of cyclic permutations. For
the first time, the idea of configurations is converted from the family of subgraphs which do not cross
the edges of the graph G∗ of order six onto the family of subgraphs whose edges cross the edges of
G∗ just once. According to this algebraic topological approach, we can extend known results for the
crossing numbers of new graphs. Some of the ideas and methods were used for the first time in [10].
In [6,8,9], some parts of proofs were done with the help of software which is described in detail in [11].
It is important to recall that the methods presented in [5,7,12] do not suffice to determine the crossing
number of the graph G∗ + Dn. Also in this article, some parts of proofs can be simplified by utilizing
the work of the software that generates all cyclic permutations in [11]. Its C++ version is located

Symmetry 2020, 12, 135; doi:10.3390/sym12010135 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2837-8879
http://dx.doi.org/10.3390/sym12010135
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/135?type=check_update&version=3


Symmetry 2020, 12, 135 2 of 12

also on the website http://web.tuke.sk/fei-km/coga/, and the list with all short names of 120 cyclic
permutations of six elements have already been collected in Table 1 of [8].

2. Cyclic Permutations and Corresponding Configurations of Subgraphs

Let G∗ be the connected graph on six vertices consisting of one vertex which is adjacent with three
non-consecutive vertices of the 5-cycle. We consider the join product of the graph G∗ with the discrete
graph Dn on n vertices. It is not difficult to see that the graph G∗ + Dn consists of just one copy of the
graph G∗ and of n vertices t1, . . . , tn, where any vertex tj, j = 1, . . . , n, is adjacent to every vertex of
the graph G∗. Let T j, j = 1, . . . , n, denote the subgraph which is uniquely induced by the six edges
incident with the fixed vertex tj. This means that the graph T1 ∪ · · · ∪ Tn is isomorphic with K6,n and

G∗ + Dn = G∗ ∪ K6,n = G∗ ∪
( n⋃

j=1

T j
)

. (1)

In the paper, the definitions and notation of the cyclic permutations and of the corresponding
configurations of subgraphs for a good drawing D of the graph G∗ + Dn presented in [8] are used.
The rotation rotD(tj) of a vertex tj in the drawing D is the cyclic permutation that records the (cyclic)
counter-clockwise order in which the edges leave tj, see [10]. We use the notation (123456) if the
counterclockwise order of the edges incident with the vertex tj is tjv1, tjv2, tjv3, tjv4, tjv5, and tjv6.
Recall that a rotation is a cyclic permutation. Moreover, as we have already mentioned, we separate all
subgraphs T j, j = 1, . . . , n, of the graph G∗+ Dn into three mutually-disjoint families depending on how
many times the edges of G∗ are crossed by the edges of the considered subgraph T j in D. This means,
for j = 1, . . . , n, let RD = {T j : crD(G∗, T j) = 0} and SD = {T j : crD(G∗, T j) = 1}. The edges of G∗ are
crossed by each other subgraph T j at least twice in D. For T j ∈ RD ∪ SD, let Fj denote the subgraph
G∗ ∪ T j, j ∈ {1, 2, . . . , n}, of G∗ + Dn, and let D(Fj) be its subdrawing induced by D.

If we would like to obtain an optimal drawing D of G∗ + Dn, then the set RD ∪ SD must be
nonempty provided by the arguments in Theorem 1. Thus, we only consider drawings of the graph G∗

for which there is a possibility of obtaining a subgraph T j ∈ RD ∪ SD. Since the graph G∗ contains the
6-cycle as a subgraph (for brevity, we can write C6(G∗)), we have to assume only crossings between
possible subdrawings of the subgraph C6(G∗) and two remaining edges of G∗. Of course, the edges of
the cycle C6(G∗) can cross themselves in the considered subdrawings. The vertex notation of G∗ will
be substantiated later in all drawings in Figure 1.

