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Abstract: Since the rough sets theory based on the double quantification method was proposed, it
has attracted wide attention in decision-making. This paper studies the decision-making approach in
Incomplete Ordered Information System (IOIS). Firstly, to better extract the effective information in
IOIS, combined with the advantages of set-pair dominance relation and generalized multi-granulation,
the generalized multi-granulation set-pair dominance variable precision rough sets (GM-SPD-VPRS)
and the generalized multi-granulation set-pair dominance graded rough sets (GM-SPD-GRS) are
proposed. Moreover, we discuss their related properties. Secondly, considering the GM-SPD-VPRS
and the GM-SPD-GRS describe information from relative view and absolute view, respectively, we
further combine the two rough sets to obtain six double-quantitative generalized multi-granulation
set-pair dominance rough sets (GM-SPD-RS) models. Among them, the first two models fuse the
approximation operators of two rough sets, and investigate the extreme cases of optimistic and
pessimistic. The last four models combine the two rough sets by the logical disjunction operator and
the logical conjunction operator. Then, we discuss relevant properties and derive the corresponding
decision rules. According to the decision rules, an associated algorithm is constructed for one of the
models to calculate the rough regions. Finally, we validate the effectiveness of these models with a
medical example. The results indicate that the model is effective for dealing with practical problems.

Keywords: double quantification; set-pair dominance relation; generalized multi-granulation;
variable precision rough sets; graded rough sets

1. Introduction

The acceleration of the information era makes it possible to acquire and process diversified feature
data. However, in reality, due to the limitations of data acquisition technology and errors in data
measurement, the acquired information contains incomplete and inaccurate data in most cases, thus
increasing the requirements for data analysis tools. As we know, the uncertain knowledge hidden
in these systems is of great significance in decision-making. In reality, there are many problems that
require the consideration both relative and absolute information. For example, in the comprehensive
evaluation of graduate students, a school assesses students’ scientific research ability according to the
quality and quantity of articles published. Inspired by the above, we consider decision-making in IOIS
with double-quantitative RS theory.

Rough sets (RS) theory is an effective mathematical tool proposed by Pawlak in 1982 to address
uncertainties and imprecisions [1]. It has been successfully applied in feature selection [2], safety
monitoring data classification [3], decision making [4–6], information fusion [7], uncertainty analysis [8,9],

Symmetry 2020, 12, 133; doi:10.3390/sym12010133 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12010133
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/133?type=check_update&version=2


Symmetry 2020, 12, 133 2 of 24

medical diagnosis [10], and other fields [11–14]. Classical RS require strict inclusion relations between
their equivalent classes and sets, and because there is no fault-tolerant mechanism, they are limited.
Accordingly, scholars have proposed a series of extended RS models [15–61]. Yao et al. [15] presented a
decision theory rough sets (DTRS) model by introducing Bayes risk decision theory into RS. In 1993,
Ziarko [16] introduced parameter β into the RS model and proposed a variable precision rough sets
(VPRS) model that reflects the relative quantitative information of approximation space and has a
certain fault-tolerant ability. Considering the importance of overlapping information of equivalence
classes and sets, Yao et al. [17] put forward graded rough sets (GRS) in 1996. GRS can allow certain
errors and can reflect the absolute quantization information of approximation space. From the
perspective of information quantization, it is of great significance to combine absolute quantization
information with relative quantization information [18–29]. Zhang et al. [18] performed a comparative
study of VPRS and GRS and put forward two double-quantitative RS models, which enriched rough
sets theory. Li et al. [19] studied two double-quantitative DTRS models and verified the validities
of the models through a medical diagnosis case. Moreover, Fan et al. [20] introduced fuzzy sets
into the double-quantitative problem, constructed upper and lower approximation sets based on
logical operators, which can solve the pattern recognition problem in big data. Since RS model
based on equivalence relation is suitable only for discrete data, discrete preprocessing of data will
cause some information to be lost and reduce classification accuracy. To address the abovementioned
problem, literature [21] explored a distance-based double-quantitative rough fuzzy sets model that
can settle the problem of information loss. Guo et al. [22,23] studied double-quantitative RS theory
under fuzzy relation and presented a local logic disjunctive double-quantitative RS model based
on local RS, which provided an effective approach for decision-making. In addition, dominance
relation often plays a considerable role in practical applications, and it was necessary to establish
the ordered information system (OIS) [24–26] through the dominance relation. Some scholars have
investigated various double-quantitative RS models based on logical combinations of VPRS and GRS
in OIS [27–29]. The above studies rarely deal with decision-making problem in multi-granulation
environment. However, in many cases, multi-granulation is needed to describe the concept of the target.

From the granular computing perspective, Qian et al. [30,31] first proposed the multi-granulation
rough sets model (MRS) and extended the optimistic multi-granulation rough sets and pessimistic
multi-granulation rough sets, which attracted extensive attention from scholars [32,33]. Subsequently,
Xu et al. [34–36] explored a generalized multi-granulation rough sets (GMRS) model. Then, they
introduced generalized multi-granulation into the DTRS and GRS, provided two RS models, and
compared them with GMRS before demonstrating the advantages of the model through examples.
Literature [37] established three double-quantitative DTRS in multi-granulation approximate space,
but there are still some problems, such as double-quantitative multi-granulation DTRS under dynamic
granulation and the practical applications.

The abovementioned RS models are all under the complete information system (IS), but in
reality, the IS encountered are often incomplete, such as data integration [38], data mining [39], fault
diagnosis [40], uncertainty measurement [41], and many others [42–44]. Therefore, a large number of
studies on Incomplete Information System (IIS) have emerged [45–61]. Kryszkiewicz [45] described an
RS model by introducing the tolerance relation in IIS. Furthermore, Stefanowski et al. [48] defined the
similarity relation in IIS. In the light of granular computing, Zhai et al. [49,50] introduced the tolerance
relation into VPRS, combined with the multi-granulation, and gave the optimistic and pessimistic
variable precision MRS model under the IIS. Then, they expanded the single granulation RS model
based on the extended dominance relation and the limited dominance relation. Yao et al. made a series
of studies [51–53] about MRS in IIS. Based on maximal consistent block, a new optimistic MRS and a
new pessimistic MRS in IIS were established. Then, they investigated the granular space reductions
in the variable precision MRS model. Lin and Xu [54] constructed optimistic MRS and pessimistic
MRS in interval-valued information system. As the ranking of values plays a significant role in many
practical applications, Scholars have extended the method to various types of IOIS [55–59]. Huang [58]
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introduced the idea of set-pair analysis and proposed a set-pair dominance degree RS model, which
can overcome the shortcomings of the dominance relation in existing IOIS. Literature [60] mainly
investigated attribute reduction methods in IOIS. However, the above researches have not applied
the rough sets theory based on the double quantification approach to the decision-making in IOIS.
To settle the problem, we extend the double quantification rough sets model. The paper studies
decision-making in IIS, and provide better decision results for decision makers without preprocessing
the data. The works of this paper provide a method for decision-making research of IIS and expand its
application scope.

The main contributions of this article are shown below.
(1) To better extract effective information in IOIS, we combine the set-pair dominance relation

and generalized multi-granulation. In consideration that VPRS can reflect the relative quantization
information of approximation space, we propose generalized multi-granulation set-pair dominance
variable precision rough sets (GM-SPD-VPRS), and the related properties are discussed.

(2) Based on the proposed GM-SPD-VPRS, considering the GRS reflect absolute quantization
information of approximation space, we defined generalized multi-granulation set-pair dominance
graded rough sets (GM-SPD-GRS). In addition, we give the corresponding properties.

(3) To better reflect the relative and absolute quantization information in IOIS, the lower and
upper approximation sets of GM-SPD-VPRS and GM-SPD-GRS are fused and combined with logical
operators, and five double-quantitative generalized multi-granulation set-pair dominance relation
rough sets (DQGM-SPD-RSI to DQGM-SPD-RSV) are obtained.

(4) Taking DQGM-SPD-RSI model as an example, the Algorithm 1 is given. In addition, the
validity of the novel models is proved by a medical diagnosis case. It can also guide people to select a
suitable model.

The rest of this paper is organized below. In Section 2, some basic concepts related to RS,
IOIS, and set-pair dominance RS are recalled. In Section 3, GM-SPD-VPRS and GM-SPD-GRS are
proposed in IOIS, and the related properties are given and proven. In Section 4, DQGM-SPD-RSI,
DQGM-SPD-RSII, DQGM-SPD-RSIII, DQGM-SPD-RSIV, and DQGM-SPD-RSV are proposed to reflect
the relative and absolute quantization information better in IOIS. Moreover, taking into account extreme
circumstances, DQGM-SPD-RSI and DQGM-SPD-RSII are discussed with optimistic and pessimistic
extremes, respectively. Subsequently, an algorithm to calculate rough regions of DQGM-SPD-RSI is
constructed. In Section 5, the validity of the novel models is illustrated through a medical example.
Finally, this paper concludes a brief summary and looks forward to the future research in Section 6.

