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Abstract: We define a new algebraic structure for two-component dichromatic links. This definition
extends the notion of a kei (or involutory quandle) from regular links to dichromatic links. We call
this structure a dikei that results from the generalized Reidemeister moves representing dichromatic
isotopy. We give several examples on dikei and show that the set of colorings by these algebraic
structures is an invariant of dichromatic links. As an application, we distinguish several pairs of
dichromatic links that are symmetric as monochromatic links.
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1. Introduction

A dichromatic link is a two-color link, where the two colors are usually represented by the labels
“1” and “2”. Many link invariants have been generalized to dichromatic links. For example, see [1–3].

Kei and quandles are used to describe knots and links. They are algebraic structures satisfying
a number of axioms resulting from Reidemeister moves. A kei or a quandle for a given knot diagram
is presented in terms of generators and relations, where the generators represent arcs, and the relations
result from the crossings. See [4–16] for more information.

In this paper, we introduce an algebraic structure, which we call a dikei. This structure works
as an involutory quandle (or a kei) for dichromatic links. This structure distinguishes several pairs
of dichromatic links that are symmetric as monochromatic links (symmetric monochromatic links
are identical links without colors). The isotopy of the dichromatic links involves a larger number of
Reidemeister moves. Therefore, our dikei involves new axioms resulting from the extra Reidemeister
moves. We give many examples of algebraic structures satisfying the axioms of a dikei. As a by-product
of this structure, we apply the theory to distinguish among dichromatic links which are symmetric
without the two colors.

This article is organized as follows. In Section 2, the basic concepts and terminology for kei
and quandles are given. We also define dichromatic links and their isotopy invariance. In Section 3,
the structure of a dikei is introduced. Many examples of structure satisfying the axioms of dikei
are also given. In Section 4, we use dikei on examples of dichromatic links to distinguish them as
an application of our new structure.

2. Basic Concepts and Terminology

In [9], most of the basic concepts and terminology on quandles can be found. This section begins
with the definition of an involutory quandle (or a kei), and we show how the axioms of a kei are
induced by the three Reidemeister moves. In Figure 1, each “color” corresponds to an arc in a diagram,
and the x B y operation corresponds to the transformation that, when an arc x passes under another
arc y, we get x B y. So, when x crosses under y, x B y is a new arc, but y is unchanged; y is doing
something to x. See [9] for reference.
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Figure 1. The coloring of a regular crossing with one operation.

We give the definition of a kei.

Definition 1 ([9]). A kei (involutory quandle) is a set X with a binary operation
.: X× X → X satisfying the following three axioms:

1. x . x = x, for all x ∈ X.
2. (x . y) . y = x, for all x, y ∈ X.
3. (x . y) . z = (x . z) . (y . z), for all x, y, z ∈ X.

The axioms of a kei result from the three Reidemeister moves as in the following figure 2.

Figure 2. The coloring of Reidemeister moves RI, RII, and RIII.

Definition 2 ([9]). Let X and Y be kei with operations BX and BY, respectively. Then, a map f : X −→ Y is
a kei homomorphism if for all x, x′ ∈ X we have

f (x BX x′) = f (x)BY f (x′).

Definition 3 ([9]). A kei isomorphism is a bijective kei homomorphism, and two kei are isomorphic if there is
a kei isomorphism between them.

Usual examples of kei include the following:

• Any non-empty set X with operation x B y = x, for all x, y ∈ X is a kei. It is called the trivial kei.
• Let 〈 , 〉 : Rn ×Rn → R be a symmetric bi-linear form on Rn. Let X be the subset of Rn consisting

of vectors ~u such that 〈~u,~u〉 6= 0. Then, the operation

~u B~v =
2〈~u,~v〉
〈~u,~u〉 ~v− ~u

defines a kei structure on X. This kei is called a Coxeter kei.
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• A set X = Z with operation x B y = 2y− x, for all x, y ∈ Z is a kei.
• A group X = G with operation x B y = yx−1y is a kei. It is called the core kei of the group G.

A dichromatic link in R3 is the image of a smooth immersion of a finite number of circles in R3 that
have two colors, where the two colors are usually represented by the labels “1” and “2”. For example,
see Figure 3.

Figure 3. The dichromatic Hopf link.

