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Abstract: Symmetry considerations play a key role in modern science, and any differentiable
symmetry of the action of a physical system has a corresponding conservation law. Symmetry may
be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of
modern video coding standards by using the maximum entropy principle. The high computational
complexity of the coding unit (CU) size decision in modern video coding standards is a critical
challenge for real-time applications. This problem is solved in a novel approach considering CU
termination, skip, and normal decisions as three-class making problems. The maximum entropy
model (MEM) is formulated to the CU size decision problem, which can optimize the conditional
entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem.
The classification features consist of the spatio-temporal information of the CU, including the
rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed
method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results
demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC
encoder significantly. Compared with the H.265/HEVC reference model, the proposed method
can reduce the average encoding time by 53.27% and 56.36% under low delay and random access
configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average.

Keywords: modern video coding standards; maximum entropy; inter-prediction; complexity reduction

1. Introduction

With the rapid development of the Internet, high-resolution video applications are very broad and
a variety of different video applications have emerged. However, modern video coding technologies
face great challenges. The modern video coding standards, including H.264/AVC and H.265/HEVC,
generally adopt hybrid codec structures. The modern video encoders consist of (1) inter- and
intra-frame prediction, (2) transformation, (3) quantization, and (4) entropy coding. Moreover, most
video sequences contain huge redundancies that can be divided into two categories: Statistical and
visual redundancies. Therefore, this work focuses on reducing the computational complexity of
modern video encoders by using statistical redundancies.

In 2013, the Joint Collaborative Team on Video Coding (JCT-VC) organization released the High
Efficiency Video Coding standard (HEVC or H.265) [1], which uses hybrid encoding technology.
Compared with Advanced Video Coding(AVC, or H.264), the coding block size of H.265/HEVC
increases from 16× 16 to 64× 64, while the average encoding compression ratio is increased by 55–87%.
Moreover, the computational complexity of H.265/HEVC increases significantly. With the adoption of
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mobile and embedded terminals, the H.265/HEVC encoder faces real-time and low-power challenges.
In general, the computational complexity of the modern video encoder increases dramatically due to
its recursive quad-tree construction. In previous works, the spatial redundancies [2,3], spatio-temporal
redundancies [4,5], and visual redundancies [6] were used to reduce the computational complexity
of the modern video encoder. However, most of them balance the computational complexity and
encoding efficiency unsuccessfully.

In order to achieve the trade-off between the computational complexity and encoding efficiency
of the modern video encoder, the maximum-entropy-model-based coding unit (CU) size decision
algorithm is proposed to reduce the computational complexity. However, for the H.264/AVC and
H.265/HEVC encoders, the maximum CU sizes are different, and the coded block flag (CBF) definitions
are different. For the case analysis, the maximum CU size is 64 × 64. Therefore, in this work,
the proposed algorithm is designed to reduce the computational complexity of the H.265/HEVC
encoder. Compared to the traditional classifier, the accuracy of the maximum entropy model is higher
and constraints can be set flexibly. The key contributions of this work are summarized as follows:

• A fast CU size decision algorithm is proposed to reduce the complexity of the modern video encoder,
which consists of CU termination, skip, and normal decisions. The maximum-entropy-model-enabled
CU size decision approach is formulated to maximize the condition of entropy. Moreover, the
improved iterative scaling (IIS) algorithm is proposed to solve this optimization problem.

• The rate–distortion (RD) cost, coded block flag (CBF), and depth information of neighboring CUs
are as featured as parameters which do not bring in additional calculations. Moreover, the online
method is proposed to learn the model parameters.

• Based on H.265/HEVC standards, the proposed method reduces the computational complexity
significantly. The simulation results demonstrate that the proposed algorithm reduces the average
encoding time by 53.27% and 56.36% under low delay and random access configurations, while
Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average.

The rest of paper is organized as follows. Related work is surveyed in Section 2. The background is
reviewed in Section 3. In Section 4, the proposed CU size decision approach is proposed. Experimental
results are discussed in Section 5. The conclusion is depicted in Section 6.

2. Related Work

Previous works focus on reducing the computational complexity of H.265/HEVC. There are
mainly three methods for reducing coding complexity: Coding unit (CU) size and depth determination,
prediction unit (PU) mode determination, transform unit (TU) size determination, and fast motion
estimation (FME). For the CU size decision in inter-prediction, state-of-the-art algorithms mainly focus
on the middle parameters of CU-based approaches [7,8], classification-model-based approaches [9,10],
and parallel-based approaches [11].

Firstly, the authors of [12] present a novel CU termination algorithm, where the average
depth of the coding unit is used to predict coding unit size. The work in [13] focuses on the
complexity reduction of the H.265/HEVC encoder, and an efficient coding unit partitioning and
prediction unit mode decision method is proposed by using a look-ahead stage. Ref. [14] proposes a
depth-segmentation-enabled complexity reduction algorithm for 3D-HEVC inter-prediction, where the
depth map can be classified as background, mid-ground, and foreground. The work in [15] proposes a
new entropy-based coding unit size decision algorithm, and the threshold can be decided by maximum
similarity technology. The work in [16] proposes an adaptive CU termination approach by using
the middle parameters of CU, and the search range of motion estimation is adjusted to speed up
the H.265/HEVC encoder. The advantage of the middle parameters of CU-based method is that the
implementation is simple, though it is sensitive to image boundaries.