2. Preliminaries

Definition 1 (VPRS). [16] Let(U, R) be an approximate space, where U is a set of non-empty finite objects, for
∀X ⊆ U, the lower and upper approximations of X with precision 1− β are defined as follows:

Rβ(X) =
{
x ∈ U

∣∣∣c([x]R, X) ≤ β
}
;

Rβ(X) =
{
x ∈ U

∣∣∣c([x]R, X) < 1− β
}
.

where c([x]R, X) = 1−
∣∣∣[x]R ∩X

∣∣∣/∣∣∣[x]R∣∣∣ denotes the error classification rate. As can be seen from the above,
VPRS improve the fault-tolerant ability of RS by giving a less strict definition of inclusion relation in the
above approximations of RS. Generally, X is called definable if Rβ(X) = Rβ(X); otherwise, X is rough if

Rβ(X) , Rβ(X). Specially, when β = 0, VPRS degenerate into RS, that is, Rβ(X) = R(X) and Rβ(X) = R(X).
Based on approximation sets of VPRS, the rough regions of X with precision 1− β are defined below:

POSβ(X) = Rβ(X);

BNDβ(X) = Rβ(X) −Rβ(X);

NEGβ(X) = U −Rβ(X).
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Definition 2 (GRS). [9] Let (U, R) be an approximate space, and assume K ∈ N, N is the set of natural number;
the lower and upper approximations of X with respect to the grade K can be defined as follows:

RK(X) =
{
x ∈ U

∣∣∣∣∣∣[x]R∣∣∣−∣∣∣[x]R ∩X
∣∣∣≤ K

}
;

RK(X) =
{
x ∈ U

∣∣∣[x]R ∩X > K
}
.

The pair (RK(X), RK(X)) is called the lower and upper approximation sets of GRS, where RK(X) is a set
of equivalent classes with at most K elements that do not belong to X, and RK(X) is a set with more than K
equivalent classes belonging to X, which can reflect the absolute quantitative information in approximate space.
Generally, X is called definable if RK(X) = RK(X); otherwise, X is rough if RK(X) , RK(X). In particular,
when K = 0, the GRS model degenerates into the RS model, that is, RK(X) = R(X) and RK(X) = R(X).
Moreover, it should be noted that RK(X)RK(X) and RK(X)RK(X) in general.

Similarly, the positive region, the upper boundary region, the lower boundary region, and the negative
region of X with respect to graded K can be defined:

POSK(X) = RK(X)∩RK(X);
UBNDK(X) = RK(X) −RK(X);
LBNDK(X) = RK(X) −RK(X);
NEGK(X) =∼ (RK(X)∪RK(X)).

Definition 3 (approximation accuracy). [1] Let (U, R) be an approximate space, the approximation accuracy
of X under the equivalence relation R can be defined:

αR(X) =

∣∣∣R∣∣∣∣∣∣R∣∣∣
Approximation accuracy describes the ratio of correct decisions in possible decisions when using knowledge

R to classify the objects.

Definition 4 (OIS). [24,25] Let IS = (U, AT, V, f ) be a complete information system, AT is non-empty finite
attribute set, and V = ∪a∈ATVa is a set of all attribute values, where Va is the value range of attribute a and
has a partial order relation and f : U ×AT→ V is an information function. For ∀A ⊆ AT, ∀X ∈ U, there is a
general dominance relation:

R≤A =
{
(x, y) ∈ U ×U

∣∣∣ f (x, a) ≤ f (y, a)
}
,

Then, R≤A is called dominance relation under IS, and the IS satisfies this dominance relation is called ordered
information systems (OIS). According to the dominance relation, the dominance classes of the object can be
calculated as [x]≤A = {y ∈ U

∣∣∣(x, y) ∈ R≤A} . The dominance classes of the object represent all object sets whose
values are superior to those of the attribute set A.

Definition 5 (Set-pair dominance degree). [58] Let IOIS = (U, AT, VT, f ), for ∀A ⊆ AT, ∀X ∈ U, the
set-pair dominance degree of x and y is denoted as:

SA(x, y) = S1 + S2p + S3q,

where S1 =
∣∣∣M(x, y)

∣∣∣/n is the strong dominance degree of x and y, S2 =
∣∣∣N(x, y)

∣∣∣/n is the weak dominance
degree of x and y, and S3 =

∣∣∣K(x, y)
∣∣∣/n is the disadvantage degree of x and y. In addition:
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M(x, y) =
{
a ∈ A

∣∣∣( fa(x) ≤ fa(y))∨ ( fa(x) = ∗ ∧ fa(y) = maxva)∨ ( fa(y) = ∗ ∧ fa(x) = minva)
}
,

N(x, y) =
{
a ∈ A

∣∣∣( fa(x) = ∗ ∧ fa(y) = ∗)∨ ( fa(x) = ∗ ∧ fa(y) , ∗ ∧ fa(y) , maxva ∧ fa(y) , minva)

∨ ( fa(y) = ∗ ∧ fa(x) , ∗ ∧ fa(x) , minva)},
K(x, y) =

{
a ∈ A

∣∣∣( fa(x) > fa(y))∨ ( fa(x) = ∗ ∧ fa(y) = minva)
}
.

Obviously, 0 ≤ S1, S2, S3 ≤ 1, and S1 + S2 + S3 = 1. In order to calculate the possible advantage of the objects
in the weak dominance, the concept of the joint dominance rate is proposed.

Definition 6 (Joint dominance ratio). [58] Assume IOIS = (U, AT, VT, f ); for ∀A ⊆ AT, ∀X ∈ U, the
joint dominance ratio of attribute values of x and y can be defined below:

FP(x, y) =

 1, x = y;∣∣∣P<A(x)∣∣∣+∣∣∣P>A(y)
∣∣∣

2|A| , x , y.

where P<A(x) =
{
a ∈ A

∣∣∣ fa(x) , ∗ ∧ ( fa(x) < avg(va))
}
, P>A(y) =

{
a ∈ A

∣∣∣ fa(y) , ∗ ∧ ( fa(y) ≥ avg(va))
}
.

It can be obtained readily that 0 ≤ FP(x, y) ≤ 1.

Additionally, it can be seen that the joint dominance ratio of the attribute values of objects is
compared by means of the average value rather than unknown value∗. Therefore, the subjectivity is
not too strong.

Definition 7 (Set-pair dominance relation). [58] Assume that IOIS = (U, AT, V, f ); the set-pair dominance
relation can be defined as:

Rλ≤A =
{
(x, y)

∣∣∣SA(x, y) = S1 + S2p + S3q∧ (S1 + FP(x, y)) ≥ λ∧ S3 = 0
}
∪ I,

where 0.5 ≤ λ ≤ 1, and I =
{
(x, x)

∣∣∣x ∈ U
}
. The size of threshold λ is related to the size of knowledge granulation

obtained. The larger λ is, the stronger the classification ability is because it obtains finer knowledge granulation
it obtains. In addition, it can be set according to specific needs. From the set-pair dominance relation, the set-pair
dominance class can be obtained.

[x]λ≤A =
{
y ∈ U

∣∣∣(x, y) ∈ Rλ≤A

}
,

3. GM-SPD-RS Models

In IOIS, the set-pair dominance relation overcomes the shortcomings of similar dominance relation
and restricted dominance relation, which are overly loose or overly strict, respectively. It can classify the
same kind of objects better and more logically in real life. The GMRS can mine more useful information,
delete useless information and adapt to more practical problems. Therefore, the combination of set-pair
dominance relation and generalized multi-granulation has certain research significance. Moreover, the
GM-SPD-VPRS and GM-SPD-GRS are proposed in the following.

Definition 8 (GMRS). [39] Assume IS = (U, AT, VT, f ), and denote ϕ ∈ (0.5, 1] as the information level

parameter; the approximations of X with regard to
m∑

i=1
Ai(x) are defined below:

GM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

S
Ai
X (x)

m ≥ ϕ};

GM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

(1−S
Ai
∼X(x))

m > 1−ϕ}.
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If [x]Ai
⊆ X, then SAi

X (x) = 1; otherwise SAi
X (x) = 0. For X ⊆ U and x ∈ U, the number of classes satisfying

[x]Ai
⊆ X can be expressed as

m∑
i=1

SAi
X (x). Similarly, the number of classes satisfying [x]Ai

∩X , φ can be

expressed as
m∑

i=1
(1− SAi

∼X(x)). Therefore, optimistic MRS and pessimistic MRS can be described by supporting

characteristic functions.

Proposition 1. Based on SAi
X (x), the approximation sets of optimistic MRS and pessimistic MRS can be

expressed respectively, which are described below:

OM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

S
Ai
X (x)

m > 0};

OM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

(1−S
Ai
∼X(x))

m ≥ 1};

PM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

S
Ai
X (x)

m ≥ 1};

PM m∑
i=1

Ai
(X) = {x ∈ U|

m∑
i=1

(1−S
Ai
∼X(x))

m > 0}.

