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Abstract: To rapidly detect the wheat moisture content (WMC) without harm to the wheat and before
harvest, this paper measured wheat and panicle moisture content (PMC) and the corresponding
spectral reflectance of panicle before harvest at the Beijing Tongzhou experimental station of China
Agricultural University. Firstly, we used correlation analysis to determine the optimal regression
model of WMC and PMC. Secondly, we derived the spectral sensitive band of PMC before filtering
the redundant variables competitive adaptive reweighted sampling (CARS) to select the variable
subset with the least error. Finally, partial least squares regression (PLSR) was used to build and
analyze the prediction model of PMC. At the early stage of wheat harvest, a high correlation existed
between WMC and PMC. Among all regression models such as exponential, univariate linear,
polynomial models, and the power function regression model, the logarithm regression model was
the best. The determination coefficients of the modeling sample were: R2 = 0.9284, the significance
F = 362.957, the determination coefficient of calibration sample R2v = 0.987, the root mean square
error RMSEv = 3.859, and the relative error REv = 7.532. Within the range of 350–2500 nm, bands of
728–907 nm, 1407–1809 nm, and 1940–2459 nm had a correlation coefficient of PMC and wavelength
reflectivity higher than 0.6. This paper used the CARS algorithm to optimize the variables and
obtained the best variable subset, which included 30 wavelength variables. The PLSR model was
established based on 30 variables optimized by the CARS algorithm. Compared with the all-sensitive
band, which had 1103 variables, the PLSR model not only reduced the number of variables by 1073,
but also had a higher accuracy in terms of prediction. The results showed that: RMSEC = 0.9301,
R2c = 0.995, RMSEP = 2.676, R2p = 0.945, and RPD = 3.362, indicating that the CARS algorithm could
effectively remove the variables of spectral redundant information. The CARS algorithm provided a
new way of thinking for the non-destructive and rapid detection of WMC before harvest.

Keywords: wheat; wheat moisture content (WMC); panicle moisture content (PMC); spectral detection;
CARS algorithm

1. Introduction

Wheat, the most important cereal grain in China, if harvested mechanically at an appropriate
harvest time, will generate a higher yield and income. Wheat moisture content (WMC) before harvest
is a key index to determine the time [1,2]. However, different varieties of wheat have different
harvest times. Different cultivation conditions and weather conditions also affect the time of harvest.
Traditional WMC detection method is time-consuming and laborious. As a result, large-scale real-time
monitoring and the scheduling of operation and maintenance for wheat combines are hard to achieve.
Therefore, we need to develop an efficient, non-destructive and accurate method to detect WMC
before harvest. Hyperspectral remote sensing technology has many advantages. It is able to detect a
large area of crops without touching the crop itself and obtain results within a short period of time.
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The rapid and non-destructive detection of moisture content in wheat grains improves both wheat
yield and quality, and thus boosts farmers’ income. This useful method should be done before harvest.
As agricultural modernization proceeds, mechanical harvesting has become one of the most widely
adopted mechanization practices. However, this practice may cause damage to the seeds during
harvest. To reduce the damage, the moisture content of wheat seeds should be measured before harvest
to determine the optimal harvest time. The best time for this should be when the grain moisture
decreases and its hardness and mechanical resistance increase. In recent years, this technology has
become popular among researchers for monitoring wheat plant growth and pests [3–6] and detecting
wheat grain quality. However, most studies detect the content based on the spectrum reflected from
the surface of the research object. Before harvest, we can only collect the spectral information reflected
from the panicle surface, as the wheat grain is filling in the panicle. Therefore, the correlation between
WMC and panicle moisture content (PMC) before harvest, and the characteristics of reflection spectrum
from panicle before harvest are key to spectral analysis and modeling of WMC before harvest.

