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Abstract: People with disabilities (PWD) face a number of challenges such as obstacle avoidance or
taking a minimum path to reach a destination while travelling or taking public transport, especially in
airports or bus stations. In some cases, PWD, and specifically visually impaired people, have to wait
longer to overcome these situations. In order to solve these problems, the computer-vision community
has applied a number of techniques that are nonetheless insufficient to handle these situations. In this
paper, we propose a visual simultaneous localization and mapping for moving-person tracking
(VSLAMMPT) method that can assist PWD in smooth movement by knowing a position in an
unknown environment. We applied expected error reduction with active-semisupervised-learning
(EER–ASSL)-based person detection to eliminate noisy samples in dynamic environments. After that,
we applied VSLAMMPT for effective smoothing, obstacle avoidance, and uniform navigation in an
indoor environment. We analyze the joint approach symmetrically and applied the proposed method
to benchmark datasets and obtained impressive performance.
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1. Introduction

It is very difficult for elderly individuals or people with disabilities (PWD) to walk long distances
and ride on public transport. With the help of monocular simultaneous localization and mapping
(SLAM), we can assist in the accessibility of elderly people and PWD by improving commuter mobility.
A remarkable solution for improving mobility is to minimize walking by, for example, automated
guiding, obstacle avoidance, and autonomous wheelchairs.

Our main research plan is to assist PWD. Specifically, we wanted to help visually impaired people
so that they can move independently. In their day to day life, traveling in the airport or bus terminal
is challenging work. In a large building, finding accurate objects and locations is very puzzling.
Therefore, our proposed algorithm can bridge this gap and make the lives of PWD easier.

Avoiding people in a crowded area is a challenging problem due to multiple dynamic object
movement. In this scenario, our algorithm consists of a number of steps such as place detection, object
recognition, obstacle position alert through text to voice conversion (such as elevator is on your left
side, turn left), obstacle avoidance, and provide a navigation service. Instead of covering the large
scope of research work in this paper, we generally focused on object detection and obstacle avoidance
where all of these objects were tracked eight meters from the camera. A very short navigation direction
is sent to the user via voice for avoiding an obstacle. The flow diagram will give a detailed scenario of
the workflow process. Here, a visually impaired person will avoid obstacles and find the elevator to
go upstairs. We considered a university lobby for our experiment suitability as shown in Figure 1.
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Figure 1. Visually impaired person searching for an elevator. (a) The university lobby where a blind 
person is searching for an elevator. The possible obstacles are the sofa and two people in front of the 
elevator. (b) Smart eyeglasses that capture the input image through a camera. (c) Person receives 
direction information through the eyeglass speaker. 

Localization and concurrent mapping is a promising field of robotics studies. Visual-feature 
methods for landmark selection in visual SLAM (VSLAM) have been analyzed in a number of 
research works [1]. Three feature-detection methods are mainly used, namely, maximally stable 
extrema regions (MSER), scale invariant feature transform (SIFT), and sped-up robust features 
(SURF). In unknown settings, the visual SLAM scheme allows a robot agent to locate itself. SLAM, 
with the fast growth of computer-vision technology and the enhancement of processor efficiency, has 
been commonly used in a number of areas such as augmented reality, robots, drones, and driverless 
cars. 

In most types of SLAM framework, research considers the environment as motionless, ignoring 
the influence of moving obstacles [2,3]. In fact, in real surroundings, like a moving car or a person 
coming from the opposite direction, these obstacles cannot be prevented. The majority of obstacle 
detection and removal methods have been developed on RGB-Depth cameras, for example, Kinect 
[4], as conventional SLAM instruments.  

This paper has the following contributions: we applied a dynamic person-detection method, 
namely, the expected-error-reduction active-semi supervised-learning (EER–ASSL) method, which 

Figure 1. Visually impaired person searching for an elevator. (a) The university lobby where a blind
person is searching for an elevator. The possible obstacles are the sofa and two people in front of the
elevator. (b) Smart eyeglasses that capture the input image through a camera. (c) Person receives
direction information through the eyeglass speaker.

Localization and concurrent mapping is a promising field of robotics studies. Visual-feature
methods for landmark selection in visual SLAM (VSLAM) have been analyzed in a number of research
works [1]. Three feature-detection methods are mainly used, namely, maximally stable extrema regions
(MSER), scale invariant feature transform (SIFT), and sped-up robust features (SURF). In unknown
settings, the visual SLAM scheme allows a robot agent to locate itself. SLAM, with the fast growth of
computer-vision technology and the enhancement of processor efficiency, has been commonly used in
a number of areas such as augmented reality, robots, drones, and driverless cars.