Proof. This can be proved easily from Definition 8. �

Definition 9 (GM-SPD-VPRS). Let IOIS = (U, AT, VT, f ), X ⊆ U, Ai be a subset of any attribute in AT,
where i = 1, 2, . . . , m(m ≤ 2|AT|), λ ∈ [0.5, 1], ϕ ∈ (0.5, 1]. Assume β ∈ [0, 0.5] is the adjustable error

classification level. The approximation sets of X with regard to
m∑

i=1
Aλ≤i,β are defined below:

GM m∑
i=1

Aλ≤i,β

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,β
X (x)

m ≥ ϕ};

GM m∑
i=1

Aλ≤i,β

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,β
∼X (x))

m > 1−ϕ}.

where S
Aλ≤i,β
X (x) =

 1, c([x]λ≤Ai
, X) ≤ β

0, otherwise
(0 ≤ i ≤ m). X is called definable if GM m∑

i=1
Aλ≤i,β

(X) = GM m∑
i=1

Aλ≤i,β

(X);

otherwise, X is rough if GM m∑
i=1

Aλ≤i,β

(X) , GM m∑
i=1

Aλ≤i,β

(X).

It should be pointed out that with the increase of β, the lower approximation set becomes
larger, and the upper approximation becomes smaller. In addition, when β = 0, GM-SPD-VPRS
model degenerates into GM-SPD-RS. Namely, the GM-SPD-VPRS model is an extension of GMRS
model, set-pair dominance relation RS model and VPRS model, and it correspondingly meets some
basic properties.

Theorem 1. Let IOIS = (U, AT, VT, f ), the approximation sets of X with regard to
m∑

i=1
Aλ≤i,β at information

level ϕ have the following properties:
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(1) GM m∑
i=1

Aλ≤i,β

(X) =∼ GM m∑
i=1

Aλ≤i,β

(∼ X);

(2) GM m∑
i=1

Aλ≤i,β

(X) =∼ GM m∑
i=1

Aλ≤i,β

(∼ X);

(3) GM m∑
i=1

Aλ≤i,β

(φ) = GM m∑
i=1

Aλ≤i,β

(φ) = φ;

(4) GM m∑
i=1

Aλ≤i,β

(U) = GM m∑
i=1

Aλ≤i,β

(U) = U;

(5) X ⊆ Y⇒ GM m∑
i=1

Aλ≤i,β

(X) ⊆ GM m∑
i=1

Aλ≤i,β

(Y);

(6) X ⊆ Y⇒ GM m∑
i=1

Aλ≤i,β

(X) ⊆ GM m∑
i=1

Aλ≤i,β

(Y);

(7) X∩Y = φ⇒ GM m∑
i=1

Aλ≤i,β

(X)∩GM m∑
i=1

Aλ≤i,β

(Y) = φ;

(8) GM m∑
i=1

Aλ≤i,β

(X ∪Y) ⊇ GM m∑
i=1

Aλ≤i,β

(X)∪GM m∑
i=1

Aλ≤i,β

(Y);

(9) GM m∑
i=1

Aλ≤i,β

(X ∩Y) ⊆ GM m∑
i=1

Aλ≤i,β

(X)∩GM m∑
i=1

Aλ≤i,β

(Y);

(10) GM m∑
i=1

Aλ≤i,β

(X∪Y) ⊇ GM m∑
i=1

Aλ≤i,β

(X)∪GM m∑
i=1

Aλ≤i,β

(Y);

(11) GM m∑
i=1

Aλ≤i,β

(X∩Y) ⊆ GM m∑
i=1

Aλ≤i,β

(X)∩GM m∑
i=1

Aλ≤i,β

(Y).

Proof. (1)~(4) These can directly be proved by Definition 9.

(5) For any x ∈ GM m∑
i=1

Aλ≤i,β

(X), there is (
m∑

i=1
S

Aλ≤i,β
X (x))/m ≥ ϕ. Since X ⊆ Y, we have S

Aλ≤i,β
X (x) ≤

S
Aλ≤i,β

Y (x), therefore, (
m∑

i=1
S

Aλ≤i,β

Y (x))/m ≥ (
m∑

i=1
S

Aλ≤i,β
X (x))/m ≥ ϕ, and x ∈ GM m∑

i=1
Aλ≤i,β

(Y) is obtained.

(6) The proof is similar to (5).

(7) According to supporting characteristic function S
Aλ≤i,β
X (x) = 1, we can obtain c([x]λ≤Ai

, X) ≤ β,

as X ∩ Y = φ; then, there is c([x]λ≤Ai
, X) > β and S

Aλ≤i,β
X (x) = 0. Thus, for any x ∈ GM m∑

i=1
Aλ≤i,β

(X), there

is (
m∑

i=1
S

Aλ≤i,β
X (x))/m ≥ ϕ and (

m∑
i=1

S
Aλ≤i,β

Y (x))/m < ϕ; we can get x < GM m∑
i=1

Aλ≤i,β

(Y), that is, GM m∑
i=1

Aλ≤i,β

(X) ∩

GM m∑
i=1

Aλ≤i,β

(Y) = φ.

(8) (9) For ∀X, Y ⊆ U, there is X, Y ⊆ X ∪Y. In addition, according to (5), we have GM m∑
i=1

Aλ≤i,β

(X) ⊆

GM m∑
i=1

Aλ≤i,β

(X ∪Y) and GM m∑
i=1

Aλ≤i,β

(Y) ⊆ GM m∑
i=1

Aλ≤i,β

(X ∪Y). Namely, GM m∑
i=1

Aλ≤i,β

(X ∪Y) ⊇ GM m∑
i=1

Aλ≤i,β

(X) ∪

GM m∑
i=1

Aλ≤i,β

(Y). Similarly, for∀X, Y ⊆ U, there is X∩Y ⊆ X and X∩Y ⊆ Y; according to (5), GM m∑
i=1

Aλ≤i,β

(X∩

Y) ⊆ GM m∑
i=1

Aλ≤i,β

(X) and GM m∑
i=1

Aλ≤i,β

(X∩Y) ⊆ GM m∑
i=1

Aλ≤i,β

(Y) can be obtained. Namely, GM m∑
i=1

Aλ≤i,β

(X∩Y) ⊆

GM m∑
i=1

Aλ≤i,β

(X)∩GM m∑
i=1

Aλ≤i,β

(Y).

(10) (11) The proofs are similar to (8) and (9). �

Based on Definition 9, the rough regions of X with regard to
m∑

i=1
Aλ≤i,β at information level ϕ are

as follows:
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POSλ,ϕ
β (X) = GM m∑

i=1
Aλ≤i,β

(X)∩GM m∑
i=1

Aλ≤i,β

(X);

BNDλ,ϕ
β (X) = GM m∑

i=1
Aλ≤i,β

(X) −GM m∑
i=1

Aλ≤i,β

(X);

NEGλ,ϕ
β (X) =∼ (GM m∑

i=1
Aλ≤i,β

(X)∪GM m∑
i=1

Aλ≤i,β

(X)).

Definition 10 (GM-SPD-GRS). Let IOIS = (U, AT, VT, f ), X ⊆ U, Ai be a subset of any attribute in AT,
where i = 1, 2, . . . , m(m ≤ 2|AT|), λ ∈ [0.5, 1], ϕ ∈ (0.5, 1]. Assume k ∈ N, where N is the natural number set.

The approximation sets of X with regard to
m∑

i=1
Aλ≤i,k are defined as below:

GM m∑
i=1

Aλ≤i,k

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,k
X (x)

m ≥ ϕ};

GM m∑
i=1

Aλ≤i,k

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,k
∼X (x))

m > 1−ϕ}.

where S
Aλ≤i,k
X (x) =

 1, |[x]λ≤Ai
| − |[x]λ≤Ai

∩X| ≤ k∧ [x]λ≤Ai
∩X , φ

0, otherwise
(0 ≤ i ≤ m). X is definable if

GM m∑
i=1

Aλ≤i,k

(X) = GM m∑
i=1

Aλ≤i,k

(X); otherwise, X is rough if GM m∑
i=1

Aλ≤i,k

(X) , GM m∑
i=1

Aλ≤i,k

(X).

It should be pointed out that the K in the GM-SPD-GRS model is different from the k in the
classical GRS. k in the classical GRS is used to measure the relation between the equivalence classes
and the target set, while K in the GM-SPD-GRS model is used to measure the relationship between the
dominance class and the target set.

According to the Definition 10, we can find that with the increase of k, the lower approximation set
becomes larger and the upper approximation becomes smaller. In addition, when k = 0, GM-SPD-GRS
model degenerates into GM-SPD-RS. Namely, the GM-SPD-GRS is an extension of GMRS model,
set-pair dominance relation RS model and GRS model, and it correspondingly meets some basic
properties. The details are expressed as follows.