First, assume a good drawing D of G∗ + Dn in which the edges of G∗ do not cross each other.
In this case, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1a. Clearly, the set RD is empty. Our aim is to list all possible rotations rotD(tj)

which can appear in D if the edges of G∗ are crossed by the edges of T j just once. There is only one
possible subdrawing of Fj \ {v4} represented by the rotation (16532), which yields that there are
exactly five ways of obtaining the subdrawing of G ∪ T j depending on which edge of the graph G∗

can be crossed by the edge tjv4. We denote these five possibilities by Ak, for k = 1, . . . , 5. For our
considerations over the number of crossings of G∗ + Dn, it does not play a role in which of the regions
is unbounded. So we can assume the drawings shown in Figure 2. Thus, the configurations A1, A2,
A3, A4, and A5 are represented by the cyclic permutations (165324), (165432), (146532), (165342),
and (164532), respectively. Of course, in a fixed drawing of the graph G∗ + Dn, some configurations
fromM = {A1,A2,A3,A4,A5} need not appear. We denote byMD the set of all configurations that
exist in the drawing D belonging to the setM.

http://web.tuke.sk/fei-km/coga/
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Figure 1. Six possible drawings of G∗ with no crossing among edges of C6(G∗). (a): the planar drawing
of G∗; (b): the drawing of G∗ with crD(G∗) = 1 and without crossing on edges of C6(G∗); (c): the
drawing of G∗ only with two crossings on edges of C6(G∗); (d): the drawing of G∗ with crD(G∗) = 2
and with one crossing on edges of C6(G∗); (e): the drawing of G∗ only with one crossing on edges of
C6(G∗); (f): the drawing of G∗ with crD(G∗) = 2 and with one crossing on edges of C6(G∗).
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Figure 2. Drawings of five possible configurations fromM of the subgraph Fj.

Recall that we are able to extend the idea of establishing minimum values of crossings between two
different subgraphs onto the family of subgraphs which cross the edges of G∗ exactly once. Let X and
Y be the configurations fromMD. We denote by crD(X and Y) the number of crossings in D between
Ti and T j for different Ti, T j ∈ SD such that Fi and Fj have configurations X and Y , respectively.
Finally, let cr(X ,Y) = min{crD(X ,Y)} over all possible good drawings of G∗ + Dn with X ,Y ∈ MD.
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Our aim is to determine cr(X ,Y) for all such pairs X ,Y ∈ M. In particular, the configurationsA1 and
A2 are represented by the cyclic permutations (165324) and (165432), respectively. Since the minimum
number of interchanges of adjacent elements of (165324) required to produce cyclic permutation
(165432) is two, we need at least four interchanges of adjacent elements of (165432) to produce cyclic
permutation (165324) = (142356). (Let Tx and Ty be two different subgraphs represented by their
rot(tx) and rot(ty) of length m, m ≥ 3. If the minimum number of interchanges of adjacent elements of
rot(tx) required to produce rot(ty) is at most z, then crD(Tx, Ty) ≥

⌊m
2
⌋⌊m−1

2
⌋
− z. Details have been

worked out by Woodall [13].) So any subgraph T j with the configuration A2 of Fj crosses the edges
of Ti with the configuration A1 of Fi at least four times; that is, cr(A1,A2) ≥ 4. The same reasoning
gives cr(A1,A3) ≥ 5, cr(A1,A4) ≥ 5, cr(A1,A5) ≥ 4, cr(A2,A3) ≥ 4, cr(A2,A4) ≥ 5, cr(A2,A5) ≥ 5,
cr(A3,A4) ≥ 4, cr(A3,A5) ≥ 5, and cr(A4,A5) ≥ 4. Clearly, also cr(Ai,Ai) ≥ 6 for any i = 1, . . . , 5.
All resulting lower bounds for the number of crossings of two configurations fromM are summarized
in the symmetric Table 1 (here, Ak and Al are configurations of the subgraphs Fi and Fj, where
k, l ∈ {1, 2, 3, 4, 5}).

Table 1. The necessary number of crossings between Ti and T j for the configurations Ak, Al .

- A1 A2 A3 A4 A5

A1 6 4 5 5 4
A2 4 6 4 5 5
A3 5 4 6 4 5
A4 5 5 4 6 4
A5 4 5 5 4 6

Assume a good drawing D of the graph G∗ + Dn with just one crossing among edges of the graph
G∗ (in which there is a possibility of obtaining of subgraph T j ∈ RD ∪ SD). At first, without loss of
generality, we can consider the drawing of G∗ with the vertex notation like that in Figure 1b. Of course,
the set RD can be nonempty, but our aim will be also to list all possible rotations rotD(tj) which can
appear in D if the edges of G∗ are crossed by the edges of T j just once. Since the edges v1v2, v2v3, v1v6,
and v5v6 of G∗ can be crossed by the edges tjv3, tjv1, tjv5, and tjv1, respectively, these four ways under
our consideration can be denoted by Bk, for k = 1, 2, 3, 4. Based on the aforementioned arguments,
we assume the drawings shown in Figure 3.