Spectral information obtained by spectrometer is visible and near infrared. Such information
contains numerous useless and irrelevant components, which will affect the accuracy of the prediction
model. If we want to evaluate the internal quality of agricultural products with hyperspectral data,
we have to select effective variables before qualitative and quantitative analysis. Variable selection helps
us to build stable models that are more easily interpreted than others [7]. The most common variable
optimization methods are genetic algorithms (GA), successive projection algorithms (SPA), partial
least squares of the interval (interval PLS, iPLS), Monte Carlo-uninformative variable elimination
(MC-UVE), and competitive adaptive reweighted sampling (CARS) [8,9]. Lu et al. [10] improved
the prediction accuracy of PLSR model by optimizing 12 variables with 200 competitive adaptive
reweighting, when they were detecting the crude protein content of wheat grain from its near-infrared
spectrum. Cai et al. [11] studied the hyperspectral inversion of soil moisture content and used the
wavelet transform coupled competitive adaptive weighted sampling (WT-CARS) coupling algorithm
to select 131 wavelength variables from the full-band reflectance spectrum. They found that PLSR
prediction model with the optimal variables of CARS was more accurate than the full-band prediction
model. Li et al. [12] used the CARS algorithm to study the spectral detection of soluble solids content
(SSC) in Yali pear. The results showed that, as the CARS-PLS model was based on the optimal key
variables, it only used 15.6% of variables in the original information. In this way, the number of
variables was reduced [13]. Moreover, the CARS-PLS model could more accurately predict the SSC
content in Yali pear than the full-variable PLS model. This indicates that spectral data analysis applied
with the CARS algorithm can overcome combinatorial explosion and boost the accuracy of the model
by selecting variables from high-dimensional data. This paper was the first of its kind to adopt the
CARS algorithm for selecting variables in the spectral data of wheat panicle. The variables were used
to build a partial least squares regression (PLSR) prediction model for the detection of WMC.

2. Materials and Methods

2.1. Test Design and Sample Collection

We conducted the test at Tongzhou experimental station of Beijing Agricultural University of
China (39◦42′ N, 116◦41′ E) from 6 to 14 June 2018. We selected Nongda 211 as the wheat variety
and four plots as the study area based on the environment conditions. Each plot had an area of 4 m2

(2 × 2 m). In the field management, we kept the water and fertilization at the same amount for all
plots. During sampling, we measured the spectral reflectance of each plot once a day and selected
three representative wheat plants as sample points [14]. We made panicles of each sample point into
samples and transported them in plastic freezer bags to the laboratory. At the laboratory, we measured
their WMC and PMC with an electric blast drying oven and a balance with the accuracy of 0.1 mg.
During the correlation analysis of WMC and PMC, we randomly selected 30 samples as modeling
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samples, because their moisture content showed a series of gradients. Further, we selected another
14 samples with the same obvious pattern of moisture content for validation.

We used ASD Field Spec4 spectrometer (U.S.A., spectral range 350–2500 nm) for spectral
determination. The sampling interval and the spectral resolution were 1.4 nm and 3 nm respectively,
for the spectral wavelength region of 350–1000 nm; they changed into 1.1 nm and 8 nm for the region
of 1001–2500 nm. We carried out spectral measurements during 10:00–14:00 on windless sunny days
(when solar altitude angle was higher than 45◦). To obtain more panicle spectral information, we turned
the spectrometer probe to a 45-degree tilt, and put it close to the top of wheat canopy, at a distance of
0.8 m. We took the same method to measure three fields of view and recorded 10 sampling spectra for
every plot. We took the average value of the 10 sampling spectra as the spectral value of the whole
plot and made standard whiteboard corrections before and after the data acquisition for each group.

2.2. Data Processing and Analysis

2.2.1. Spectra Pretreatment

After spectral determination with the ASD spectrometer, we used programs such as ViewSpecPro,
Excel and SPSS to calculate the average values of the spectral data and analyze the correlation of the
whole band.

2.2.2. Competitive Adaptive Reweighted Sampling (CARS)

The CARS method follows the Darwinian evolutionary theory of “survival of the fittest” and
takes advantage of Monte Carlo sampling (MCS). The CARS method selects subsets of wavelength
variables through iteration and competition, and optimizes variables through exponential decreasing
function (EDP) and adaptive reweighted sampling (APS). The method, once applied in the PLSR
model, can quickly identify the key variables that have higher absolute values of regression coefficient.
Through the change of root mean square error of crossing verification (RMSECV), the CARS method is
also able to find the optimal variable subset with minimal error [15–18]. It screens out wavelength
variable combinations that are sensitive to PMC, and overcomes combinatorial explosion during the
selection of variables. This method can be well applied to high-dimensional data.