Theorem 2. Let IOIS = (U, AT, VT, f ) be an IOIS, the approximation sets of X with regard to
m∑

i=1
Aλ≤i,k at

information level ϕ satisfy the following properties:

(1) GM m∑
i=1

Aλ≤i,k

(X) =∼ GM m∑
i=1

Aλ≤i,k

(∼ X);

(2) GM m∑
i=1

Aλ≤i,k

(X) =∼ GM m∑
i=1

Aλ≤i,k

(∼ X);

(3) GM m∑
i=1

Aλ≤i,k

(φ) = GM m∑
i=1

Aλ≤i,k

(φ) = φ;

(4) GM m∑
i=1

Aλ≤i,k

(U) = GM m∑
i=1

Aλ≤i,k

(U) = U;

(5) X ⊆ Y⇒ GM m∑
i=1

Aλ≤i,k

(X) ⊆ GM m∑
i=1

Aλ≤i,k

(Y) ;

(6) X ⊆ Y⇒ GM m∑
i=1

Aλ≤i,k

(X) ⊆ GM m∑
i=1

Aλ≤i,k

(Y) ;

(7) X∩Y = φ⇒ GM m∑
i=1

Aλ≤i,k

(X)∩GM m∑
i=1

Aλ≤i,k

(Y) = φ ;
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(8) GM m∑
i=1

Aλ≤i,k

(X ∪Y) ⊇ GM m∑
i=1

Aλ≤i,k

(X)∪GM m∑
i=1

Aλ≤i,k

(Y);

(9) GM m∑
i=1

Aλ≤i,k

(X ∩Y) ⊆ GM m∑
i=1

Aλ≤i,k

(X)∩GM m∑
i=1

Aλ≤i,k

(Y);

(10) GM m∑
i=1

Aλ≤i,k

(X∪Y) ⊇ GM m∑
i=1

Aλ≤i,k

(X)∪GM m∑
i=1

Aλ≤i,k

(Y);

(11) GM m∑
i=1

Aλ≤i,k

(X∩Y) ⊆ GM m∑
i=1

Aλ≤i,k

(X)∩GM m∑
i=1

Aλ≤i,k

(Y).

Proof. (1)~(4) These can be directly demonstrated by the Definition 10.

(5) For any x ∈ GM m∑
i=1

Aλ≤i,k

(X), there is (
m∑

i=1
S

Aλ≤i,k
X (x))/m ≥ ϕ. Since X ⊆ Y, we have S

Aλ≤i,k
X (x) ≤

S
Aλ≤i,k
Y (x), therefore, (

m∑
i=1

S
Aλ≤i,k
Y (x))/m ≥ (

m∑
i=1

S
Aλ≤i,k
X (x))/m ≥ ϕ, and x ∈ GM m∑

i=1
Aλ≤i,k

(Y) is obtained.

(6) It is similar to (5).

(7) According to supporting characteristic function S
Aλ≤i,k
X (x) = 1, we can get (|[x]λ≤Ai

| − |[x]λ≤Ai
∩X| ≤

k)∧ ([x]λ≤Ai
∩X) , φ. As X ∩Y = φ, then, there is S

Aλ≤i,k
Y (x) = 0. Thus, for any x ∈ GM m∑

i=1
Aλ≤i,k

(X), there

is (
m∑

i=1
S

Aλ≤i,k
X (x))/m ≥ ϕ and (

m∑
i=1

S
Aλ≤i,k
Y (x))/m < ϕ. We can get x < GM m∑

i=1
Aλ≤i,k

(Y), that is, GM m∑
i=1

Aλ≤i,k

(X)∩

GM m∑
i=1

Aλ≤i,k

(Y) = φ.

(8)(9) For ∀X, Y ⊆ U, there is X, Y ⊆ X ∪ Y. In addition, according to (5), we have
GM m∑

i=1
Aλ≤i,k

(X) ⊆ GM m∑
i=1

Aλ≤i,k

(X ∪Y) and GM m∑
i=1

Aλ≤i,k

(Y) ⊆ GM m∑
i=1

Aλ≤i,k

(X ∪Y). Namely, GM m∑
i=1

Aλ≤i,k

(X ∪Y) ⊇

GM m∑
i=1

Aλ≤i,k

(X)∪GM m∑
i=1

Aλ≤i,k

(Y). Similarly, for ∀X, Y ⊆ U, there is X∩Y ⊆ X and X∩Y ⊆ Y; according to

(5), GM m∑
i=1

Aλ≤i,k

(X ∩Y) ⊆ GM m∑
i=1

Aλ≤i,k

(X) and GM m∑
i=1

Aλ≤i,k

(X ∩Y) ⊆ GM m∑
i=1

Aλ≤i,k

(Y) can be obtained. Namely,

GM m∑
i=1

Aλ≤i,k

(X∩Y) ⊆ GM m∑
i=1

Aλ≤i,k

(X)∩GM m∑
i=1

Aλ≤i,k

(Y).

(10) (11) The proofs are similar to (8) and (9). �

Based on the Definition 10, the rough regions with regard to
m∑

i=1
Aλ≤i,k at information level ϕ are

as follows:
POSλ,ϕ

k (X) = GM m∑
i=1

Aλ≤i,k

(X)∩GM m∑
i=1

Aλ≤i,k

(X);

NEGλ,ϕ
k (X) =∼ (GM m∑

i=1
Aλ≤i,k

(X)∪GM m∑
i=1

Aλ≤i,k

(X));

UBNDλ,ϕ
k (X) = GM m∑

i=1
Aλ≤i,k

(X) −GM m∑
i=1

Aλ≤i,k

(X);

LBNDλ,ϕ
k (X) = GM m∑

i=1
Aλ≤i,k

(X) −GM m∑
i=1

Aλ≤i,k

(X).

4. DQGM-SPD-RS Models

The GM-SPD-VPRS and GM-SPD-GRS models provide two new methods for decision-making
under IOIS. In addition, these two models expand the RS model in the light of relative quantization
and absolute quantization, respectively, which have their own quantization advantages. Aiming at
the decision-making in IOIS, we introduce the double-quantitative idea into GM-SPD-VPRS model
and GM-SPD-GRS model. In [23], Li et al. fused absolute and relative quantitative approximation
operators, and two novel scenarios were generated. On the other hand, [27,33–36] introduced logical
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operators into different RS models, enriching RS theory. Therefore, we can get six DQGM-SPD-RS
models by fusing and combining them with logical disjunction and logical conjunction operators:

(1) Lower approximation sets quantify relative quantitative information, and upper approximation
sets quantify absolute quantitative information.

(2) Lower approximation sets quantify absolute quantitative information, and upper approximation
sets quantify relative quantitative information.

(3) Lower and upper approximation sets quantify information by employing a logical
disjunction operator.

(4) Lower approximation sets and upper approximation sets quantify information by employing a
logical conjunction operator.

(5) Lower approximation sets quantify information by employing a logical disjunction operator,
and upper approximation sets quantify information by employing a logical conjunction operator.

(6) Lower approximation sets quantify information by employing a logical conjunction operator,
and upper approximation sets quantify information by employing a logical disjunction operator.

As observed above, the RS from the sixth model make the lower approximation smaller and
the upper approximation larger. From the perspective of view of RS, knowledge becomes rougher.
Therefore, this paper discusses only the first five models.

4.1. Five GM-SPD-RS Models in IOIS

Definition 11 (GM-SPD-RSI). Let IOIS = (U, AT, VT, f ), the approximation sets of the DQGM-SPD-RSI

can be defined as follows:

DQGMI
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,β
X (x)

m ≥ ϕ};

DQGM
I
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,k
∼X (x))

m > 1−ϕ}.

Proposition 2. Let IOIS = (U, AT, VT, f ) be an IOIS; considering the extremes of optimism and pessimism,
double-quantitative optimistic multi-granulation set-pair dominance relation rough sets (DQOM-SPD-RSI)
and double-quantitative pessimistic multi-granulation set-pair dominance rough sets (DQPM-SPD-RSI) under
the first model are obtained:

DQOMI
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|
m
∨

i=1
c([x]λ≤Ai

, X) ≤ β};

DQOM
I
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|
m
∧

i=1
|[x]λ≤Ai

∩X > k};

DQPMI
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|
m
∧

i=1
c([x]λ≤Ai

, X) ≤ β};

DQPM
I
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|
m
∨

i=1
|[x]λ≤Ai

∩X > k}.

Proof. This can be demonstrated according to Definition 11. �

According to the DQGM-SPD-RSI, DQOM-SPD-RSI, and DQPM-SPD-RSI obtained above, the
following properties hold.

Theorem 3. Let IOIS = (U, AT, VT, f ) be an IOIS,
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(1) DQPMI
m∑

i=1
Aλ≤i,β

(X) ⊆ DQGMI
m∑

i=1
Aλ≤i,β

(X) ⊆ DQOMI
m∑

i=1
Aλ≤i,β

(X);

(2) DQOM
I
m∑

i=1
Aλ≤i,k

(X) ⊆ DQGM
I
m∑

i=1
Aλ≤i,k

(X) ⊆ DQPM
I
m∑

i=1
Aλ≤i,k

(X);

(3) DQOMI
m∑

i=1
Aλ≤i,β

(X) ⊇ R m∑
i=1

Aλ≤i,β

, DQOM
I
m∑

i=1
Aλ≤i,k

(X) ⊆ R m∑
i=1

Aλ≤i,k

;

(4) DQPMI
m∑

i=1
Aλ≤i,β

(X) ⊆ R m∑
i=1

Aλ≤i,β

, DQPM
I
m∑

i=1
Aλ≤i,k

(X) ⊇ R m∑
i=1

Aλ≤i,k

;

(5) DQOMI
m∑

i=1
Aλ≤i,β

(X) =
m
∪

i=1
RAλ≤i,β

, DQOM
I
m∑

i=1
Aλ≤i,k

(X) =
m
∪

i=1
RAλ≤i,k

;

(6) DQPMI
m∑

i=1
Aλ≤i,β

(X) =
m
∩

i=1
RAλ≤i,β

, DQPM
I
m∑

i=1
Aλ≤i,k

(X) =
m
∩

i=1
RAλ≤i,k

.