Secondly, the authors of [17] propose an efficient block partitioning approach for H.265/HEVC
by using Bayesian theory. In this context, Gaussian mixture models are used to estimate statistical
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parameters. The work in [18] presents a support vector machine (SVM)-based CU size decision
algorithm, and a radial basis function (RBF) kernel is used to optimize variables. In [19],
a neural-networks-based CU depth decision method is proposed to reduce the complexity of the
H.265/HEVC encoder. In this context, a database is developed, which includes image values and
encoding information. Moreover, a neural network architecture is designed to train model parameters.
In [20], CU size decision is modeled as a Markov decision process (MDP), and the end-to-end actor
critic (AC) algorithm is used to train the model. The authors of [21] present a Bayesian-classifier-enabled
CU size decision algorithm, and the Markov Chain Monte Carlo (MCMC) technology is used to estimate
statistical parameters. The advantage of the classification-model-based method is that the algorithm is
simple, and the disadvantage is that the robustness is not high.

Moreover, Ref. [22] presents a novel parallelization approach to accelerate the H.265/HEVC
encoder. In this context, a content-aware frame partitioning method is used to reduce the parallelization
overhead. The authors of [23] focus on improving the parallelization of the H.265/HEVC encoder, and
a novel collaborative-scheduling-enabled parallel approach is proposed to accelerate H.265/HEVC
encoding. Ref. [24] presents a new CU size decision framework in parallel to reduce the complexity
of the H.265/HEVC encoder, and a many-core platform is developed to speed up the coding unit
tree decision. The advantage of the parallel-based method is that the complexity can be reduced
significantly while the encoding efficiency is decreased.

3. Background

3.1. High-Efficiency Video Coding Standard

The H.265/HEVC coding structure is similar to the previous ITU-T (International Telecommunication
Union, Telecommunication Standardization Sector) and ISO/IEC(International Organization for
Standardization/International Electrotechnical Commission) MPEG (Moving Picture Experts Group)
video compression standards, and it uses a hybrid coding framework. Although its basic coding
structure has not changed, its algorithm is more and more flexible, and its coding efficiency is getting
higher and higher. The coding framework of H.265/HEVC is shown in Figure 1. The main modules
are: Intra-prediction, inter-prediction, transform/quantization, adaptive filtering, and entropy coding.

Coding Block
Transform/ 

Quantization


Video Sequence

Entropy 
Coding



Intra 
Prediction

Filtering

Inter 
Prediction

Motion 
Estimation

Image Cache

Inverse 
Transform/

Quantization

Bitrate

Figure 1. High Efficiency Video Coding (H.265/HEVC) hybrid coding framework.

In H.265/HEVC, an image is divided into a sequence of coding tree units (CTUs). The concept of
the CTU is similar to macro-blocks in the H.264/AVC standard. A CTU contains three sample arrays,
which are an N × N luma coding block (CTB) and two corresponding chroma CTBs. In H.265/HEVC,
the maximum size of the luminance CTB is 64 × 64. The CTU is the basic processing unit of the
decoding process, and the large-size CTU can achieve higher coding efficiency and increase the
computational complexity. Therefore, choosing the right CTU size can achieve a balance between the
encoding efficiency and computational complexity.
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The coding unit (CU) is a square area that is used to represent the leaf nodes of the CTU. It shares
the same prediction mode: Intra, inter, and skip. The quad-tree partition structure of the CU allows
the parent node to be recursively split into four child nodes of the same size. The size of each CU is
from the CTU to 8 × 8 adaptive selection. In the CTU, the split flag (split_cu_flag) is used to indicate
whether the current CU block will continue to split into four sub-CUs. When the flag is one yes, the CU
splits; for each generated CU block, another flag is transmitted and indicates whether the current
block represents one CU or will be further divided into four CU blocks. When the size of the CU
block is 8 × 8, no split flag is transmitted during the encoding process. Therefore, the computational
complexity of the CU partitioning process is very high. In general, a low complexity encoder will try
to choose a larger CU size instead of a small CU size.

The z-scan scan order of the partition and code of the CU is shown in Figure 2. We assume that
the size of the coding unit CUt is 2N× 2N and the depth is t. When the split flag split_cu_flag is 0,
CUt does not split; otherwise, CUt splits into four CUt+1 of the same size, and CUt+1 is N×N and
has a depth of t + 1. Compared with H.264/AVC, the H.265/HEVC CU partitioning method has
great advantages:

• The size of the CU block in H.265/HEVC is larger than the macroblock size in H.264/AVC.
For relatively flat images, a large CU block can be selected, which can save the number of code
stream bits and improve coding effectiveness.