2.2.3. Establishment and Calibration of PLSR Model

The PLSR model has absorbed the advantages of the following three methods: (1) principal
component analysis, (2) canonical correlation analysis, and (3) general multiple linear regression.
The PLSR model will remain stable, even if multiple linear correlation exists between independent
variables and the number of samples is less than wavelength variables. This will enhance the statistical
analysis of multivariate data.

This paper uses PLSR to establish the CARS optimal variable model and full-sensitive-band model.
It also adopts determination coefficients of calibration (R2c), predicting determination of calibration
(R2p), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP),
and residual predictive deviation (RPD) to evaluate the model’s performance [19–21]. A large R2 and
small RMSEC and RMSEP means that the model performs very well. Larger values of R2 and lower
values of RMSEC and RMSEP indicate better performance. If RPD is between 1.5 and 2, it shows that
the model is able to predict PMC, whereas if it is between 2 and 2.5, the model’s prediction could
be used for rough quantitative analysis, while RPD ranging from 2.5 to 3 indicates that the model’s
prediction is rather accurate.
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3. Results and Analysis

3.1. Changes in Moisture Content of Wheat and Panicle Samples

The statistical description of the characteristics wheat and panicle is shown in Table 1. As for the
respective moisture content range of wheat and panicle, WMC gets 11.82–42.95%, with an average of
29.62% and PMC falls in the range of 5.85–40.52%, with an average of 21.53%. At the early stage of its
maturity, a wheat plant has almost the same WMC and PMC. However, when it grows up, the moisture
content of panicle becomes significantly lower than that of wheat grain, especially at the late stage of
its maturity. This statistical description indicates that panicle loses water faster than wheat grain.

Table 1. Moisture content of wheat and panicle samples.

Sample Set Sample Size

Wheat Moisture Content/% Panicle Moisture Content/%

Minimum
Value

Maximum
Value

Average
Vaule

Standard
Deviation

Minimum
Value Maximumvalue Average

Vaule
Standard
Deviation

Modeling set 30 11.82 42.95 29.62 9.72 5.85 40.52 21.53 11.82

Testing set 14 11.79 42.35 26.94 11.85 5.85 40.52 20.07 14.25

3.2. Correlation Analysis

We used an ASD spectrometer to detect the spectral reflectance information of wheat panicle
and took the following method to study the quantitative relationship between WMC and spectral
reflectance of panicle. Firstly, we carried out correlation analysis to study the relationship between
WMC and PMC and established a regression model.

Table 2 shows the regression model of WMC and PMC and its validation. We selected the
regression model with high simulation fit and small test errors to be the optimal estimation model.
After comparison, we found that values of R2c for logarithmic, univariate linear [22], polynomial and
power function regression models were higher than 0.8, and those of exponential regression models
were lower than 0.8. The values of R2c for logarithmic and polynomial regression models were 0.9284
and 0.9158, respectively, which were the highest values among regression models. For the logarithmic
model, R2v (represents the determination coefficient of validation mode) of its predicted value and
measured value was 0.987, with RMSEv (represents the root mean square error of validation) at 3.859,
and Rev (represents the relative error of validation) at 7.532%. For polynomial regression model, R2v of
its predicted value and measured value was 0.982, with RMSEv at 5.426, and REv at 9.972%. Based on
our analysis, the log regression model was the best estimation model for WMC detection. The details
are shown in Figures 1 and 2.

Table 2. Regression models and performance of WMC based on PMC.

Model Regression Equation
Modeling Set Validation Set

R2 F R2v RMSEv REv/%

Exponentiol y = 14.839e0.0291x 0.7704 93.969 0.942 20.342 20.466
Logarithm y = 14.587ln(x) − 12.55 0.9284 362.957 0.987 3.859 7.532

Linear y = 0.766x + 13.134 0.8677 183.576 0.963 12.198 17.365
Polynomial y = −0.0201x2 + 1.6769x + 5.5504 0.9158 146.884 0.982 5.426 9.972

Power y = 5.2698x0.5746 0.8876 221.178 0.977 6.946 11.102

Note: R2 represents the determination coefficient of calibration; F represents the significance of regression equation;
R2v represents the determination coefficient of validation model; RMSEv represents the root mean square error of
validation; REv represents the relative error of validation.
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Figure 1. Logarithm regression of WMC and PMC.
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Figure 2. Comparison between measured and predicted WMC.