Proof. This can be demonstrated based on Definition 11 and Proposition 2. �

According to Definition 11, the rough regions can be obtained:

POSI(X) = DQGMI
m∑

i=1
Aλ≤i,β

(X)∩DQGM
I
m∑

i=1
Aλ≤i,k

(X);

NEGI(X) =∼ (DQGMI
m∑

i=1
Aλ≤i,β

(X)∪DQGM
I
m∑

i=1
Aλ≤i,k

(X));

UBNI(X) = DQGM
I
m∑

i=1
Aλ≤i,k

(X) −DQGMI
m∑

i=1
Aλ≤i,β

(X);

LBNI(X) = DQGMI
m∑

i=1
Aλ≤i,β

(X) −DQGM
I
m∑

i=1
Aλ≤i,k

(X).

According to Definition 11 and relevant rough regions, the corresponding decision rules 4.1 of
DQOM-SPD-RSI model can be achieved as follows:

Positive region decision rule (PI):

If (
m∑

i=1
S

Aλ≤i,β
X (x))/m ≥ ϕ and (

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)))/m > 1−ϕ, then x ∈ POSI(X);

Negative region decision rule (NI):

If (
m∑

i=1
S

Aλ≤i,β
X (x))/m < ϕ and (

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)))/m ≤ 1−ϕ, then x ∈ NEGI(X);

Upper boundary region decision rule (UBI):

If (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m > 1−ϕ and (

m∑
i=1

S
Aλ≤i,β
X (x))/m < ϕ, then x ∈ UBNI(X);

Lower boundary region decision rule (LBI):

If (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m ≤ 1−ϕ and (

m∑
i=1

S
Aλ≤i,β
X (x))/m ≥ ϕ, then x ∈ LBNI(X).

Definition 12 (GM-SPD-RSII). Let IOIS = (U, AT, VT, f ), the approximation sets of the DQGM-SPD-RSII

are defined:

DQGMII
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,k
X (x)

m ≥ ϕ};

DQGM
II
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,β
∼X (x))

m > 1−ϕ}.



Symmetry 2020, 12, 133 12 of 24

Proposition 3. Let IOIS = (U, AT, VT, f ) be an IOIS; considering the extremes, double-quantitative optimistic
multi-granulation set-pair dominance relation rough sets (DQOM-SPD-RSII) and double-quantitative pessimistic
multi-granulation set-pair dominance rough sets (DQPM-SPD-RSII) under the second model are obtained:

DQOMII
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|
m
∨

i=1
|[x]λ≤Ai

| − |[x]λ≤Ai
∩X| ≤ k∧ [x]λ≤Ai

∩X , φ};

DQOM
II
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|
m
∧

i=1
c([x]λ≤Ai

, X) < 1− β};

DQPMII
m∑

i=1
Aλ≤i,k

(X) = {x ∈ U|
m
∧

i=1
|[x]λ≤Ai

| − |[x]λ≤Ai
∩X| ≤ k∧ [x]λ≤Ai

∩X , φ};

DQPM
II
m∑

i=1
Aλ≤i,β

(X) = {x ∈ U|
m
∨

i=1
c([x]λ≤Ai

, X) < 1− β}.

Proof. This can be demonstrated directly according to Definition 12. �

According to the DQGM-SPD-RSII, DQOM-SPD-RSII, and DQPM-SPD-RSII obtained above, it has
the following properties.

Theorem 4. Let IOIS = (U, AT, VT, f ) be an IOIS,

(1) DQPMII
m∑

i=1
Aλ≤i,k

(X) ⊆ DQGMII
m∑

i=1
Aλ≤i,k

(X) ⊆ DQOMII
m∑

i=1
Aλ≤i,k

(X);

(2) DQOM
II
m∑

i=1
Aλ≤i,β

(X) ⊆ DQGM
II
m∑

i=1
Aλ≤i,β

(X) ⊆ DQPM
II
m∑

i=1
Aλ≤i,β

(X);

(3) DQOMII
m∑

i=1
Aλ≤i,k

(X) ⊇ R m∑
i=1

Aλ≤i,k

, DQOM
II
m∑

i=1
Aλ≤i,β

(X) ⊆ R m∑
i=1

Aλ≤i,β

;

(4) DQPMII
m∑

i=1
Aλ≤i,k

(X) ⊆ R m∑
i=1

Aλ≤i,k

, DQPM
II
m∑

i=1
Aλ≤i,β

(X) ⊇ R m∑
i=1

Aλ≤i,β

;

(5) DQOMI
m∑

i=1
Aλ≤i,k

(X) =
m
∪

i=1
RAλ≤i,k

, DQOM
I
m∑

i=1
Aλ≤i,β

(X) =
m
∪

i=1
RAλ≤i,β

;

(6) DQPMI
m∑

i=1
Aλ≤i,k

(X) =
m
∩

i=1
RAλ≤i,k

, DQPM
I
m∑

i=1
Aλ≤i,β

(X) =
m
∩

i=1
RAλ≤i,β

.

Proof. This can be demonstrated based on Definition 12 and Proposition 3. �

According to Definition 12, the rough regions can be achieved below:

POSII(X) = DQGMII
m∑

i=1
Aλ≤i,k

(X)∩DQGM
II
m∑

i=1
Aλ≤i,β

(X);

NEGII(X) =∼ (DQGMII
m∑

i=1
Aλ≤i,k

(X)∪DQGM
II
m∑

i=1
Aλ≤i,β

(X));

UBNII(X) = DQGM
II
m∑

i=1
Aλ≤i,k

(X) −DQGMII
m∑

i=1
Ai
≤

β

(X);

LBNII(X) = DQGMII
m∑

i=1
Aλ≤i,k

(X) −DQGM
II
m∑

i=1
Aλ≤i,β

(X).

The corresponding decision rules 4.2 of the DQOM-SPD-RSII model can be achieved as follows:
Positive region decision rule (PII):

If (
m∑

i=1
S

Aλ≤i,k
X (x))/m ≥ ϕ and (

m∑
i=1

(1− S
Aλ≤i,β
∼X (x)))/m > 1−ϕ, then x ∈ POSII(X);
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Negative region decision rule (NII):

If (
m∑

i=1
S

Aλ≤i,k
X (x))/m < ϕ and (

m∑
i=1

(1− S
Aλ≤i,β
∼X (x)))/m ≤ 1−ϕ, then x ∈ NEGII(X);

Upper boundary region decision rule (UBII):

If (
m∑

i=1
(1− S

Aλ≤i,β
∼X (x)))/m > 1−ϕ and (

m∑
i=1

S
Aλ≤i,k
X (x))/m < ϕ, then x ∈ UBNII(X);

Lower boundary region decision rule (LBII):

If (
m∑

i=1
(1− S

Aλ≤i,β
∼X (x)))/m ≤ 1−ϕ and (

m∑
i=1

S
Aλ≤i,k
X (x))/m ≥ ϕ, then x ∈ LBNII(X).

Definition 13 (GM-SPD-RSIII). Let IOIS = (U, AT, VT, f ), the approximation sets of the DQGM-SPD-RSIII

are defined:

DQGMIII
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,k
X (x)

m ≥ ϕ ∨

m∑
i=1

S
Aλ≤i,β
X (x)

m ≥ ϕ};

DQGM
III
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,k
∼X (x))

m > 1−ϕ ∨

m∑
i=1

(1−S
Aλ≤i,β
∼X (x))

m > 1−ϕ}.

Based on Definition 13, Proposition 4 can be obtained.

Proposition 4. The DQGM-SPD-RSIII obtained by the logical disjunction operator can also be expressed below:

DQGMIII
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ};

DQGM
III
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|max(
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1−ϕ)}.

Proof. According to the lower approximation of Definition 13, for x ∈ U, there is
m∑

i=1
S

Aλ≤i,k
X (x)/m ≥

ϕ ∨
m∑

i=1
S

Aλ≤i,β
X (x)/m ≥ ϕ. Namely, we can obtain (

m∑
i=1

S
Aλ≤i,k
X (x)) ≥ mϕ ∨ (

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ; therefore,

max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ is obtained. Similarly, according to the upper approximation

of Definition 15, (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m > 1 − ϕ ∨ (

m∑
i=1

(1− S
Aλ≤i,β
∼X (x)))/m > 1 − ϕ. Namely, we can

obtain (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x))) > m(1 − ϕ) ∨(

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1 − ϕ); then, max(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1−ϕ) is obtained.