In most types of SLAM framework, research considers the environment as motionless, ignoring
the influence of moving obstacles [2,3]. In fact, in real surroundings, like a moving car or a person
coming from the opposite direction, these obstacles cannot be prevented. The majority of obstacle
detection and removal methods have been developed on RGB-Depth cameras, for example, Kinect [4],
as conventional SLAM instruments.

This paper has the following contributions: we applied a dynamic person-detection method,
namely, the expected-error-reduction active-semi supervised-learning (EER–ASSL) method, which
effectively perceives human actions in a cluttered environment. We applied VSLAM, which utilizes
the cheapest monocular camera for extracting feature points that help to build a navigation path in
real time for a PWD in an unknown environment. We briefly discuss recent related work in Section 2,
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and describe our system in detail in Section 3. We show our results in Section 4, and outline our
conclusions in Section 5.

2. Related Works

Indoor and outdoor travelling is challenging for PWD due to obstacles and navigation. A number
of techniques have been applied to overcome these problems such as indoor navigation systems,
wearable devices, and accessible maps. The removal of moving objects in order to avoid collision
by using a moving camera is an important part of this research, as both foreground and background
simultaneously change.

In the literature, VSLAM has been applied in a number of areas. Berat et al. proposed an RGB-D
camera-based feature-detection method that was applied to a number of robots [5]. This process is
known as cooperative SLAM, which makes a common map of an entire work environment. A challenge
regarding cloud-based control is storage, due to the huge number of point clouds that a large number
of images need to store. Moreover, separate hardware requires several implementations to make a
global map by using a local map [5].

Yipu et al. introduced a new feature-selection method known as the MaxLogDet algorithm
for pose optimization [6]. Later, they combined the MaxLogDet feature selection with VSLAM for
pose estimation. A near-optimal heuristic approach was used for subset selection, and it improved
performance [6].

Jihong et al. proposed a hybrid-vision-based SLAM and moving-object-tracking approach [7].
Their proposed approach combined two methods: (a) superpixel-based segmentation is that used to
detect moving objects, and (b) a particle filter to estimate SLAM properties. They used the Markov
random field (MRF) energy function in order to detect moving superpixels [7].

N-Danish et al. presented an approach for the accurate localization of moving objects where
sparse-flow-based motion segmentation was done using a stereo camera [8]. Better pose accuracy
was obtained by exploiting moving objects. This work was an improvement on camera-trajectory
computation when compared with the standard methods [8].

Zhangfang et al. applied VSLAM on closed-loop detection [9]. First, they used a depth camera
to gather environmental information. Then, the key frames were extracted, and they included the
improved pyramid term frequency-inverse document frequency (TF-IDF) similarity-score function to
reduce closed-loop perception ambiguity. Most effective closed-loop testing frames are performed on
the basis of key-frame selection such as rotation and translation [9].

VSLAM was applied to the feature detection of aerial images where SLAM helped with better
landmark selection [10]. Similarly, Valder et al. applied key-matching-point detection to calculate the
movement of a robot by camera movement [11]. Autonomous-mobile-robot navigation is another
popular VSLAM area, where a robot utilizes vision sensors to receive data from different locations [12].

Many methods perform well in removing obstacles with their own features [13,14], but a number of
studies mostly rely on expensive sensors as input. After preprocessing input data with necessary depth
information, the barrier is segmented from the scenes. Considering the commonly used technique
of deep learning, we suggest a straightforward and low-cost technique for SLAM to locate and filter
out the barrier [15]. Therefore, removing the barrier online is appropriate for SLAM as a part of
the preprocessing phase. Our suggested framework addresses these above-mentioned problems,
and works well on locating and mapping the actual dataset environment. In the experiment on the
TUM Dynamic benchmark dataset, the suggested scheme was contrasted with raw ORB-SLAM2 that
quantitatively evaluated our technique.

3. System Outline

The system’s core function is egocentric 3D indoor navigation based on action-recognition
technology. Unlike conventional indoor-navigation systems, this technology can detect obstacles or
abnormal behaviors ahead of the user, and warn of dangers by connecting a fixed camera such as CCTV
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and a camera equipped with a mobile device to configure the hybrid vision technology. The application
of this technology is to guide the user safely to their destination when there are many people and
complex obstacles like unmanned shops.

Here, we demonstrate the necessity of removing obstacles with graph SLAM [16]. The error of a
constraint relies on the comparative position of two neighboring poses. Once the SLAM graph is built,
the specific aim is to discover a node setup that minimizes obstacle-generated mistakes [17].