Note that the word “color” is sometimes used for the colors of the components, and sometimes
the same word is used for the arcs used in constructing a kei. The use of the word “color” in two
contexts should not be confusing for the reader.

Two dichromatic links, L1 and L2, are isotopy equivalent if one of them can be obtained from
the other by a finite number of the extended Reidemeister moves, shown below in the figure 4,
which preserves the color of each component.

Figure 4. Reidemeister moves which preserve the color of the component.
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Example 1. The two dichromatic links in the following figure 5 are isotopy equivalent.

Figure 5. The Whitehead dichromatic link diagrams.

3. Construction of Dikei

In this section, we define the notion of a dikei and give solid examples on dikei. We draw the
coloring of the regular dichromatic crossings, as in the following figure 6.

Figure 6. The coloring of regular dichromatic crossings.

Next, we show how the extended Reidemeister moves induce the relations of a dikei.
The following definition comes from the extended Reidemeister moves and the axioms illustrated in
Figures 7–9.

Figure 7. Reidemeister move RI for dichromatic link.

Figure 8. Reidemeister move RII for dichromatic link.
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Figure 9. Reidemeister moves RIII for dichromatic link.

Definition 4. Let (X,B1) and (X,B2) be two kei. Then, (X,B1,B2) is called a dikei if the following two
axioms are satisfied:

(x B1 y)B2 z = (x B2 z)B1 (y B2 z), (1)

(x B2 y)B1 z = (x B1 z)B2 (y B1 z). (2)

The following straightforward lemma makes the set of coloring of a dichromatic link by a dikei
an invariant of dichromatic links.

Lemma 1. The set of coloring of a dichromatic link by a dikei does not change by the Reidemeister moves.

Lemma 2. Let (X , B) be a kei, and let x B1 y = x B2 y = x B y. Then, (X,B1,B2) is a dikei.

Lemma 3. Let (X , B) be a kei, and let x B1 y = x B y, and x B2 y = x. Then, (X,B1,B2) is a dikei.
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Proof. We show that B1 and B2 satisfy the axiom (1), (2).

(x B1 y)B2 z = (x B2 z)B1 (y B2 z)

x B1 y = x B1 y

x B y = x B y,

(x B2 y)B1 z = (x B1 z)B2 (y B1 z)

x B1 z = x B1 z

x B z = x B z.

So, (X,B1,B2) is a dikei.

Lemma 4. Let Z be the set of integers with x B1 y = x and x B2 y = 2y− x. Then, (Z,B1,B2) is a dikei.

Proof. We show that B1 and B2 satisfy the axiom (1), (2).

(x B1 y)B2 z = (x B2 z)B1 (y B2 z)

x B2 z = (2z− x)B2 (2z− y)

2z− x = 2z− x,

(x B2 y)B1 z = (x B1 z)B2 (y B1 z)

x B2 y = x B2 y

2y− x = 2y− x.

So, (Z,B1,B2) is a dikei.

Lemma 5. Let G be a group with x B1 y = yx−1y and x B2 y = x. Then, (G,B1,B2) is a dikei.

Proof. We show that B1 and B2 satisfy the axiom (1), (2).

(x B1 y)B2 z = (x B2 z)B1 (y B2 z)

(yx−1y)B2 z = x B1 y

yx−1y = yx−1y,

(x B2 y)B1 z = (x B1 z)B2 (y B1 z)

x B1 z = x B1 z

zx−1z = zx−1z.

So, (G,B1,B2) is a dikei.

Theorem 1. Let Zn be the additive finite cyclic group of order n with the binary operations x B1 y = (n− 1)x+
2y and x B2 y = x. Then, (Zn,B1,B2) is a dikei.

Proof. We show that B1 is a kei.

x B1 x = (n− 1)x + x

= nx− x + 2x

= x,
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(x B1 y)B1 y = (n− 1)((n− 1)x + 2y) + 2y

= (n− 1)2x + 2(n− 1)y + 2y

= n2x− 2nx + x + 2ny− 2y + 2y

= x,

(x B1 y)B1 z = (n− 1)((n− 1)x + 2y) + 2z

= (n− 1)2x + 2(n− 1)y + 2z

= n2x− 2nx + x + 2ny− 2y + 2z

= x− 2y + 2z,

while

(x B1 z)B1 (y B1 z) = (n− 1)((n− 1)x + 2z) + 2((n− 1)y + 2z)

= (n− 1)2x + 2(n− 1)z + 2(n− 1)y + 4z

= n2x− 2nx + x + 2nz− 2z + 2ny− 2y + 4z

= x− 2y + 2z.