According to Definition 13, the rough regions can be obtained:

POSIII(X) = DQGMIII
m∑

i=1
Aλ≤i,k,β

(X)∩DQGM
III
m∑

i=1
Aλ≤i,k,β

(X);

NEGIII(X) =∼ (DQGMIII
m∑

i=1
Aλ≤i,k,β

(X)∪DQGM
III
m∑

i=1
Aλ≤i,k,β

(X));

UBNIII(X) = DQGM
III
m∑

i=1
Aλ≤i,k,β

(X) −DQGMIII
m∑

i=1
Aλ≤i,k,β

(X);

LBNIII(X) = DQGMIII
m∑

i=1
Aλ≤i,k,β

(X) −DQGM
III
m∑

i=1
Aλ≤i,k,β

(X).
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The corresponding decision rules 4.3 of the DQOM-SPD-RSIII model can be achieved as follows:
Positive region decision rule (PIII):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and max(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1−ϕ), then x ∈ POSIII(X);

Negative region decision rule (NIII):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ and max (

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1−ϕ), then x ∈ NEGIII(X);

Upper boundary region decision rule (UBIII):

If max(
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1−ϕ) and max(

m∑
i=1

S
Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ,

then x ∈ UBNIII(X);
Lower boundary region decision rule (LBIII):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and max(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1 − ϕ),

then x ∈ LBNIII(X). �

Definition 14 (GM-SPD-RSIV). Let IOIS = (U, AT, VT, f ), the approximation sets of the DQGM-SPD-RSIV

can be defined as follows:

DQGMIV
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,k
X (x)

m ≥ ϕ ∧

m∑
i=1

S
Aλ≤i,β
X (x)

m ≥ ϕ};

DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,k
∼X (x))

m > 1−ϕ ∧

m∑
i=1

(1−S
Aλ≤i,β
∼X (x))

m > 1−ϕ}.

Based on Definition 14, Proposition 5 can be obtained.

Proposition 5. The DQGM-SPD-RSIV obtained by the logical conjunction operator can also be expressed below:

DQGMIV
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|min(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ};

DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|min(
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1−ϕ)}.

Proof. It’s easy to prove.

Based on Definition 14, the rough regions can be obtained:
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POSIV(X) = DQGMIV
m∑

i=1
Aλ≤i,k,β

(X)∩DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X);

NEGIV(X) =∼ (DQGMIV
m∑

i=1
Aλ≤i,k,β

(X)∪DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X));

UBNIV(X) = DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X) −DQGMIV
m∑

i=1
Aλ≤i,k,β

(X);

LBNIV(X) = DQGMIV
m∑

i=1
Aλ≤i,k,β

(X) −DQGM
IV
m∑

i=1
Aλ≤i,k,β

(X) .

The decision rules 4.4 of the DQOM-SPD-RSIV can be achieved as follows:
Positive region decision rule (PIV):

If min(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1 − ϕ),

then x ∈ POSIV(X);
Negative region decision rule (NIV):

If min(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1 − ϕ),

then x ∈ NEGIV(X);
Upper boundary region decision rule (UBIV):

If min(
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1 − ϕ) and min(

m∑
i=1

S
Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ,

then x ∈ UBNIV(X);
Lower boundary region decision rule (LBIV):

If min(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1 − ϕ),

then x ∈ LBNIV(X). �

Definition 15 (GM-SPD-RSV). Let IOIS = (U, AT, VT, f ), the approximation sets of the DQGM-SPD-RSV

can be defined as follows:

DQGMV
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

S
Aλ≤i,k
X (x)

m ≥ ϕ ∨

m∑
i=1

S
Aλ≤i,β
X (x)

m ≥ ϕ};

DQGM
V
m∑

i=1
Aλ≤i,k,β

(X) = {x ∈ U|

m∑
i=1

(1−S
Aλ≤i,k
∼X (x))

m > 1−ϕ ∧

m∑
i=1

(1−S
Aλ≤i,β
∼X (x))

m > 1−ϕ}.

Based on Definition 15, Proposition 6 can be obtained.

Proposition 6. The DQGM-SPD-RSV achieved by the logical disjunction operator and logical conjunction
operator can also be expressed below:

POSV(X) = DQGMV
m∑

i=1
Aλ≤i,k,β

(X)∩DQGM
V
m∑

i=1
Aλ≤i,k,β

(X);

NEGV(X) =∼ (DQGMV
m∑

i=1
Aλ≤i,k,β

(X)∪DQGM
V
m∑

i=1
Aλ≤i,k,β

(X));

UBNV(X) = DQGM
V
m∑

i=1
Aλ≤i,k,β

(X) −DQGMV
m∑

i=1
Aλ≤i,k,β

(X);

LBNV(X) = DQGMV
m∑

i=1
Aλ≤i,k,β

(X) −DQGM
V
m∑

i=1
Aλ≤i,k,β

(X) .
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The decision rule 4.5 of the DQOM-SPD-RSV can be achieved as follows:
Positive region decision rule (PV):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1 − ϕ),

then x ∈ POSV(X);
Negative region decision rule (NV):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1 − ϕ),

then x ∈ NEGV(X);
Upper boundary region decision rule (UBV):

If min(
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) > m(1 − ϕ) and max(

m∑
i=1

S
Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) < mϕ,

then x ∈ UBNV(X);
Lower boundary region decision rule (LBV):

If max(
m∑

i=1
S

Aλ≤i,k
X (x),

m∑
i=1

S
Aλ≤i,β
X (x)) ≥ mϕ and min(

m∑
i=1

(1− S
Aλ≤i,k
∼X (x)),

m∑
i=1

(1− S
Aλ≤i,β
∼X (x))) ≤ m(1 − ϕ),

then x ∈ LBNV(X).

4.2. Rough Regions under the DQGM-SPD-RSI Model

According to the decision rules given in the five models above, Algorithm 1 is given, taking the
DQGM-SPD-RSI model as an example in this section. Through Algorithm 1, the rough regions under
the DQGM-SPD-RSI model can be calculated.

Algorithm 1. Rough regions under the DQGM-SPD-RSI model

Input: IOIS = (U, AT, VT, f ), X ⊆ U, λ ∈ [0.5, 1], information level parameter ϕ ∈ (0.5, 1],
adjustable error classification level parameter β ∈ [0, 0.5] and grade parameter k ∈ N
Output: POSI(X), NEGI(X), UBNI(X), LBNI(X)

1: for each x ∈ X, Ai ⊆ AT do
2: Compute [x]λ≤Ai

,
∣∣∣∣[x]λ≤Ai

∣∣∣∣, and
∣∣∣∣[x]λ≤Ai

∩X
∣∣∣∣

3: end for
4: Initialize POSI(X)← φ , NEGI(X)← φ , UBNI(X)← φ , LBNI(X)← φ

5: for each x ∈ X, Ai ⊆ AT do

6: if c([x]λ≤Ai
, X) ≤ β, then S

Aλ≤
i,β

X (x) = 1

7: else S
Aλ≤

i,β

X (x) = 0
8: end if
9: if

∣∣∣∣[x]λ≤Ai

∣∣∣∣−∣∣∣∣[x]λ≤Ai
∩X

∣∣∣∣≤ k∧ [x]λ≤Ai
∩X , φ ,

then S
Aλ≤i,k
X (x) = 1

10: else S
Aλ≤i,k
X (x) = 0

11: end if
12: end for
13: for each x ∈ X, Ai ⊆ AT do

14: POSI(X)← POSI(X)∪ {x ∈ X| (
m∑

i=1
S

Aλ≤i,β

X (x))/m ≥ ϕ, (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m > 1−ϕ}

15: NEGI(X)← NEGI(X)∪ {x ∈ X| (
m∑

i=1
S

Aλ≤i,β

X (x))/m < ϕ, (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m ≤ 1−ϕ }

16: UBNI(X)← UBNI(X)∪ {x ∈ X| (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m > 1−ϕ, (

m∑
i=1

S
Aλ≤i,β

X (x))/m < ϕ

17: LBNI(X)← LBNI(X)∪ {x ∈ X| (
m∑

i=1
(1− S

Aλ≤i,k
∼X (x)))/m ≤ 1−ϕ, (

m∑
i=1

S
Aλ≤i,β

X (x))/m ≥ ϕ

18: end for
19: return POSI(X), NEGI(X), UBNI(X), LBNI(X)
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It can be seen that the difference between the above algorithm and the other four models’
algorithms is mainly in steps 14 to 17, which is the essence of each model. Therefore, the algorithm
steps of DQGM-SPD-RSI are given in this paper, and the algorithms of the other four models are similar.

5. Example Analysis

In IOIS, five DQGM-SPD-RS models have been defined in the previous section, and which provide
a way for decision-making in IOIS. Inspired by the literature [37], we think that medical example
is close to real life. It is interesting to demonstrate our models with medical example. It should be
noted that the data in this paper are derived from the literature [37], we select the first 20 objects and
randomly set up an IIS.