• The size and depth of the CU in H.265/HEVC can be selected according to the characteristics of
the image, so that the performance of the encoder can be greatly improved.

• There are macroblocks and sub-macroblocks in H.264/AVC. There are only CU blocks in
H.265/HEVC, and the structure is simple.

Figure 2. The diagram of coding unit (CU) partitioning.

A prediction unit (PU) is an area in which the partitioning structure of the CU is used to define it
and share the same prediction information. In general, a PU is not limited to a square shape; it can
easily distinguish the true boundary of the image. The PU specifies the prediction mode of the CU,
the direction of the intra-prediction, the segmentation mode of the inter-prediction, and the motion
vector (MV) information, which are all included in the PU.

The prediction mode of a CU of size 2N× 2N is shown in Figure 3. For intra-prediction, PU has
two prediction modes: 2N× 2N and N×N; for inter-prediction, PU has eight prediction modes for
four symmetric modes (2N× 2) N, 2N×N, N×2 N, N×N) and four asymmetric modes (2N× nU,
2N× nD, nL× 2N, nR× 2N). In particular, the SKIP mode is a special case of the inter-prediction
mode. When the motion information has only the index of the motion parameter and the residual
information is not required, it is in the SKIP mode.
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Figure 3. The diagram of prediction unit (PU) modes.

3.2. Maximum Entropy Principle

Entropy is a measure of the uncertainty of a random variable [25]. The greater the uncertainty,
the larger the entropy value. If the random variable degenerates to a fixed value, the entropy is zero.
Assuming that the probability distribution of the discrete random variable x is p(x), its entropy is
given in [26]:

H(X) = −
n

∑
i=1

p(xi) log2 p(xi) =
n

∑
i=1

p(xi) log2
1

p(xi)
. (1)

The joint distribution of X and Y of two random variables can form joint entropy, expressed by
H(X, Y), and the conditional entropy H(Y|X) is expressed in [27]:

H(Y|X) = H(X, Y)− H(X) = −∑
x,y

p(x, y) log p(y|x). (2)

For a model that is selected from the set of the probability distributions C, when the selecting
model satisfies p∗(y|x) ∈ C, the entropy H(Y|X) is maximum, and the maximum entropy is given
in [28]:

p∗(y|x) = arg max H(Y|X) (3)

The characteristic function fi(x, y) describes the relationship between the input x and the outputs
y. fi(x, y) is the binary function, which is expressed in [29]:

fi(x, y) =

{
1, x = xi, y = yi

0, otherwise
. (4)

The expected value of the characteristic function with respect to the empirical distribution
p(x, y) in the sample is E( fi) = ∑xi ,yi

p(x, y) fi(x, y), where p(x, y) = 1
N num(x, y), N is the size of

the training sample, and num(x, y) is the number of simultaneous occurrences of (x, y) in the sample.
Moreover, the expected value of the eigenfunction with respect to the model p(y|x) and the empirical
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distribution p(x) is E( fi) = ∑xi ,yi
p(x)p(y|x) fi(x, y). The complete representation of the maximum

entropy model (MEM) is thus obtained as follows:

p∗(y|x) = arg max H(Y|X) = arg max ∑
x,y

p(x)p(y|x) log
1

p(y|x) , (5)

where the corresponding constraints are

s.t. (C1) : p(y|x) >= 0, ∀x, y,

(C2) : ∑
y

p(y|x) = 1, ∀x,

(C3) : E( fi) = E( fi), i = {1, 2..., n},

where n is the number of the characteristic function fi(x, y). Therefore, this problem is the optimization
problem that requires values of several variables (including n, N and num(x, y)) to maximize the
objective function (entropy).

4. The Proposed Approach

In this section, the maximum-entropy-model-based CU size decision approach is proposed to
reduce the complexity of inter-prediction in H.265/HEVC.

Firstly, mode selection is based on rate–distortion optimization (RDO) in H.265/HEVC. By using
the rate–distortion (RD) cost, H.265/HEVC can make the encoding parameters derivation decision for
the quad-tree structure. In addition, the CBF reflects the complexity of the prediction residual under a
given quantization parameter (QP).

The H.265/HEVC reference software adopts the algorithm of using CBF as the early termination
CU partition. Thus, the RD cost and CBF are closely related to the CU partitioning. The variable wrdc
represents the RD cost of the PU with the 2N× 2N mode. The variable wcb f represents the CBF value
of the PU with the 2N× 2N mode.