Figure 2 shows the block diagram of the proposed system where VSLAM and motion person
tracking (MPT) play a significant role for obstacle removal in a dynamic environment. Here, VSLAM
receives a visual measurement (Z) and a motion measurement (U) to determine a map (M) and a pose
(X). In the next step, the MPT receives the time measurement (Z) and outputs the position (P) of the
moving person and the motion mode (S). Finally, VSLAM determines M and x composed of the static
landmark by taking Z and U without assuming that the surrounding environment is static. Then,
it outputs the dynamic object position (O) and (S).
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Figure 2. Block diagram of the proposed indoor-navigation system.

4. Proposed Method

Our method takes advantage of two monocular cameras by using VSLAM. We followed a similar
structure as ORB-SLAM2 while taking the input. First, as an original input, we used monocular camera.
Second, we used the picture sequence to extract features and create data association. The back end is
based on maximum a posteriori estimation (MAP) likelihood inference theory [13]. We included the
glossary of acronyms used in this paper in Table 1.
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Table 1. The glossary of acronyms used in the paper.

Acronyms Full Names

VSLAM Visual simultaneous localization and mapping
MPT Motion person tracking
EER- Expected error reduction
ASSL Active semi-supervised learning
MAP Maximum a Posteriori Estimation
RGB-D Red-green blue-Depth
MRF Markov Random Field
CNN Convolutional-neural-network

Visual simultaneous localization and mapping (VSLAM) combined with motion person tracking
(MPT) effectively applied for person tracking shown in Figure 3.

P(xk, M
∣∣∣u1, u2, . . . uk, z0, z1, . . . zk) (1)

where S represents motion mode; P represents a moving disabled person; and Z is the time measurement.

P(pk, Sk
∣∣∣Zk) = P(pk

∣∣∣Sk, Zk)P(Sk
∣∣∣Zk) (2)

P(Xk, Yk|Zk, Uk) α P(Zk
∣∣∣Xk, Yk)

x
P
(
Xk

∣∣∣YK−1, Uk

)
P(Yk|Yk−1)P(Xk−1, Yk−1|Zk−1, Uk−1)dxk−1dYk−1 (3)
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Figure 3. Combination of visual simultaneous localization and mapping (VSLAM) and motion person
tracking (MPT) for person tracking in our proposed system.

We formulated MPT in a generic way, where U denotes the motion-sensor-measurement
observation continuous points; Z represents visual-sensor-measurement observation continuous
points; X represents pose-hidden continuous points; Y conveys position of moving object hidden
discontinuity point; and S is motion mode [2].

P(pk, M, xk
∣∣∣Zk, Uk)α P(Zk|pk, Xk)

∫
P(pk

∣∣∣pk−1)P(pk−1

∣∣∣Zk−1, Uk−1) dpk−1

Update prediction

P(zm
k |M, xk)

∫
P(xk|uk, xk−1) p(xk−1, M|Zm

K−1, Uk−1)dxk−1

Update prediction
(4)

VSLAM and MPT Formulation: U represents the motion-sensor-measurement observation
continuous points; z denotes the visual-sensor-measurement observation continuous points; x is the
pose-hidden continuous points; S is the motion mode; and p denotes the moving disabled person.
Hidden discontinuity points are represented by M.

4.1. People Detection for Obstacle Avoidance

The flow diagram for person detection shown in Figure 4. The collaborative sampling used for
measurement of uncertainty and diversity. The details flow explained in Section 4.3.
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person detection.

4.2. Person Detection

Many convolutional neural network (CNN)-based person detectors are designed for static data
distribution, and are unable to handle drift, fast motion, and occlusion problems [14]. Moreover, in a
dynamic environment with complex settings, person detection becomes challenging due to aspect-ratio
difference and vanishing problems. Our expected-error-reduction active-semisupervised-learning
(EER–ASSL)-based method can overcome this problem where the prevailing person detector is applied
in order to obtain the desired detection result. We adopted state-of-the-art object detector YOLOv2 [4]
in our EER–ASSL method, which takes advantage of person detection. Most common detectors train
their detector with thousands of images in order improve detection performance, but labeling images
for detection is very expensive.

4.3. Human-Action Smoothing

We can see from Figure 4 that person detection was applied to find out whether a human exists in
the scenario or not, since labeling images for classification is expensive, but unlabeled data carry almost
no information related to human-action recognition. Therefore, in order to improve person-detection
accuracy, we required a semisupervised-learning (SSL) algorithm [14]. From a large volume of samples,
we can find a way to gather informative samples that can contribute to EER–ASSL performance.
Sampling bias or wrongly labeled samples can hamper detection performance. Therefore, AL helps our
proposed system overcome wrongly labeled samples by relabeling. Moreover, expected-error-reduction
sampling becomes handy.