So, by Lemma 3, (Zn,B1,B2) is a dikei.

Example 2. Let X = Z10 with x B1 y = 9x + 2y and x B2 y = x. Then, (X,B1,B2) is a dikei.

Proof. We show that B1 and B2 satisfy the axiom (1), (2).

(x B1 y)B2 z = (x B2 z)B1 (y B2 z)

x B1 y = x B1 y

9x + 2y = 9x + 2y,

(x B2 y)B1 z = (x B1 z)B2 (y B1 z)

x B1 z = x B1 z

9x + 2y = 9x + 2y.

So, (Z10,B1,B2) is a dikei.

Theorem 2. Let G be a group, and Q = {x ∈ G : x2 = 1} with a binary operation xB y = yxy. Then, (Q,B)

is a kei. See [15] for reference.

Proof. We show that B satisfies the axioms in Definition 1.

x B x = xx x

= x2 x

= x,

(x B y)B y = (yxy)B y

= yyx yy

= y2xy2

= x,
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(x B y)B z = (yxy)B z

= zyxyz,

while

(x B z)B (y B z) = (zxz)B (zyz)

= zyzzxzzyz

= zyz2xz2yz

= zyxyz.

So, (Q,B) is a kei.

Theorem 3. Let G be a group, and Q = {x ∈ G : x2 = 1} with the operations x B1 y = yx−1y and
x B2 y = yxy. Then, (Q,B1,B2) is a dikei.

Proof. We show that B1 and B2 satisfy the axiom (1), (2).

(x B1 y)B2 z = (x B2 z)B1 (y B2 z)

(yx−1y)B2 z = (zxz)B1 (zyz)

zyx−1yz = zyzz−1x−1z−1z yz

zyx−1yz = zyx−1yz,

(x B2 y)B1 z = (x B1 z)B2 (y B1 z)

(yxy)B1 z = (zx−1z)B2 (zy−1z)

zy−1x−1y−1z = zy−1zzx−1zzy−1z

zy−1x−1y−1z = zy−1x−1y−1z.

So, (Q,B1,B2) is a dikei.

4. Applications

Example 3. Consider the following two dichromatic links. Let G be a group with the operations xB1 y = yx−1y
and x B2 y = x. See Figure 10 for reference, where the numbers 1 and 2 represent the colors of the components
in the dichromatic links.

Figure 10. The dichromatic links A and B in Example 3, respectively.

In Figure 10, the leftt-hand image (A) shows the relations at the crossings resulting from the
binary operations, which give y = (xy−1)2x, xy−1x = yx−1y, and xy−1xz−1xy−1x = z. Thus, the set
of coloring is

{(x, y, z) ∈ G× G× G : (xy−1)3 = 1, (xy−1xz−1)2 = 1}.
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Justification:
(xy−1)2x = y =⇒ (xy−1)3 = 1,

xy−1x = yx−1y =⇒ (xy−1)3 = 1, and

xy−1xz−1xy−1x = z =⇒ (xy−1xz−1)2 = 1.

In Figure 10, the right-hand image (B) shows the relations at the crossings resulting from the
binary operations, which give x = y, zx−1z = y, and z = z. Thus, the set of coloring is

{(x, x, z) ∈ G× G× G : (zx−1)2 = 1}.

Justification:
x = y, and

zx−1z = y =⇒ (zx−1)2 = 1.

Therefore, this coloring invariant distinguishes these two dichromatic links. To explain this,
let G = Z3 be the additive finite cyclic group of order 3; then, S1 = {(x, y, z) ∈ Z3 × Z3 × Z3 :
x + y = 2z, 3x = 3y} = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)},
and S2 = {(x, x, x) ∈ Z3 ×Z3 ×Z3} = {(0, 0, 0), (1, 1, 1), (2, 2, 2)}. Therefore, |S1| = 9, and |S2| = 3.