Moreover, the video sequence has a strong spatial and temporal correlation. The context
adaptation of context-adaptive binary arithmetic coding (CABAC) fully exploits the context correlation
and models the coded symbols. The CU partition depth information is also a very effective feature.
Figure 4 shows the neighboring CUs of the current CU; depth information of neighboring CUs is
useful for CU size decision. In this work, wdt, wdl , and wdco represent the depth information of top, left,
and co-located CUs of the current CU. Therefore, the feature set w is used to make CU size decision,
which consists of

w = {wrdc, wcb f , wdt, wdl , wdco}. (6)

In the H.265/HEVC standard, two fast CU size decision methods are developed to speed up
inter-prediction, which includes the CU termination decision and CU skip decision. In the CU
termination processing, the splitting of the CU terminates in the current depth. In the CU skip
processing, the PU mode is determined at the earliest stage and RDO technology is processed in the
next depth. In the CU normal processing, other PU modes are checked in the current depth. Therefore,
the CU size decision task (represented by a variable s) consists of CU termination, CU skip, and CU
normal decisions, which can be formulated as

s =


s1, CU termination

s2, CU skip

s3, CU normal

. (7)
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Current CU
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Figure 4. The neighboring CUs of the current CU.

Given the data set {(xi, si)
N
i } and characteristic function fi(w, y), the CU size decision problem

can be converted into the MEM-based optimization problem to maximize the conditional entropy
H(s|w), which can be formulated as:

max H(s|w) = max ∑
w,s

p(w)p(s|w) log
1

p(s|w)

s.t. ∑
s

p(s|w) = 1, ∀w,

∑
w,s

p(w)p(s|w) fi(w, s) = ∑
w,s

p(w, s) fi(w, s).

(8)

In order to solve this optimization problem, the parameter λi is introduced for each fi(w, s) to
obtain the Lagrangian function L(p, Λ, γ):

L(p, Λ, γ) = ∑
w,s

p(w)p(s|w) log
1

p(s|w)

+ ∑
i=1

λi ∑
w,s

fi(w, s)[p(s|w)p(w)− p(w, s)]

+ γ(∑
s

p(s|w)− 1),

(9)

where the parameter Λ = {λ1, λ2, ..., λn}. Therefore, the L(p, Λ, γ) is derived on p(s|w) as

∂L
∂p(s|w)

= p(w)(log
1

p(s|w)
− 1) + ∑

i
λi p(w) fi(w, s) + γ. (10)

Let the above Formula (10) equal 0. Therefore, we can obtain the optimal solutions of Equation (8).

p∗(s|w) =
1

Z(w)
exp(∑

i=1
λi fi(w, s)), (11)

where Z(w) is called the normalization factor and it is equal to

Z(w) = ∑
s

exp(∑
i=1

λi fi(w, s)), (12)
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where p(s|w) and γ in the Lagrangian function L(p, Λ, γ) can be expressed as Λ. Therefore, the problem
is transformed into the solution parameter Λ = {λ1, λ2, ..., λn}. To this end, we define the dual function
ψ(Λ) and its optimization problem

ψ(Λ) = L(p∗, Λ, γ∗) (13)

f ind Λ∗ = arg min
Λ

ψ(Λ). (14)

According to the Karush–Kuhn–Tucker (KKT) conditions [30], the parameter Λ in the model
p∗(s|w) of Equation (11) can be solved by minimizing the dual function ψ(Λ), as in Equations (13)
and (14) shown. In this work, the improved iterative scaling (IIS) algorithm is used to solve the
optimization problem corresponding to this maximum entropy model [31].

Moreover, there are two stages for MEM-based CU size decision. The first stage is to extract the
features from the sample. The second stage is based on these features to build a model. In this work,
the online learning method is used to estimate model parameters Λ = {λ1, λ2, ..., λn}. Figure 5 shows
the online method of updating model parameters. The first frame of each group of pictures (GOP) is
used to train the model parameters, which are encoded by the original encoder. When all parameters
in Λ have converged, a lookup table (LUT) is used to store optimal parameter values Λ∗ and optimal
model p∗. Then, the other frames of GOP are encoded based on the proposed method.

Original frame Fast decision frame

GOP 1

GOP 2

…

GOP n

Figure 5. The online model training method.

Therefore, in order to reduce the encoding complexity for inter-prediction in the H.265/HEVC
encoder, the efficient MEM-based CU size decision algorithm is proposed, which consists of CU
termination, CU skip, and CU normal decisions. Figure 6 shows the proposed flowchart, which can be
described as follows.

(1) Firstly, model parameter values Λ = {λ1, λ2, ..., λn} are imported from the LUT. Then,
inter-prediction is started in a CTU by using the proposed method.

(2) Secondly, spatial and temporal features—including the RD cost, CBF value, depth information of
top, left, and co-located CUs of PU with the 2N× 2N mode—are calculated. The feature set is
expressed as w.

(3) Then, based on parameter values Λ∗, the model p(s|w) is calculated. If p∗ = p(s1|w),
the CU termination decision is processed. In this case, the splitting of the CU terminates in
the current depth. Otherwise, if p∗ = p(s2|w), the CU skip decision is made. In this case, the
PU mode is determined at the earliest stage and RDO technology is processed in the next depth.
Otherwise, the CU normal decision is made.