The selected samples are divided into a number of bins in order to process the data. In each bin,
we apply AL, and then train and evaluate. After that, Bin 1 is carried forward to Bin 2. This entire
process continues until Bin N. If the Bin 1 model performance is better than that of the next bin,
we consider this as forward learning; otherwise, it is considered rollback learning, and that leads to
skipping the poorly scored bin. The entire process continues until Bin N.

Human activities such as sports activities or real-world events have abrupt changes in the
environment can be detected by comparing localized bounding boxes. If there is detected drift, we can
estimate smoothing for validation, and apply the EER–ASSL updated model to overcome the drift
problem. In this way, we selected the best possible model. In the next step, we extract the person
features from an input image and apply smoothing for improved human-activity detection.
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4.4. VSLAM with Dynamic Landmark Removal SLAMMPT

We selected SLAMMPT, which uses the feature-matching assessment method. In the issue of
data association, it is about combining present characteristics (landmarks) with earlier observed
characteristics to acknowledge past landmarks or locations. The presence of moving obstacles
improves the likelihood of short- and long-term-information association-error accumulation [13].
Figure 5 indicates the strong lines in which a robot poses. Star marks represent landmarks or feature
landmarks. Figure 5a demonstrates how landmarks make the robot pose. Robot poses X0, X1, X2,
and X3 are disordered by a moving person [15]. Figure 5b shows that the camera pose in key frame
X2 is pointing in the wrong direction. The correct camera pose is in the triangle with the solid line.
The miscalculated camera pose and position are shown in the dotted line in light blue.
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The error function can be presented as an error addition of static landmark e j(X) and dynamic
landmarks ei(X).

e(X) = ei(X) + e j(X) (5)

where X is the state vector. Error functions ei and e j denote the difference between predicted and actual
measurements of static and dynamic landmarks. After the dynamic objects are removed, the equation
becomes:

e(X) = ei(X)= zi − fi(X) (6)

where fi(X) = ẑn is the predicted measurements; zi is a measurement of state X ; and ẑi = fi(X) is
a function that maps X to predicted measurement ẑi. Then, measurements of noisy n become z1:n.
Assuming that the error has zero mean and is normally distributed, the Gaussian error function is given
by information matrix Ωi [15]. Scalar ei(X) is rewritten by ei(X)TΩiei(X). The problem of calculating
the optimal X is formalized as follows:

X∗ = argmin
X

∑
i

ei(X) = argmin
X

∑
i

ei(X)TΩiei(X) (7)

5. Analysis Method and Experiment Results

5.1. Motion Person Tracking (MPT) and Performance

Figure 6 shows the mAP comparison of EER–ASSL with popular object detectors like Faster
RCNN [3], SSD 300, and YOLOv2 [4]. Experiments were conducted by using incremental learning
with a faster RCNN detector.
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We used both local and benchmark datasets, and our baseline detector was YOLOv2. Both the
test data for PASCAL VOC 2007 and our local data were used. The collaborative sampling parameters
were set at 0.8, 0.6, and 0.8. The EER–ASSL-based object detector demonstrated much improvement
over other object detectors.

Table 2 summarizes the mean average precision of state-of-the-art methods on PASCAL VOC and
the local dataset.

Table 2. EER–ASSL object-detection performance on local dataset.

Framework mAP Dataset Speed (fps)

Faster RCNN 67.7 07 + 12 5
SSD300 68.4 07 + 12 59

YOLOv2 71.0 07 + 12 67
Ours (EER–ASSL) 73.3 07 + 12 + local 36

Our proposed EER–ASSL-based person detector showed improvement when compared with
popular object detectors like Faster RCNN, SSD300, and YOLOv2. Since EER–ASSL was jointly trained
on PASCAL VOC and the local dataset after the network was fine-tuned, fast adaptive capacity was
achieved regardless of velocity. Our EER–ASSL technique, as shown in Table 2, considerably increased
the detection efficiency of the local dataset and its environment. For fair evaluation, each of the four
objects had 100 labeled and 300 unlabeled samples. The detectors were trained for reasonable assessment
by using the same benchmark dataset and local dataset. Table 2 demonstrates the comparison outcomes,
where each column shows both the benchmark and local information composition percentage.

YOLOv2 trains the network by using classification dataset ImageNet 1000 [5], and then modifies
the network for detection purposes. This joint classification and detection information is much more
than that of the local dataset, which is restricted to only 100 pictures for each class such as a sofa or a
ticket gate. As a consequence, in our experiment, reducing local training data had little impact on the
YOLOv2 model.