3.3. Selection of Spectral Sensitive Bands of PMC

We used ViewSpecPro, the post-processing software of the ASD spectrometer, to pre-process the
spectral data, and obtained the visible near-infrared spectrum of wheat panicle. As is shown in Figure 3,
there is an obvious reflection valley in wheat panicle within the wavelength range of 350–2500 nm.
This spectral region was mainly the double frequency and combined frequency absorption of C-H,
O-H and N-H bonds [23,24]. We used Excel and SPSS 21.0 to analyze the correlation between the
spectral reflectivity of wheat panicle and moisture content at each wavelength location. The results are
shown in Figure 4 At the band of 728–907 nm, the correlation coefficient values are all above 0.6, with a
significant positive correlation at the level of 0.01; at the band of 1407–1809 nm and 1940–2459 nm,
the correlation coefficient values are all below –0.6, with a significant negative correlation at the level
of 0.01; the correlation coefficient R is the largest at –0.817 for 1409 nm. Therefore, we selected 728–907
nm, 1407–1809 nm and 1940–2459 nm as the spectral sensitive bands of PMC.



Symmetry 2020, 12, 115 6 of 10
Symmetry 2019, 11, x FOR PEER REVIEW 6 of 10 

 

 

Figure 3. Visible and near-infrared spectra of wheat panicle. 

 
Figure 4. Correlation between spectral reflectivity and PMC. 

3.4. Variable Optimization by CARS Algorithm 

We used competitive adaptive reweighted sampling (CARS) to optimize 1103 variables of the 
selected sensitive bands and set the times of Monte Carlo sampling were set to be 50. The iterations 
of sampling times were repeated [25]. We compared the RMSECV values of each sampling and 
included the lowest values in the subset of optimization variables. Because of the exponential 
decreasing function (EDP), the number of the corresponding optimal variables decreased 
exponentially as iterations increased (Figure 5a). Figure 5b shows that the RMSECV value first 
decreased before increased with the continuous iterations of sampling times. The RMSECV value 
decreased gradually during 1–29 iterations, indicating that a large amount of information or noise 
irrelevant to PMC was removed from the selected sensitive band spectrum. After 29 times of 
sampling, the RMSECV value slowly rose. This was due to the continuous removals of key variables 
that were sensitive to PMC. According to Figure 5c, the RMSECV value was the lowest during 29 
times of sampling. Lines in the figure show the trend of regression coefficient of wavelength variables 
as the operation goes on. Figure 5 shows that the RMSECV value is the lowest at the 29th sampling. 
The corresponding spectral variables belong to the optimal variable set, which contains 30 spectral 
variables. 

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

35
0

43
3

51
6

59
9

68
2

76
5

84
8

93
1

10
14

10
97

11
80

12
63

13
46

14
29

15
12

15
95

16
78

17
61

18
44

19
27

20
10

20
93

21
76

22
59

23
42

24
25

Co
rre

la
tio

nc
oe

ffi
ci

en
t

Wavelength/nm

Figure 3. Visible and near-infrared spectra of wheat panicle.
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3.4. Variable Optimization by CARS Algorithm

We used competitive adaptive reweighted sampling (CARS) to optimize 1103 variables of the
selected sensitive bands and set the times of Monte Carlo sampling were set to be 50. The iterations of
sampling times were repeated [25]. We compared the RMSECV values of each sampling and included
the lowest values in the subset of optimization variables. Because of the exponential decreasing
function (EDP), the number of the corresponding optimal variables decreased exponentially as iterations
increased (Figure 5a). Figure 5b shows that the RMSECV value first decreased before increased with
the continuous iterations of sampling times. The RMSECV value decreased gradually during 1–29
iterations, indicating that a large amount of information or noise irrelevant to PMC was removed from
the selected sensitive band spectrum. After 29 times of sampling, the RMSECV value slowly rose.
This was due to the continuous removals of key variables that were sensitive to PMC. According to
Figure 5c, the RMSECV value was the lowest during 29 times of sampling. Lines in the figure show the
trend of regression coefficient of wavelength variables as the operation goes on. Figure 5 shows that
the RMSECV value is the lowest at the 29th sampling. The corresponding spectral variables belong to
the optimal variable set, which contains 30 spectral variables.