(4) Finally, when the current depth of CU is less than the maximum depth, the steps (2) and (3) are
repeated. Otherwise, the next CTU is checked.
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Figure 6. The flowchart of the proposed algorithm.

The advantages of the maximum entropy model are: (1) The maximum entropy statistical model
obtains the model with the maximum information entropy among all of the models that meet the
constraint conditions, and the accuracy is relatively high relative to the classical classification model.
(2) By using the maximum entropy principle, we can not only obtain the unique result of a given
problem, but also achieve the objective result as far as possible by relying on limited data and overcome
the possible deviation. Therefore, the maximum-entropy-model-based classical classification can
decide CU partitioning optimally. Moreover, the proposed method can reduce the computational
complexity of the modern video codec significantly, while the loss of encoding efficiency is small.

5. Simulation Results

In this section, simulation results have been verified for the performance of the proposed CU
size decision algorithm. The simulation platform is based on the H.265/HEVC reference software
(HM16.0), and file configurations are based on low delay (LD) and random access (RA) [32]. In the LD
configuration file, only the first frame is encoded as an independent decoded frame according to the
intra-frame mode, and the subsequent frames are encoded as general P frames and B frames. The LD
configuration is designed for real-time video applications. However, the coding structures of the RA
configuration consist of hierarchical B frames with clean Random Access frames inserted periodically.
This random access method strongly supports channel conversion, search, and dynamic streaming
services. Moreover, the depth range of CU is from zero to three, and QP values are set to 22, 27, 32,
and 37. The Common Test Conditions (CTC) are provided to conduct experiments. The test sequences
in CTC have different spatial and temporal characteristics and frame rates.

The performance of H.265/HEVC is evaluated in terms of the Bjontegaard Delta Bit Rate (BD-BR)
and the Bjontegaard Delta Peak Signal to Noise Ratio (BD-PSNR) [33]; an efficient tool is used to
compute BD-BR and BD-PSNR in [34]. The average time saving (∆T) is formulated as

∆T =
1
4
×

4

∑
i=1

THM(QPi)− Tproposed(QPi)

THM(QPi)
× 100%, (15)

where THM(QPi) and Tproposed(QPi) denote the encoding time of using HM16.0 and the proposed
algorithm with different QPs.
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Table 1 shows experiment results under the LD configuration. With the proposed method,
the average encoding time can be saved 53.27%, while BD-BR and BD-PSNR are 0.72% and −0.027 dB
on average. For the high-resolution sequences (1920× 1080 and 1280× 720), the encoding time can be
reduced by 57.36% and 64.78%, while the loss of BD-BR is 1.19% and 0.77%. For the low-resolution
sequences (832× 480 and 416× 240), the encoding time can be reduced by 50.75% and 54.10%, while
the loss of BD-BR is 0.83% and 0.87%. Moreover, in the best case, the encoding time of video sequence
Vidyo4 can be reduced by 64.89%. In the worse case, the encoding time of video sequence PartyScene
can be reduced by 45.57%. Therefore, the proposed method can save more encoding time in the high
resolution than in the low resolution. On the contrary, the loss of encoding efficiency is greater in the
high resolution than in the low resolution.

Table 1. Performance comparison of different parts of the proposed method (low delay (LD)).

Resolution Sequence BD-BR(%) BD-PSNR(dB) ∆T(%)

1920× 1080 Kinomo 1.39 −0.049 55.71
ParkScene 0.84 −0.028 54.67
Cactus 0.84 −0.021 50.38
BQTerrace 0.56 −0.016 55.74

Average 0.91 −0.029 54.13

832× 480 BasketballDrill 0.55 −0.023 46.26
BQMall 0.73 −0.033 49.71
PartyScene 0.46 −0.027 45.57
RaceHorses 0.73 −0.033 48.93

Average 0.62 −0.029 47.62

416× 240 BasketballPass 0.58 −0.031 52.05
BQSquare 0.06 −0.004 49.52
BlowingBubbles 1.19 −0.052 48.52

Average 0.61 −0.029 49.94

1280× 720 Vidyo1 0.77 −0.026 62.65
Vidyo3 0.93 −0.030 61.44
Vidyo4 0.50 −0.011 64.89

Average 0.73 −0.022 62.99

Average 0.72 −0.027 53.27

Table 2 shows the experiment results under the RA configuration. It is seen that the proposed
method can save about 56.36% encoding time on average, while the BD-BR and BD-PSNR are 0.93%
and −0.036 dB. For the high-resolution sequences (1920× 1080 and 1280× 720), the encoding time can
be reduced by 54.13% and 62.99%, while the loss of BD-BR is 0.91% and 0.73%. For the low-resolution
sequences (832× 480 and 416× 240), the encoding time can be reduced by 47.62% and 49.94%, while
the loss of BD-BR is 0.62% and 0.61%. Furthermore, in the best case, the encoding time of video
sequence Vidyo4 can be reduced by 66.16%. In the worse case, the encoding time of video sequence
PartyScene can be reduced by 48.71%. The proposed approach can save more encoding time in the high
resolution than in the low resolution. All in all, the proposed method can reduce the computational
complexity of the H.265/HEVC encoder significantly, while the loss of the encoding efficiency is small.
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Table 2. Performance comparison of different parts of the proposed method (random access(RA)).