Thus, the configurations B1, B2, B3, and B4 are uniquely represented by the cyclic permutations
(165423), (126543), (156432), and (154326), respectively. Because some configurations from
N = {B1,B2,B3,B4}may not appear in a fixed drawing of G∗ + Dn, we denote by ND the subset of
N consisting of all configurations that exist in the drawing D. Further, due to the properties of the
cyclic rotations, we can easily verify that cr(Bi,Bj) ≥ 4 for any i, j ∈ {1, 2, 3, 4}, i 6= j. (Let us note that
this idea was used for an establishing the values in Table 1)

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1e. In this case, the set RD is also empty. Hence, our aim is to list again all possible
rotations rotD(tj) which can appear in D if T j ∈ SD. Since there is only one subdrawing of Fj \ {v3}
represented by the rotation (16542), there are four ways to obtain the subdrawing of Fj depending
on which edge of G∗ is crossed by the edge tjv3. These four possibilities under our consideration
are denoted by Ek, for k = 1, 2, 3, 4. Again, based on the aforementioned arguments, we assume
the drawings shown in Figure 4.
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Figure 3. Drawings of four possible configurations from N of the subgraph Fj.
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Figure 4. Drawings of four possible configurations from O of the subgraph Fj.

Thus, the configurations E1, E2, E3, and E4 are represented by the cyclic permutations (165432),
(163542), (165342), and (136542), respectively. Again, we denote byOD the subset ofO = {E1, E2, E3, E4}
consisting of all configurations that exist in the drawing D. Further, due to the properties of the cyclic
rotations, all lower-bounds of number of crossings of two configurations from O can be summarized
in the symmetric Table 2 (here, Ek and El are configurations of the subgraphs Fi and Fj, where
k, l ∈ {1, 2, 3, 4}).
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Table 2. The necessary number of crossings between Ti and T j for the configurations Ek, El .

- E1 E2 E3 E4

E1 6 4 5 4
E2 4 6 5 5
E3 5 5 6 4
E4 4 5 4 6

Finally, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1f. In this case, the set RD is also empty. So our aim will be to list again all possible
rotations rotD(tj) which can appear in D if T j ∈ SD. Since there is only one subdrawing of Fj \ {v2}
represented by the rotation (16543), there are three ways to obtain the subdrawing of Fj depending
on which edge of G∗ is crossed by the edge tjv2. These three possibilities under our consideration are
denoted byFk, for k = 1, 2, 3. Again, based on the aforementioned arguments, we assume the drawings
shown in Figure 5.
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Figure 5. Drawings of three possible configurations from P of the subgraph Fj.

Thus, the configurations F1, F2, and F3 are represented by the cyclic permutations (165432),
(162543), and (126543), respectively. Again, we denote by PD the subset of P = {F1,F2,F3} consisting
of all configurations that exist in the drawing D. Further, due to the properties of the cyclic rotations,
all lower-bounds of number of crossings of two configurations from P can be summarized in the
symmetric Table 3 (here, Fk and Fl are configurations of the subgraphs Fi and Fj, where k, l ∈ {1, 2, 3}).

Table 3. The necessary number of crossings between Ti and T j for the configurations Fk and Fl .

- F1 F2 F3

F1 6 4 5
F2 4 6 5
F3 5 5 6

3. The Crossing Number of G∗+ Dn

Recall that two vertices ti and tj of G∗ + Dn are antipodal in a drawing D of G∗ + Dn if the
subgraphs Ti and T j do not cross. A drawing is antipodal-free if it has no antipodal vertices. For easier
and more accurate labeling in the proofs of assertions, let us define notation of regions in some
subdrawings of G∗ + Dn. The unique drawing of G∗ as shown in Figure 1a contains four different
regions. Let us denote these four regions by ω1,2,3,4, ω1,4,5,6, ω3,4,5, and ω1,2,3,5,6 depending on which
of vertices are located on the boundary of the corresponding region.