Symmetry 2020, 12, 115 7 of 10
Symmetry 2019, 11, x FOR PEER REVIEW 7 of 10 

 

 

 

 

Figure 5. Variable filtering process by competitive adaptive reweighted sampling (CARS). 

3.5. The Establishment and Verification of Optimal-Variable-Based PLSR Model  

We selected spectral variables optimized by the CARS algorithm as independent variables and 
PMC as the dependent variable to build a PMC prediction model. To show the advantages of variable 
optimization, we introduced the PLSR model of all selected sensitive bands for comparison. 
Parameters of the CARS-optimized-variable model and the all-sensitive-band-variable model are 
shown in Table 3 We will compare them to analyze the prediction effects of both models. 

Table 3. Results of estimation for PMC. 

Variable Selection 
Methods 

Variable 
Number 

Calibration Sets Prediction Sets 
RMSEC R2c RMSEP R2p RPD 

sensitive band -
PLSR 1103 7.612 0.668 9.803 0.843 1.140 

sensitive band -
CARS-PLRS 30 0.9301 0.995 2.676 0.945 3.362 

Note: As can be seen in the table, “sensitive band-PLSR” represents the partial least squares model of 
the selected sensitive band, while “sensitive band-CARS-PLRS” represents the partial least squares 
model of variables optimized by CARS algorithm. 

Prediction data of the two models in Table 3 shows that CARS algorithm can improve the 
accuracy of PMC. For the partial least squares model based on CARS algorithm, RMSEC = 0.9301, 
R2c=0.995, RMSEP = 2.676, R2p = 0.945, and RPD = 3.362. The CARS algorithm optimized 1,103 

Figure 5. Variable filtering process by competitive adaptive reweighted sampling (CARS).

3.5. The Establishment and Verification of Optimal-Variable-Based PLSR Model

We selected spectral variables optimized by the CARS algorithm as independent variables and
PMC as the dependent variable to build a PMC prediction model. To show the advantages of variable
optimization, we introduced the PLSR model of all selected sensitive bands for comparison. Parameters
of the CARS-optimized-variable model and the all-sensitive-band-variable model are shown in Table 3
We will compare them to analyze the prediction effects of both models.

Table 3. Results of estimation for PMC.

Variable Selection Methods Variable Number
Calibration Sets Prediction Sets

RMSEC R2c RMSEP R2p RPD

sensitive band -PLSR 1103 7.612 0.668 9.803 0.843 1.140
sensitive band -CARS-PLRS 30 0.9301 0.995 2.676 0.945 3.362

Note: As can be seen in the table, “sensitive band-PLSR” represents the partial least squares model of the selected
sensitive band, while “sensitive band-CARS-PLRS” represents the partial least squares model of variables optimized
by CARS algorithm.

Prediction data of the two models in Table 3 shows that CARS algorithm can improve the accuracy
of PMC. For the partial least squares model based on CARS algorithm, RMSEC = 0.9301, R2c = 0.995,
RMSEP = 2.676, R2p = 0.945, and RPD = 3.362. The CARS algorithm optimized 1103 sensitive bands
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and selected 30 optimal variables. Generally speaking, the new model constructed by these 30 optimal
variables was more accurate and stable than the model of 1103 variables. The CARS algorithm not
only reduced the number of modeling variables, but also improved the model’s accuracy. Therefore,
it is an effective method in spectral analysis to optimize variables. This study analyzed the correlation
between 2151 bands’ reflectivity and PMC with the best prediction model. It selected 1103 bands
with the correlation coefficient higher than 0.6 and further filtered out optimal bands with the CARS
algorithm. We selected a total of 30 bands for modeling. This process reduced the modeling time and
improved the accuracy of the model. It also provided a reference for the inversion of selecting key
bands of wheat growth information with wheat canopy hyperspectral reflectance in this region.

We adopted CARS-PLSR model to verify the prediction set and obtained RMSEP = 2.676,
R2p = 0.945, and RPD = 3.362. Figure 6 shows the scatter diagram of the measured and predicted
WMC. According to Figure 6, values predicted by the PLSR model and the measured values were
evenly distributed near the 1:1 line of sample points. This proved that the model was rather accurate.
Therefore, the CARS algorithm is effective in selecting bands for WMC prediction in the sensitive band,
reducing the number of modeling variables, and improving the model’s accuracy.
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Figure 6. Correlation between measured WMC and predicted WMC by sensitive band-CARS-
PLSR model.