Resolution Sequence BD-BR(%) BD-PSNR(dB) ∆T(%)

1920× 1080 Kinomo 1.70 −0.059 56.72
ParkScene 1.02 −0.034 60.89
Cactus 1.18 −0.029 54.27
BQTerrace 0.84 −0.022 57.54

Average 1.19 −0.036 57.36

832× 480 BasketballDrill 0.54 −0.023 49.51
BQMall 0.96 −0.046 54.52
PartyScene 0.61 −0.035 48.71
RaceHorses 1.23 −0.054 50.26

Average 0.83 −0.040 50.75

416× 240 BasketballPass 0.89 −0.047 55.32
BQSquare 0.50 −0.028 54.46
BlowingBubbles 1.21 −0.053 52.53

Average 0.87 −0.043 54.10

1280× 720 Vidyo1 1.00 −0.035 65.51
Vidyo3 0.57 −0.019 62.66
Vidyo4 0.74 −0.025 66.16

Average 0.77 −0.026 64.78

Average 0.93 −0.036 56.36

Figure 7 shows the rate–distortion curve comparison between the proposed algorithm and the
reference method under LD and RA configurations for the typical Vidyo4 and PartyScene sequences.
As shown in the figure, no matter in the high bitrate interval or in the low bitrate interval, the
proposed method can achieve almost the same rate–distortion curves as those of the reference model.
Furthermore, the time savings under different QPs and configurations for Vidyo4 and PartyScene
sequences are shown in Figure 8. It is seen that when the QP value is 37, the average time saving is
highest. As the value of QP decreases, the average time saving decreases. In summary, the proposed
method can significantly reduce the computational complexity under the LD and RA configurations.
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Figure 7. Rate–distortion (RD) curve of the proposed algorithm for sequences Vidyo4 and PartyScene.
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Figure 8. Time savings of the proposed algorithm for sequences Vidyo4 and PartyScene.

Table 3 shows the BD-BR, BD-PSNR, and time saving performance in comparison with those of
previous works in [16,18,19]. The authors of [16] propose an efficient complexity reduction method
that takes early CU split, CU termination, and search range adjustment into account. The work
in [18] presents a fast CU size decision method which is based on SVM with off-line learning. In [19],
a neural-network-based CU partitioning method is proposed. However, the proposed method is based
on the maximum entropy model. For the low-delay configuration, the average BD-BR, BD-PSNR, and
time saving are (0.72%, −0.027 dB, and 53.27%) for the proposed method. Compared with Tai’s work,
Grellert’s work, and Kim’s work, the proposed method achieves maximum time saving. Although
the loss of encoding efficiency of Grellert’s work is less than the loss of encoding efficiency of the
proposed work, the time saving of Grellert’s work is only 41.10%. For the random access configuration,
the average BD-BR, BD-PSNR, and time saving are (0.93%, −0.036 dB, and 56.36%) for the proposed
method. Compared with the state-of-the-art, the proposed method achieves maximum time saving.
Although the loss of encoding efficiency of Grellert’s work is less than the loss of encoding efficiency
of the proposed work, the time saving of Grellert’s work is only 48.00%. Therefore, our work shows a
higher performance improvement than the state-of-the-art approaches. Furthermore, the proposed
algorithm achieves a better trade-off between the computational complexity and the encoding efficiency.

Table 3. Bjontegaard Delta Bit Rate (BD-BR), Bjontegaard Delta Peak Signal to Noise Ratio (BD-PSNR),
and time saving performance comparison with previous works.

Configuration Approach (BD-BR, BD-PSNR, ∆T)

Low Delay Our work (0.72, −0.027, 53.27)
Tai et al. [16] (0.75, −0.051 37.90)
Grellert et al. [18] (0.60, −0.046, 41.10 )
Kim et al. [19] (1.31, −0.050, 47.08)

Random Access Our work (0.93,−0.036, 56.36)
Tai et al. [16] (1.41, −0.054, 45.70)
Grellert et al. [18] (0.48, −0.048, 48.00)
Kim et al. [19] (1.51, −0.052, 47.32)

6. Conclusions

In this work, a novel maximum-entropy-model-based CU size algorithm is proposed to reduce the
computational complexity in H.265/HEVC inter-prediction. The RD cost, CBF, and depth information
of the relative CUs are used as classifier features, and the on-line learning method is used to estimate
model parameters. Moreover, the fast algorithm consists of the CU termination, CU skip, and CU
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normal decisions. The simulation results show our work saves about 53.27–56.36% of the encoding
time on average, while the average loss of encoding efficiency is only 0.72–0.93%.