Lemma 1. Let D be a good and antipodal-free drawing of G∗ + Dn, for n > 3, with the drawing of G∗ with the
vertex notation like that in Figure 1a. If Tu, Tv, Tt ∈ SD are three different subgraphs such that Fu, Fv, and Ft

have three different configurations from the set {Ai,Aj,Ak} ⊆ MD with i + 2 ≡ j + 1 ≡ k (mod 5), then

crD(G∗ ∪ Tu ∪ Tv ∪ Tt, Tm) ≥ 6 for any Tm 6∈ SD.
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Proof of Lemma 1. Let us assume the configurations A1 of Fu, A2 of Fv, and A3 of Ft. It is obvious
that crD(Tu ∪ Tv ∪ Tt, Tm) ≥ 3 holds for any subgraph Tm, m 6= u, v, t. Further, if crD(G∗, Tm) > 2,
then we obtain the desired result crD(G∗ ∪ Tu ∪ Tv ∪ Tt, Tm) ≥ 3 + 3 = 6. To finish the proof, let us
suppose that there is a subgraph Tm 6∈ SD such that Tm crosses exactly once the edges of each subgraph
Tu, Tv, and Tt, and let also consider crD(G∗, Tm) = 2. As crD(Tu, Tm) = 1, the vertex tm must be
placed in the quadrangular region with four vertices of G∗ on its boundary; that is, tm ∈ ω1,4,5,6.
Similarly, the assumption crD(Tt, Tm) = 1 enforces that tm ∈ ω1,2,3,4. Since the vertex tm cannot be
placed simultaneously in both regions, we obtain a contradiction. The proof proceeds in the similar
way also for the remaining possible cases of the configurations of subgraphs Fu, Fv, and Ft, and the
proof is done.

Now we are able to prove the main result of the article. We can calculate the exact values of
crossing numbers for small graphs using an algorithm located on a website http://crossings.uos.de/.
It uses an ILP formulation based on Kuratowski subgraphs. The system also generates verifiable
formal proofs like those described in [14]. Unfortunately, the capacity of this system is limited.

Lemma 2. cr(G∗ + D1) = 1 and cr(G∗ + D2) = 3.

Theorem 1. cr(G∗ + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
for n ≥ 1.

Proof of Theorem 1. Figure 6 offers the drawing of G∗ + Dn with exactly 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings. Thus, cr(G∗ + Dn) ≤ 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋
. We prove the reverse inequality by induction

on n. By Lemma 2, the result is true for n = 1 and n = 2. Now suppose that, for some n ≥ 3, there is
a drawing D with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
(2)

and that
cr(G∗ + Dm) ≥ 6

⌊m
2

⌋⌊m− 1
2

⌋
+ m +

⌊m
2

⌋
for any integer m < n. (3)

 

Figure 6. The good drawing of G∗ + Dn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings.

Let us first show that the considered drawing D must be antipodal-free. For a contradiction,
suppose, without loss of generality, that crD(Tn−1, Tn) = 0. If at least one of Tn−1 and Tn, say Tn,
does not cross G∗, it is not difficult to verify in Figure 1 that Tn−1 must cross G∗ ∪ Tn at least trice;
that is, crD(G∗, Tn−1 ∪ Tn) ≥ 3. From [4], we already know that cr(K6,3) = 6, which yields that the
edges of the subgraph Tn−1 ∪ Tn are crossed by any Tk, k = 1, 2, . . . , n− 2, at least six times. So, for
the number of crossings in D we have:

crD(G∗ + Dn) = crD (G∗ + Dn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, Tn−1 ∪ Tn) + crD(G∗, Tn−1 ∪ Tn)

http://crossings.uos.de/
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≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ n− 2 +

⌊n− 2
2

⌋
+ 6(n− 2) + 3 = 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

This contradiction with the assumption (2) confirms that D is antipodal-free. Moreover, if r = |RD|
and s = |SD|, the assumption (3) together with cr(K6,n) = 6

⌊ n
2
⌋⌊ n−1

2
⌋

imply that, in D, if r = 0, then
there are at least

⌈ n
2
⌉
+ 1 subgraphs T j for which the edges of G∗ are crossed just once by them.