4. Concluding Remarks

This paper focused on measuring wheat before harvest in the Beijing area. Firstly, we analyzed
the correlation between WMC and PMC before harvest. Based on the analysis, we further analyzed the
correlation between PMC and the characteristic parameters of the spectrum. Secondly, we adopted the
CARS algorithm to select the optimal spectral variables of PMC and established a PLSR model for PMC
prediction. After verifying the inversion accuracy of the model, we reached the following conclusions:

(1) A high correlation existed between WMC and PMC before harvest. The best regression
model was the logarithmic regression, in which R2 = 0.9284, F = 362.957, R2v = 0.987, RMSEv = 3.859,
and REv = 7.532.

(2) SPSS software analysis of the correlation between PMC and the spectral parameters of the
whole band identified 1103 sensitive bands in total, including 728–907nm, 1407–1809nm and 1940–2459
nm. As an effective tool to optimize the variables, the CARS algorithm successfully obtained an optimal
variable set with 30 wavelength variables.

(3) The CARS-algorithm-based PLSR model only took 30 optimized variables, much less than the
1,103 variables of the whole sensitive band. CARS algorithm filtered out 1073 variables in total and
greatly improved the accuracy. The PLSR model had an RMSEC of 0.9301, R2c of 0.995, RMSEP of
2.676, R2p of 0.945, and RPD of 3.362.

The rapid and non-destructive detection of WMC before harvest is very important. As the wheat
grain is filling in the panicle before harvest, it is impossible to directly obtain its reflection spectrum.
Therefore, we have studied the correlation between the WMC and PMC, and built a PMC-based
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prediction model for WMC detection. The spectrum curve from the panicle’s hyperspectral reflectance
is a comprehensive reflection of the wheat canopy’s attributes. On the spectrum, many bands are
redundant data that are irrelevant of PMC. This study has determined bands that are sensitive to
PMC by analyzing the correlation between whole-band reflectance and PMC. As there are numerous
sensitive bands, CARS algorithm has been used to optimize variables of sensitive bands, extract
effective variables and build the PLSR model. In this way, the accuracy of prediction is improved.

Over the past two years, the detection of moisture content of wheat seeds based on hyperspectral
in China has been carried out after harvest and after threshing. The main application of this method is
for the storage and drying of wheat. Few Chinese researchers have focused on the detection of the
moisture content of grain on field wheat plants before harvest. The WMC detection system designed
by Xianming Xiong et al. took the method of near infrared three-wavelength method to study WMC
after harvest and threshing. The authors summarized the light absorption rule of three different
wavelengths combined the regression fitting method of cubic polynomial with five unknowns and
built a mathematical model was 0.7691 [26]. After correction, the correlation coefficient was 0.7267.
In the work of He Hongju et al, the authors mentioned that the correlation coefficients of prediction
in the full-band PLS regression model (F-PLS) constructed by GFS (Gaussian filtering smoothing)
pretreatment (100wavelengths) performed better. Their model predicted the correlation coefficient
as RP = 0.927 [27]. Both of the above-mentioned correlation coefficients were less than R2

C and R2
P

derived by the CARS algorithm-based model.
In this study, we detected the WMC based on the reflection spectrum of panicle before harvest in

the field. First, we averaged the original spectrum was averaged. Second, we analyzed the correlation
between the whole-band reflection spectrum and PMC. After the analysis, we determined 1103 sensitive
bands. Third, we adopted the CARS algorithm to optimize variables. Finally, we determined 30 effective
variables. Although the prediction of the PLRS model was rather accurate, some bands of the spectra
from the wheat field were disturbed by the noise signal of the ASD spectrometer, water evaporation,
and other factors. Disturbed bands were mainly concentrated in three spectral regions: 1358–1406 nm,
1814–1934 nm and 2438–2500 nm and some sensitive bands might be lost due to interference signals.
To further improve the accuracy, we need to study the method to remove interference signals during
the acquisition of spectral information.
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