Let IODIS = (U, AT ∪ d, VT, f ), X ⊆ U, Ai ⊆ AT, where i = 1, 2, . . . , m(m ≤ 2|AT|). Suppose that
U = {x1, x2, . . . , x20} is 20 patients, AT = {a1, a2, a3} represent fever, headache, and cough, respectively,
and d = {0, 1} represent no cold and cold, respectively. Among them, A1 = {a1, a2}, A2 = {a1, a3},
A3 = {a2, a3}, VT = {2, 1, 0, ∗} represent different grades of condition attributes, where ∗ indicates
unknown. Table 1 gives the specific conditions of 20 patients in detail.

Table 1. Medical data of patients.

U a1 a2 a3 d U a1 a2 a3 d

x1 0 0 0 0 x11 1 2 ∗ 1
x2 1 1 1 0 x12 2 0 0 0
x3 ∗ 2 1 1 x13 0 ∗ 1 0
x4 2 1 2 0 x14 ∗ 1 2 1
x5 1 0 ∗ 1 x15 0 1 2 1
x6 2 2 2 1 x16 1 ∗ 0 0
x7 0 ∗ 0 0 x17 0 2 1 0
x8 1 2 1 0 x18 2 1 ∗ 1
x9 2 2 ∗ 1 x19 0 ∗ 0 0
x10 ∗ 1 1 1 x20 1 2 2 1

From Table 1, we can obtain U/d = {D1, D2}, where D1 = {x1, x2, x4, x7, x8, x12, x13, x16, x17, x19}

and D2 = {x3, x5, x6, x9, x10, x11, x14, x15, x18, x20}. D1 and D2 stand for no cold and cold, respectively.
We denote D2 as the object set, namely, X = D2. In addition, we assume that λ = 1. According to
Algorithm 1, Tables 2–4 show the classification and statistical results of dominance classes under
different granular sets, respectively.

Table 2. The computation results of dominance classes in A1.

x [x]λ≤A1
|[x]λ≤A1

| |[x]λ≤A1
∩X| x [x]λ≤A1

|[x]λ≤A1
| |[x]λ≤A1

∩X|

x1 x1, . . . , x20 20 10 x8, x11,
x20

x6, x8, x9, x11, x20 5 4

x2

x2, x3, x4, x6,
x8, x9, x11, x16,
x18, x20

10 6 x10, x14
x2, x3, x4, x6, x8, x9,
x10, x11, x14, x18, x20

11 8

x3
x3, x6, x8, x9,
x11, x20

6 5 x12 x3, x4, x6, x9, x12, x18 6 4

x4, x18 x3, x4, x6, x9, x18 5 4 x15

x2, x3, x4, x6, x7, x8, x9,
x10, x11, x13, x14, x15, x16,
x17, x18, x19, x20

17 9

x5

x2, x3, x4, x5, x6,
x8, x9, x11, x12,
x16, x18, x20

12 7 x16
x6, x8, x9, x11,
x16, x20

6 4

x6, x9 x6, x9 2 2 x17
x3, x6, x8, x9, x11,
x16, x17, x20

8 5

x7, x13, x19

x2, x3, x4, x6, x7,
x8, x9, x11, x13, x16,
x17, x18, x19, x20

14 6
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Table 3. The computation results of dominance classes in A2.

x [x]λ≤A2
|[x]λ≤A2

| |[x]λ≤A2
∩X| x [x]λ≤A2

|[x]λ≤A2
| |[x]λ≤A2

∩X|

x1, x7,
x19

x1, . . . , x20 20 10 x12
x3, x4, x6, x9, x10,
x12, x14, x18

8 6

x2, x8
x2, x4, x6,
x8, x20

5 2 x13,
x17

x2, x3, x4, x5, x6, x8,
x9, x10, x11, x13, x14,
x15, x17, x18, x20

15 10

x3, x10
x2, x3, x4, x6,
x8, x10, x14, x20

8 5 x14 x4, x6, x14, x20 4 3

x4, x6 x4, x6 2 1 x15
x3, x4, x5, x6, x10,
x11, x14, x15, x20

9 8

x5, x11

x2, x4, x5, x6,
x8, x9, x11,
x18, x20

9 6 x16

x2, x3, x4, x5, x6,
x8, x9, x10, x11, x12,
x14, x16, x18, x20

14 9

x9, x18 x4, x6, x9, x18 4 3 x20 x4, x6, x20 3 2

Table 4. The computation results of dominance classes in A3.

x [x]λ≤A3
|[x]λ≤A3

| |[x]λ≤A1
∩X| x [x]λ≤A3

|[x]λ≤A3
| |[x]λ≤A1

∩X|

x1, x12 x1, . . . , x20 20 10 x6,
x20

x6,20 2 2

x2, x10

x2, x3, x4, x6,
x8, x9, x10,
x11, x13, x14,
x15, x17, x20

13 8 x7, x16,
x19

x2, x3, x4, x6, x7,
x8, x9, x10, x11,
x13, x14, x15, x16,
x17, x19, x20

16 8

x3, x8,
x17

x3, x6, x8,
x17, x20

5 3 x9, x11
x3, x6, x8, x9,
x11, x17, x20

7 5

x4, x14,
x15

x4, x6, x9, x11,
x14, x15, x20

7 6 x13
x3, x6, x8, x13,
x17, x20

6 3

x5

x2, x3, x4, x5, x6,
x8, x9, x10, x11,
x13, x14, x15, x17,
x18, x20

15 10 x18

x2, x3, x4, x6, x8,
x9, x10, x11, x14,
x15, x17, x18, x20

13 9

In the following, for clarity, we firstly compute the classification of patients under each granulation
set. We denote grade k = 2 and assume β = 0.3 and ϕ = 2/3 in this paper.

A1
λ≤
β
(X) = {x3, x4, x6, x8, x9, x10, x11, x14, x18, x20};

A1
λ≤
β (X) = U;

A2
λ≤
β
(X) = {x9, x12, x14, x15, x18};

A2
λ≤
β (X) = U;

A3
λ≤
β
(X) = {x4, x6, x9, x11, x14, x15, x20};

A3
λ≤
β (X) = U.

A1
λ≤
k
(X) = {x3, x4, x6, x8, x9, x11, x12, x16, x18, x20};

A1
λ≤
k (X) = U − {x6, x9};

A2
λ≤
k
(X) = {x4, x6, x9, x12, x14, x15, x18, x20};

A2
λ≤
k (X) = U − {x2, x4, x6, x8, x20};

A3
λ≤
k
(X) = {x3, x4, x6, x8, x9, x11, x14, x15, x17, x20};

A3
λ≤
k (X) = U − {x6, x20}.

According to Tables 2–4, we can see that patients are classified differently under each granulation.
In addition, patients are classified differently under GM-SPD-VPRS model and GM-SPD-GRS model.
The main contributions of Sections 3 and 4 are described below.
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On the basis of Definition 9 and Definition 10, the approximation sets of GM-SPD-VPRS and
GM-SPD-GRS can be calculated.

GM 3∑
i=1

Aλ≤i,β

(X) = {x4, x6, x9, x11, x12, x14, x15, x18, x20};

GM 3∑
i=1

Aλ≤i,β

(X) = U;

GM 3∑
i=1

Aλ≤i,k

(X) = {x3, x4, x6, x8, x9, x11, x12, x14, x15, x18, x20};

GM 3∑
i=1

Aλ≤i,k

(X) = U − {x6, x20} .

Furthermore, based on Definitions 11 to 15, the approximation sets of DQGM-SPD-RSI to
DQGM-SPD-RSV can be calculated. In particular, according to Proposition 2 and Proposition 3, we can
obtain the approximation sets of DQOM-SPD-RSI, DQPM-SPD-RSI, DQOM-SPD-RSII, and DQPM-SPD-
RSII, which are special circumstances of DQGM-SPD-RSI and DQGM-SPD-RSII. The details are as follows:

For DQGM-SPD-RSI model and DQGM-SPD-RSII model, we have:

DQGMI
3∑

i=1
Aλ≤i,β

(X) = {x4, x6, x9, x11, x14, x15, x18, x20};

DQGM
I

3∑
i=1

Aλ≤i,k

(X) = U − {x6, x20};

DQOMI
3∑

i=1
Aλ≤i,β

(X) = {x3, x4, x6, x8, x9, x10, x11, x12, x14, x15, x18, x20};

DQOM
I

3∑
i=1

Aλ≤i,k

(X) = U − {x2, x4, x6, x8, x9, x20};

DQPMI
3∑

i=1
Aλ≤i,β

(X) = {x9 , x14};

DQPM
I

3∑
i=1

Aλ≤i,k

(X) = U − {x6};

DQGMII
3∑

i=1
Aλ≤i,k

(X) = {x3, x4, x6, x8, x9, x11, x12, x14, x15, x18, x20};

DQGM
II

3∑
i=1

Aλ≤i,β

(X) = U;

DQOMII
3∑

i=1
Aλ≤i,k

(X) = {x3, x4, x6, x8, x9, x11, x12, x14, x15, x16, x17, x18, x20};

DQOM
II

3∑
i=1

Aλ≤i,β

(X) = U;

DQPMII
3∑

i=1
Aλ≤i,k

(X) = {x4, x6, x9, x20};

DQPM
II

3∑
i=1

Aλ≤i,β

(X) = U.