More precisely:

crD(G∗) + crD(G∗, K6,n) ≤ crD(G∗) + 0r + 1s + 2(n− r− s) < n +
⌊n

2

⌋
;

that is,
s + 2(n− r− s) < n +

⌊n
2

⌋
. (4)

This enforces that 2r + s ≥ n−
⌊ n

2
⌋
+ 1, and if r = 0, then s ≥ n−

⌊ n
2
⌋
+ 1 =

⌈ n
2
⌉
+ 1. Now,

for T j ∈ RD ∪ SD, we discuss the existence of possible configurations of subgraphs Fj = G∗ ∪ T j in D.
Case 1: crD(G∗) = 0. Without loss of generality, we can consider the drawing of G∗ with the

vertex notation like that in Figure 1a. It is obvious that the set RD is empty; that is, r = 0. Thus, we deal
with only the configurations belonging to the nonempty setMD and we discuss over all cardinalities
of the setMD in the following subcases:

i. |MD| ≥ 3. We consider two subcases. Let us first assume that {Ai,Aj,Ak} ⊆ MD with
i + 2 ≡ j + 1 ≡ k (mod 5). Without lost of generality, let us consider three different
subgraphs Tn−2, Tn−1, Tn ∈ SD such that Fn−2, Fn−1 and Fn have configurations Ai, Aj,
and Ak, respectively. Then, crD(Tn−2 ∪ Tn−1 ∪ Tn, Tm) ≥ 14 holds for any Tm ∈ SD with
m 6= n− 2, n− 1, n by summing the values in all columns in the considered three rows of Table 1.
Moreover, crD(G∗ ∪Tn−2∪Tn−1∪Tn, Tm) ≥ 6 is fulfilling for any subgraph Tm 6∈ SD by Lemma 1.
crD(Tn−2 ∪ Tn−1 ∪ Tn) ≥ 13 holds by summing of three corresponding values of Table 1 between
the considered configurations Ai, Aj, and Ak, by fixing the subgraph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn,

crD(G∗+ Dn) = crD(K6,n−3)+ crD(K6,n−3, G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn)+ crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn)

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 15(s− 3) + 6(n− s) + 13 + 3 = 6

⌊n− 3
2

⌋⌊n− 4
2

⌋
+ 6n + 9s− 29

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6n + 9

(⌈n
2

⌉
+ 1
)
− 29 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, let us assume thatMD = {Ai,Aj,Ak} with i + 1 ≡ j (mod 5), j + 1 6≡ k (mod 5),
and k + 1 6≡ i (mod 5). Without lost of generality, let us consider two different subgraphs
Tn−1, Tn ∈ SD such that Fn−1 and Fn have mentioned configurations Ai and Aj, respectively.
Then, crD(G∗ ∪ Tn−1 ∪ Tn, Tm) ≥ 1 + 10 = 11 holds for any Tm ∈ SD with m 6= n− 1, n also, by
summing the values in Table 1. Hence, by fixing the subgraph G∗ ∪ Tn−1 ∪ Tn,

crD(G∗ + Dn) = crD(K6,n−2) + crD(K6,n−2, G∗ ∪ Tn−1 ∪ Tn) + crD(G∗ ∪ Tn−1 ∪ Tn)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 11(s− 2) + 4(n− s) + 4 + 2 = 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + 7s− 16

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 7

(⌈n
2

⌉
+ 1
)
− 16 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. |MD| = 2; that is,MD = {Ai,Aj} for some i, j ∈ {1, . . . , 5} with i 6= j. Without lost of generality,
let us consider two different subgraphs Tn−1, Tn ∈ SD such that Fn−1 and Fn have mentioned
configurations Ai and Aj, respectively. Then, crD(G∗ ∪ Tn−1 ∪ Tn, Tm) ≥ 1 + 10 = 11 holds for
any Tm ∈ SD with m 6= n− 1, n also by Table 1. Thus, by fixing the subgraph G∗ ∪ Tn−1 ∪ Tn, we
are able to use the same inequalities as in the previous subcase.
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iii. |MD| = 1; that is, MD = {Aj} for only one j ∈ {1, . . . , 5}. Without lost of generality, let us
assume that Tn ∈ SD with the configuration Aj ∈ MD of the subgraph Fn. As MD = {Aj},
we have crD(G∗ ∪ Tn, Tk) ≥ 1 + 6 = 7 for any Tk ∈ SD, k 6= n provided that rotD(tn) = rotD(tk),
for more see [13]. Hence, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) = crD(K6,n−1) + crD(K6,n−1, G∗ ∪ Tn) + crD(G∗ ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 7(s− 1) + 3(n− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 4s− 6