Our framework worked well on a local dynamic environment. Obstacle instances were ideally
removed by person detection in Figure 7a–d. We also showed the Detected person with SLAM features
in Figure 8a–d.
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5.2. VSLAMMPT Performance Evaluation

We test our system on the Technical University of Munich (TUM) dynamic dataset. Due to a
lack of person data in the precondition of the monocular-camera input and the benchmark-dataset
evaluation, we made our performance table with a comparison with the raw ORB-SLAM2 system
where there is person interaction.

We considered the relative pose error (RPE) and the root mean squared error (RMSE) for analysis
and evaluation [18].

5.3. Root Mean Square Error (RMSE)

From the comparative pose mistake, we calculated the RMSE over all translation-component
time indices:

RMSE(P1:n, δ) :=

 1
m

m∑
i=1

‖trans(Pi)‖
2


1
2

(8)

where trans(Pi) refers to the translation parts of relative pose error Pi ; and δ is generally set to a fixed
time interval to 1.

We integrated person detection and ORB-SLAM2 feature extraction in order to stabilize the
rotation along the r–p–y axes. We supposed an individual was an unstable and moving barrier to the
SLAM scheme in our experiment. We used open-source software Evo, a Python package to evaluate
odometry, and SLAM with the assessment technique described above [15].

The TUM Dynamic dataset is about individuals interacting in a scene with a desk, chair, and
telephone. An individual walks into the scene at the desk and sits at a desk. This can be considered
as a vibrant slow-motion dataset and is regarded as a fast-motion dynamic dataset in the walking
sequence. Datasets of TUM Dynamic Objects were selected to test our scheme. The dataset of TUM
Dynamic Objects includes RGB picture sequences, image-depth data, and ground-truth trajectory.

We selected seven out of ten dataset sequences in our experiment because some parts of the data
sequences in camera movements like r–p–y and x–y–z are important. The number of valid key frames
increases in more stable and precise localization performance, as shown in Table 3.

Table 3. Performance of root mean squared error (RMSE) in the TUM Dynamic dataset.

Sequences ORB-SLAM2 Method 1 Method 2 Ensemble Performance

fr2_desk_with_person 0.006608 0.006375 0.00683 0.006375
fr3_sitting_halfsphere 0.014971 0.021956 0.013492 0.013492

fr3_sitting_xyz 0.014979 0.0146 0.014944 0.0146
fr3_walking_halfsphere 0.266141 0.029677 0.059813 0.029677

fr3_walking_xyz 0.010298 0.017487 0.059813 0.010298

Table 3 shows that our strategy helped to stabilize the system by more or less piling up key frames.
In particular, it demonstrates excellent efficiency in low- and high-dynamic environments in the dataset
sequence fr2_desk_with_person and fr3_sitting_halfsphere.

In some outcomes such as fr3_sitting_halfsphere and fr3_walking_xyz, there were only a few key
frames. The ORB-SLAM2 scheme was suppressed by our technique because the actor was walking too
close to the camera, which requires too much scene space to ratify function points.

The key-frame-based SLAM has a natural weakness due to powerful rotation, rapid motion, blurred
pictures, and the absence of feature points [19]. However, the camera-rotation error was considerably
decreased with our strategy, particularly in the fr3_walking_halfsphere sequence. Our proposed method
had significant improvement on ensemble performance over existing methods, as shown in the last
column of Table 2. This improvement came from the ensemble of ORB-SLAM2, and Methods 1 and 2,
according to image-complexity analysis. Image-complexity analysis was calculated on the basis of
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the number of objects in a scene and the size of each object. Plots on TUM dynamic dataset shown
in Figure 9.
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6. Conclusions

This study focused on providing guidance to people with disability (PWD) in their everyday life,
mostly helping them navigate through large indoor areas such as airports or bus terminals. We proposed
a novel method that is very cheap and effective for PWD, in particular, visually impaired people, or the
person who use wheelchair in order to avoid obstacles in a dynamic environment. Existing technology
such as global positioning systems (GPS) do not work well in an indoor environment where our
proposed visual simultaneous localization and mapping for moving-person tracking (VSLAMMPT)
will be a significant improvement. While navigating through an indoor environment, we applied
an EER–ASSL-based person detector for smooth person detection. However, the person detection
performance decreased with lighting conditions and speed. In the future, we wish to further investigate
to overcome these challenges. At present, we can only provide users very limited instructions to find
the destination location such as turn left, right, or turn around. In the future, we would like to give
the user a more precise object location and distance. We also demonstrated that our technique had
significantly better performance than that of ORB-SLAM2.
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