From the above, we can obtain such relationships readily:

DQPMI
3∑

i=1
Aλ≤i,β

(X) ⊆ DQGMI
3∑

i=1
Aλ≤i,β

(X) ⊆ DQOMI
3∑

i=1
Aλ≤i,β

(X);

DQOM
I

3∑
i=1

Aλ≤i,k

(X) ⊆ DQGM
I

3∑
i=1

Aλ≤i,k

(X) ⊆ DQPM
I

3∑
i=1

Aλ≤i,k

(X);

DQPMII
3∑

i=1
Aλ≤i,k

(X) ⊆ DQGMII
3∑

i=1
Aλ≤i,k

(X) ⊆ DQOMII
3∑

i=1
Aλ≤i,k

(X);

DQOM
II

3∑
i=1

Aλ≤i,β

(X) ⊆ DQGM
II

3∑
i=1

Aλ≤i,β

(X) ⊆ DQPM
II

3∑
i=1

Aλ≤i,β

(X).
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It is not difficult to find that these formulas are consistent with Theorems 3 and 4. In addition,
the approximation sets of two special circumstances are not as clear as that of DQOM-SPD-RS, as the
conditions are too loose or too harsh, respectively, which indicates the effectiveness of the new model.

For the DQGM-SPD-RSIII model to the DQGM-SPD-RSV model, we have:

DQGMIII
3∑

i=1
Aλ≤i,k,β

(X) = {x3, x4, x6, x8, x9, x11, x12, x14, x15, x18, x20};

DQGM
III

3∑
i=1

Aλ≤i,k,β

(X) = U;

DQGMIV
3∑

i=1
Aλ≤i,k,β

(X) = {x4, x6, x9, x11, x12, x14, x15, x18, x20};

DQGM
IV

3∑
i=1

Aλ≤i,k,β

(X) = U − {x6, x20};

DQGMV
3∑

i=1
Aλ≤i,k,β

(X) = {x3, x4, x6, x8, x9, x11, x12, x14, x15, x18, x20};

DQGM
V

3∑
i=1

Aλ≤i,k,β

(X) = U − {x6, x20}.

The approximation sets of the above models are not the same, because the calculation methods of
each model are different. According to Definitions 3, we can calculate the approximation accuracy of
each model.

α 3∑
i=1

Aλ≤i,β

(X) =

|GM 3∑
i=1

Aλ≤i,β

(X)|

|GM 3∑
i=1

Aλ≤i,β

(X)|
= 9

20 = 0.45;

α 3∑
i=1

Aλ≤i,k

(X) =

|GM 3∑
i=1

Aλ≤i,k

(X)|

|GM 3∑
i=1

Aλ≤i,k

(X)|
= 11

18 = 0.61.

αI
3∑

i=1
Aλ≤i,k,β

(X) =

|DQGMI
3∑

i=1
Aλ≤i,k,β

(X)|

|DQGM
I

3∑
i=1

Aλ≤i,k,β

(X)|
= 9

18 = 0.50;

αII
3∑

i=1
Aλ≤i,k,β

(X) =

|DQGMII
3∑

i=1
Aλ≤i,k,β

(X)|

|DQGM
II

3∑
i=1

Aλ≤i,k,β

(X)|
= 11

20 = 0.55;

αIII
3∑

i=1
Aλ≤i,k,β

(X) =

|DQGMIII
3∑

i=1
Aλ≤i,k,β

(X)|

|DQGM
III

3∑
i=1

Aλ≤i,k,β

(X)|
= 11

20 = 0.55;

αIV
3∑

i=1
Aλ≤i,k,β

(X) =

|DQGMIV
3∑

i=1
Aλ≤i,k,β

(X)|

|DQGM
IV

3∑
i=1

Aλ≤i,k,β

(X)|
= 9

18 = 0.50;

αV
3∑

i=1
Aλ≤i,k,β

(X) =

|DQGMV
3∑

i=1
Aλ≤i,k,β

(X)|

|DQGM
V

3∑
i=1

Aλ≤i,k,β

(X)|
= 11

18 = 0.61.

Comparing the approximation accuracy of GM-SPD-VPRS and five DQGM-SPD-RS models, it is
easy to find that the latter is higher than that of the former no matter which model. Comparing the
approximation accuracy of GM-SPD-GRS and five DQGM-SPD-RS models, it can be found readily that
the approximation accuracy of DQGM-SPD-RSV is equal to that of GM-SPD-GRS, and the approximate
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accuracy of the other four DQGM-SPD-RS is slightly lower than that of GM-SPD-GRS. This is due to
GM-SPD-GRS reflect the absolute quantization information.

In conclusion, approximate classification capability of DQGM-SPD-RS is better than that of the
GM-SPD-VPRS. The classification of DQGM-SPD-RS is more reasonable than that of GM-SPD-GRS,
people can choose according to different needs.

In the following, according to decision rules 4.1 to 4.5, rough regions under five novel models
can be obtained. In particular, according to Propositions 2 and 3, we can obtain four rough regions in
special cases. Table 5 gives the rough regions under each model in detail.

Table 5. Rough regions of patients under different models.

Model pos(X) neg(X) Ubn(X) Lbn(X)

DQGM-SPD-RSI {x4, x9, x11, x14, x15, x18} φ
{x1, x2, x3, x5, x7, x8, x10,
x12, x13, x16, x17, x19}

{x6, x20}

DQOM-SPD-RSI {x3, x10, x11, x12,
x14, x15, x18}

{x2} {x1, x5, x7, x13, x16, x17, x19}
{x4, x6, x8,
x9, x20}

DQPM-SPD-RSI {x9} {x6} U − {x6, x9} φ

DQGM-SPD-RSII {x3, x4, x6, x8, x9, x11,
x12, x14, x15, x18, x20}

φ
{x1, x2, x5, x7, x10,
x13, x16, x17, x19}

φ

DQOM-SPD-RSII
{x3, x4, x6, x8, x9,
x11, x12, x14, x15,
x16, x17, x18, x20}

φ {x1, x2, x5, x7, x10, x13, x19} φ

DQPM-SPD-RSII {x4, x6, x9, x20} φ U − {x4, x6, x9, x20} φ

DQGM-SPD-RSIII {x3, x4, x6, x8, x9, x11,
x12, x14, x15, x18, x20}

φ
{x1, x2, x5, x7, x10,
x13, x16, x17, x19}

φ

DQGM-SPD-RSIV {x4, x9, x11, x14, x15, x18} φ
{x1, x2, x3, x5, x7, x8, x10,
x12, x13, x16, x17, x19}

{x6, x20}

DQGM-SPD-RSV {x3, x4, x8, x9, x11,
x12, x14, x15, x18}

φ
{x1, x2, x5, x7, x10,
x13, x16, x17, x19}

{x6, x20}

From Table 5, it can be observed that the rough regions obtained under different models are not
exactly the same, which is due to different computing methods. In the above models, except for four
special cases, patients x4, x9, x11, x14, x15, and x18 are diagnosed as having a cold, but patients x4 are not
considered to have a cold in Table 1 of the preliminary medical data. After analyzing the symptoms
of patients x4, it is found that there is a possibility of misdiagnosis in the preliminary medical data
of patients, and the results of other patients diagnosed as having a cold are consistent with those in
Table 1. The patients x6 and x20 are diagnosed as having a cold in the second model and the third
model, while in models DQGM-SPD-RSI, DQOM-SPD-RSI, DQGM-SPD-RSIV, and DQGM-SPD-RSV,
they are divided into lower boundaries, requiring further diagnosis. This is due to the difference in
decision-making rules, which also reflected the rationality of the models. Meanwhile, the results are
consistent with those in literature [37] to prove the validity of this method. Through these models,
some preliminary diagnostic analysis can be conducted on patients. The appropriate model should be
selected according to actual application needs.

6. Conclusions

This paper studies the problem of uncertain decision-making under IOIS. Combing with the
advantages of set-pair dominance relation and generalized multi-granulation, we firstly propose
GM-SPD-VPRS and GM-SPD-GRS and discuss the related properties. Since GM-SPD-VPRS and
GM-SPD-GRS reflect the information from the perspective of relative and absolute quantization,
respectively. The two rough sets are combined by logical disjunction and logical conjunction operators,
and five double-quantification models, from DQGM-SPD-RSI to DQGM-SPD-RSV, are obtained.
Meanwhile, the related properties are discussed, and the algorithm of DQGM-SPD-RSI is constructed.
Finally, the models are validated through a medical case, which proves the effectiveness of the model.
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The works of this paper can reflect the relative and absolute quantization information in IOIS without
data preprocessing, are extensions of the classical RS, the existing VPRS and GRS, as well as the
extension of the MRS. In the future, we can further extend the approach of this paper in the framework
of two universes, and the approach proposed in this paper combined with intuitionistic fuzzy set is
also a research problem.
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