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + 4

(⌈n
2

⌉
+ 1
)
− 6 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 2: crD(G∗) = 1 with crD(C6(G∗)) = 0. At first, without loss of generality, we can consider
the drawing of G∗ with the vertex notation like that in Figure 1b. Since the set RD can be nonempty,
two possible subcases may occur:

i. Let RD be the nonempty set; that is, there is a subgraph Ti ∈ RD. Now, for a Ti ∈ RD, the reader
can easily see that the subgraph Fi = G∗ ∪ Ti is uniquely represented by rotD(ti) = (165432),
and crD(Ti, T j) ≥ 6 for any T j ∈ RD with j 6= i provided that rotD(ti) = rotD(tj); for more
see [13]. Moreover, it is not difficult to verify by a discussion over all possible drawings D that
crD(G∗ ∪ Ti, Tk) ≥ 5 holds for any subgraph Tk ∈ SD, and crD(G∗ ∪ Ti, Tk) ≥ 4 is also fulfilling
for any subgraph Tk 6∈ RD ∪ SD. Thus, by fixing the subgraph G∗ ∪ Ti,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(r− 1) + 5s + 4(n− r− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + (2r + s)− 5 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(
n−

⌊n
2

⌋
+ 1
)
− 5 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. Let RD be the empty set; that is, each subgraph T j crosses the edges of G∗ at least once in D. Thus,
we deal with the configurations belonging to the nonempty set ND. Let us consider a subgraph
T j ∈ SD with the configuration Bi ∈ ND of Fj, where i ∈ {1, 2, 3, 4}. Then, the lower-bounds of
number of crossings of two configurations from N confirm that crD(G∗ ∪ T j, Tk) ≥ 1 + 4 = 5
holds for any Tk ∈ SD, k 6= j. Moreover, one can also easily verify over all possible drawings
D that crD(G∗ ∪ T j, Tk) ≥ 4 is true for any subgraph Tk 6∈ SD. Hence, by fixing the subgraph
G∗ ∪ T j,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + s− 3 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1e. It is obvious that the set RD is empty; that is, the set SD cannot be empty. Thus,
we deal with the configurations belonging to the nonempty set OD. Note that the lower-bounds of
number of crossings of two configurations from O were already established in Table 2. Since there is
a possibility to find a subdrawing of G∗ ∪ T j ∪ Tk, in which crD(G∗ ∪ T j, Tk) = 3 with T j ∈ SD and
Tk 6∈ SD, we discuss four following subcases:

i. E4 ∈ OD. Without lost of generality, let us assume that Tn ∈ SD with the configuration E4 ∈ OD
of Fn. Only for this subcase, one can easily verify over all possible drawings D for which
crD(G∗ ∪ Tn, Tk) ≥ 4 is true for any subgraph Tk 6∈ SD. Thus, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
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+4n + s− 3 ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. E4 6∈ OD and E3 ∈ OD. Without lost of generality, let us assume that Tn ∈ SD with the
configuration E3 ∈ OD of Fn. In this subcase, crD(G∗ ∪ Tn, Tk) ≥ 1 + 5 = 6 holds for any
subgraph Tk ∈ SD, k 6= n by the remaining values in the third row of Table 2. Hence, by fixing
the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(s− 1) + 3(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n + 3s− 4 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 3

(⌈n
2

⌉
+ 1
)
− 4 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

iii. OD = {E1, E2}. Without lost of generality, let us consider two different subgraphs Tn−1, Tn ∈ SD
such that Fn−1 and Fn have mentioned configurations E1 and E2, respectively. Then, crD(G∗ ∪
Tn−1 ∪ Tn, Tk) ≥ 1 + 10 = 11 holds for any Tk ∈ SD with k 6= n− 1, n also by Table 2. Thus, by
fixing the subgraph G∗ ∪ Tn−1 ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 11(s− 2) + 4(n− s) + 4 + 2 = 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 7s− 16 ≥ 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + 7