Author Contributions: X.J. designed the algorithm, conducted all experiments, analyzed the results, and wrote
the manuscript. T.S. conceived the algorithm. T.K. conducted all experiments. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China under grant
61701297 and 61872231, in part by the China Postdoctoral Science Foundation under grant 2018M641982, in part by
the Shanghai Sailing Program under grant 19YF1419100, and in part by JSPS KAKENHI grant number 17K00157.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC)
standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668.[CrossRef]

2. Ramezanpour, M.; Zargari, F. Fast CU size and prediction mode decision method for HEVC encoder based
on spatial features. Signal Image Video Process. 2016, 10, 1233–1240. [CrossRef]

3. Tohidypour, H.R.; Pourazad, M.T.; Nasiopoulos, P. Probabilistic approach for predicting the size of coding
units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans. Multimed. 2016,
18, 182–195. [CrossRef]

4. Zhong, G.; He, X.; Qing, L.; Li, Y. A fast inter-prediction algorithm for HEVC based on temporal and spatial
correlation. Multimed. Tools Appl. 2015, 74, 11023–11043. [CrossRef]

5. Shen, L.; Zhang, Z.; Liu, Z. Adaptive inter-mode decision for HEVC jointly utilizing inter-level and
spatiotemporal correlations. IEEE Trans. Circuits Syst. Video Technol. 2014, 24, 1709–1722. [CrossRef]

6. Majid, M.; Owais, M.; Anwar, S.M. Visual saliency based redundancy allocation in HEVC compatible
multiple description video coding. Multimed. Tools Appl. 2017, 77, 20955–20977. [CrossRef]

7. Chen, M.J.; Wu, Y.D.; Yeh, C.H.; Lin, K.M.; Lin, S.D. Efficient CU and PU decision based on motion
information for interprediction of HEVC. IEEE Trans. Ind. Inform. 2018, 14, 4735–4745. [CrossRef]

8. Shen, L.; Li, K.; Feng, G.; An, P.; Liu, Z. Efficient intra mode selection for depth-map coding utilizing
spatiotemporal, inter-component and inter-view correlations in 3D-HEVC. IEEE Trans. Image Process. 2018,
27, 4195–4206. [CrossRef]

9. Jiang, X.; Feng, J.; Song, T.; Katayama, T. Low-complexity and hardware-friendly H. 265/HEVC encoder for
vehicular ad-hoc networks. Sensors 2019, 19, 1927. [CrossRef]

10. Zhang, J.; Kwong, S.; Wang, X. Two-stage fast inter CU decision for HEVC based on bayesian method and
conditional random fields. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3223–3235. [CrossRef]

11. Jiang, X.; Song, T.; Shimamoto, T.; Shi, W.; Wang, L. Spatio-temporal prediction based algorithm for parallel
improvement of HEVC. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2015, 98, 2229–2237. [CrossRef]

12. Bae, J.H.; Sunwoo, M.H. Adaptive early termination algorithm using coding unit depth history in HEVC.
J. Signal Process. Syst. 2019, 91, 863–873. [CrossRef]

13. Cebrian-Marquez, G.; Martínez, J.L.; Cuenca, P. Adaptive inter CU partitioning based on a look-ahead stage
for HEVC. Signal Process. Image Commun. 2019, 76, 97–108. [CrossRef]

14. Liao, Y.W.; Chen, M.J.; Yeh, C.H.; Lin, J.R.; Chen, C.W. Efficient inter-prediction depth coding algorithm
based on depth map segmentation for 3D-HEVC. Multimed. Tools Appl. 2019, 78, 10181–10205. [CrossRef]

15. Zhang, M.; Qu, J.; Bai, H. Entropy-based fast largest coding unit partition algorithm in high-efficiency video
coding. Entropy 2013, 15, 2277–2287. [CrossRef]

16. Tai, K.H.; Hsieh, M.Y.; Chen, M.J.; Chen, C.Y.; Yeh, C.H. A fast HEVC encoding method using depth
information of collocated CUs and RD cost characteristics of PU modes. IEEE Trans. Broadcast. 2017,
43, 680–692. [CrossRef]

17. Yao, Y.; Yang, X.; Jia, T.; Jiang, X.; Feng, W. Fast Bayesian decision based block partitioning algorithm for
HEVC. Multimed. Tools Appl. 2019, 78, 9129–9147. [CrossRef]

18. Grellert, M.; Zatt, B.; Bampi, S.; da Silva Cruz, L.A. Fast coding unit partition decision for HEVC using
support vector machines. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1741–1753. [CrossRef]

http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1007/s11760-016-0885-6
http://dx.doi.org/10.1109/TMM.2015.2510332
http://dx.doi.org/10.1007/s11042-014-2216-7
http://dx.doi.org/10.1109/TCSVT.2014.2313892
http://dx.doi.org/10.1007/s11042-017-5499-7
http://dx.doi.org/10.1109/TII.2018.2801852
http://dx.doi.org/10.1109/TIP.2018.2837379
http://dx.doi.org/10.3390/s19081927
http://dx.doi.org/10.1109/TCSVT.2017.2747618
http://dx.doi.org/10.1587/transfun.E98.A.2229
http://dx.doi.org/10.1007/s11265-018-1399-y
http://dx.doi.org/10.1016/j.image.2019.04.019
http://dx.doi.org/10.1007/s11042-018-6547-7
http://dx.doi.org/10.3390/e15062277
http://dx.doi.org/10.1109/TBC.2017.2722239
http://dx.doi.org/10.1007/s11042-018-6468-5
http://dx.doi.org/10.1109/TCSVT.2018.2849941


Symmetry 2020, 12, 113 14 of 14

19. Kim, K.; Ro, W.W. Fast CU depth decision for HEVC using neural networks. IEEE Trans. Circuits Syst.
Video Technol. 2018, 29, 1462–1473. [CrossRef]

20. Li, N.; Zhang, Y.; Zhu, L.; Luo, W.; Kwong, S. Reinforcement learning based coding unit early termination
algorithm for high efficiency video coding. J. Vis. Commun. Image Represent. 2019, 60, 276–286. [CrossRef]

21. Goswami, K.; Kim, B.G. A design of fast high-efficiency video coding scheme based on markov chain monte
carlo model and Bayesian classifier. IEEE Trans. Ind. Electron. 2018, 65, 8861–8871. [CrossRef]

22. Kim, K.; Ro, W.W. Contents-aware partitioning algorithm for parallel high efficiency video coding.
Multimed. Tools Appl. 2019, 78, 11427–11442. [CrossRef]

23. Wang, H.; Xiao, B.; Wu, J.; Kwong, S.; Kuo, C.C.J. A collaborative scheduling-based parallel solution for
HEVC encoding on multicore platforms. IEEE Trans. Multimed. 2018, 20, 2935–2948. [CrossRef]

24. Yan, C.; Zhang, Y.; Xu, J.; Dai, F.; Li, L.; Dai, Q.; Wu, F. A highly parallel framework for HEVC coding unit
partitioning tree decision on many-core processors. IEEE Signal Process. Lett. 2014, 21, 573–576. [CrossRef]

25. Clarke, B. Information optimality and Bayesian modelling. J. Econ. 2007, 138, 405–429.[CrossRef]
26. Shannon, C.E. A mathematical theory of communication. Bell Labs Tech. J. 1948, 27, 379–423. [CrossRef]
27. De Garrido, D.P.; Pearlman, W.A. Conditional entropy-constrained vector quantization: high-rate theory

and design algorithms. IEEE Trans. Inf. Theory 1995, 41, 901–916. [CrossRef]
28. Wu, N. An iterative algorithm for power spectrum estimation in the maximum entropy method. IEEE Trans.

Acoust. Speech Signal Process 1988, 36, 294–296. [CrossRef]
29. Palmieri, F.A.N.; Ciuonzo D. Objective priors from maximum entropy in data classification. Inf. Fusion 2013,

14, 186–198. [CrossRef]
30. Wu, H.C. The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued

objective function. Eur. J. Oper. Res. 2007, 176, 46–59. [CrossRef]
31. Berger, A. The Improved Iterative Scaling Algorithm: A Gentle Introduction; Technical Report; CMU:

Sayre Highway, Philippines, 1997; pp. 1–4.
32. Bossen, F. Common Test Conditions and Software Reference Configurations, Joint Collaborative Team

on Video Coding (JCT-VC), Document JCTVC-L1110, Geneva, January 2014. Available online: https:
//www.itu.int/wftp3/av-arch/video-site/0104_Aus/ (accessed on 3 January 2019).

33. Bjontegaard, G. Calculation of Average PSNR Differences between RD-Curves. In Proceedings of the ITU-T
Video Coding Experts Group (VCEG) Thirteenth Meeting, Austin, TX, USA, 2–4 April 2001.

34. Jung, J. An excel add-in for computing Bjontegaard metric and its evolution. In Proceedings of the ITU-T
Video Coding Experts Group (VCEG) 31st Meeting, Marrakech, MA, USA, 15–16 January 2007.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCSVT.2018.2839113
http://dx.doi.org/10.1016/j.jvcir.2019.02.021
http://dx.doi.org/10.1109/TIE.2018.2815941
http://dx.doi.org/10.1007/s11042-018-6619-8
http://dx.doi.org/10.1109/TMM.2018.2830120
http://dx.doi.org/10.1109/LSP.2014.2310494
http://dx.doi.org/10.1016/j.jeconom.2006.05.003
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/18.391238
http://dx.doi.org/10.1109/29.1524
http://dx.doi.org/10.1016/j.inffus.2012.01.012
http://dx.doi.org/10.1016/j.ejor.2005.09.007
https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/
https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Background 
	High-Efficiency Video Coding Standard
	Maximum Entropy Principle

	The Proposed Approach 
	Simulation Results 
	Conclusions 
	References