(⌈n
2

⌉
+ 1
)
− 16 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

iv. OD = {Ei} for only one i ∈ {1, 2}. Without lost of generality, let us assume that Tn ∈ SD with
the configuration E1 of Fn. In this subcase, crD(G∗ ∪ Tn, Tk) ≥ 1 + 6 = 7 holds for any Tk ∈ SD,
k 6= n provided that rotD(tn) = rotD(tk). Hence, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 7(s− 1) + 3(n− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n + 4s− 6 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 4

(⌈n
2

⌉
+ 1
)
− 6 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 3: crD(G∗) = 2 with crD(C6(G∗)) = 0. At first, without loss of generality, we can consider
the drawing of G∗ with the vertex notation like that in Figure 1c. It is obvious that the set RD is empty,
that is, the set SD cannot be empty. Our aim is to list again all possible rotations rotD(tj) which can
appear in D if a subgraph T j ∈ SD. Since there is only one subdrawing of Fj \ {v1} represented by
the rotation (26543), there are three ways to obtain the subdrawing of Fj depending on which edge
of G∗ is crossed by the edge tjv1. These three possible ways under our consideration can be denoted
by Ck, for k = 1, 2, 3. Based on the aforementioned arguments, we assume the drawings shown in
Figure 7.

C3C2C1
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Figure 7. Drawings of three possible configurations of the subgraph Fj.
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Thus the configurations C1, C2, and C3 are represented by the cyclic permutations (132654),
(143265), and (165432), respectively. Further, due to the properties of the cyclic rotations we can easily
verify that cr(Ci, Cj) ≥ 4 for any i, j ∈ {1, 2, 3}. Moreover, one can also easily verify over all possible
drawings D that crD(G∗ ∪ T j, Tk) ≥ 4 holds for any subgraph Tk 6∈ SD, where T j ∈ SD with some
configuration Ci of Fj. As there is a T j ∈ SD, by fixing the subgraph G∗ ∪ T j,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 2 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + s− 2 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 2 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1d. In this case, by applying the same process, we obtain two possible forms of
rotation rotD(tj) for T j ∈ SD. Namely, the rotations (165423) and (165432) if the edge tjv2 crosses
either the edge v3v4 or the edge v3v5 of G∗, respectively. Further, they satisfy also the same properties
like in the previous subcase, i.e., the same lower bounds of numbers of crossings on the edges of the
subgraph G∗ ∪ T j by any Tk, k 6= j. Hence, we are able to use the same fixing of the subgraph G∗ ∪ T j

for obtaining a contradiction with the number of crossings in D.
Finally, without loss of generality, we can consider the drawing of G∗ with the vertex notation

like that in Figure 1f. In this case, the set RD is empty; that is, the set SD cannot be empty. Thus, we
can deal with the configurations belonging to the nonempty set PD. Recall that the lower-bounds of
number of crossings of two configurations from P were already established in Table 3. Further, we can
apply the same idea and also the same arguments as for the configurations Ei ∈ OD, with i = 1, 2, 3,
in the subcases ii.–iv. of Case 2.

Case 4: crD(G∗) ≥ 1 with crD(C6(G∗)) ≥ 1. For all possible subdrawings of the graph G∗ with at
least one crossing among edges of C6(G∗), and also with the possibility of obtaining a subgraph T j

that crosses the edges of G∗ at most once, one of the ideas of the previous subcases can be applied.
We have shown, in all cases, that there is no good drawing D of the graph G∗ + Dn with fewer

than 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings. This completes the proof of the main theorem.

4. Conclusions

Determining the crossing number of a graph G + Dn is an essential step in establishing the so far
unknown values of the numbers of crossings of graphs G + Pn and G + Cn, where Pn and Cn are the
path and the cycle on n vertices, respectively. Using the result in Theorem 1 and the optimal drawing
of G∗ + Dn in Figure 6, we are able to postulate that cr(G∗ + Pn) and cr(G∗ + Cn) are at least one more
than cr(G∗ + Dn) = 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋
.
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