Example 4. Consider the following two dichromatic links. Let G be a group, and Q = {x ∈ G : x2 = 1} with
the operations x B1 y = yx−1y and x B2 y = yxy. See Figure 11 for reference, where the numbers 1 and 2
represent the colors of the components in the dichromatic links.

Figure 11. The dichromatic links A and B in Example 4, respectively.

In Figure 11, the left-hand image (A) shows the relations at the crossings resulting from the binary
operations, which give (xy−1)3x = x, (xy−1)2x = zyz, and (xy−1)2xz−1(xy−1)2x = z. Thus, the set of
coloring is

{(x, y, z) ∈ G× G× G : (xy−1)3 = 1, (xy−1)2xz−1y−1z−1 = 1, ((xy−1)2xz−1)2 = 1}.

Justification:
(xy−1)3x = x =⇒ (xy−1)3 = 1,

(xy−1)2x = zyz =⇒ (xy−1)2xz−1y−1z−1 = 1 and

(xy−1)2xz−1(xy−1)2x = z =⇒ ((xy−1)2xz−1)2 = 1

In Figure 11, the right-hand image (B) show the relations at the crossings resulting from the binary
operations give (xy)3x = x, (xy)2x = zy−1z, and (xy)2xz(xy)2x = z. Thus, the set of coloring is

{(x, y, z) ∈ G× G× G : (xy)3 = 1, (xy)2xz−1yz−1 = 1, (xy)2xz(xy)2xz−1 = 1}.
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Justification:
(xy)3x = x =⇒ (xy)3 = 1,

(xy)2x = zy−1z =⇒ (xy)2xz−1yz−1 = 1, and

(xy)2xz(xy)2x = z =⇒ (xy)2xz(xy)2xz−1 = 1.

Therefore, this coloring invariant distinguishes these two dichromatic links. To explain this,
let G = Z4 be the additive finite cyclic group of order 4, and Q = {x ∈ Z4 : x2 = 1} = {0, 2}; then,
S1 = {(x, y, z) ∈ Q× Q× Q : 3x = 3y, 3x = 2z, 2y = 2z} = {(0, 0, 0), (0, 0, 2), (0, 2, 0)} , and S2 =

{(x, y, z) ∈ Q×Q×Q : 3x+ 3y = 0, 3x+ 3y = 2z, 6x+ 4y = 0} = {(0, 0, 0), (0, 0, 2), (2, 2, 0), (2, 2, 2)}.
Therefore, |S1| = 3, and |S2| = 4.

Example 5. Consider the following two dichromatic links. Let X = Z with the operations x B1 y = x and
x B2 y = 2y− x. See Figure 12 for reference, where the numbers 1 and 2 represent the colors of the components
in the dichromatic links.

Figure 12. The dichromatic links A and B in Example 5, respectively.

In Figure 12, the leftt-hand image (A) shows the relations at the crossings resulting from the
binary operations, which give x = y, 2z− x = y and z = z. Thus, the set of coloring is

{(x, x, x) ∈ Z×Z×Z}.

Justification:

x = y, and

2z− x = y =⇒ 2z− x− y = 0 =⇒ z = x.

In Figure 12, the right-hand image (B) shows the relations at the crossings resulting from the
binary operations, which give 5y− 4x = x, 4x− 3y = 2y− x and 8x− 6y− z = z. Thus, the set of
coloring is

{(x, x, x) ∈ Z×Z×Z}.

Justification:
5y− 4x = x =⇒ 5y = 5x =⇒ y = x,

4x− 3y = 2y− x =⇒ 5x = 5y =⇒ x = y, and

8x− 6y− z = z =⇒ 8x− 6x = 2z =⇒ x = z.

The solution set is equal for both of the sets of coloring above. Therefore, this coloring invariant
does not distinguish these two dichromatic links.

Example 6. Consider the following two dichromatic links. Let G be a group with the operations xB1 y = yx−1y
and x B2 y = x. See Figure 13 for reference, where the numbers 1 and 2 represent the colors of the components
in the dichromatic links.
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Figure 13. The dichromatic links A and B in Example 6, respectively.

In Figure 13, the left-hand image (A) shows the relations at the crossings resulting from the binary
operations, which give x = (yx−1)4y, (xy−1)3x = yx−1y, and (xy−1)3xz−1(xy−1)3x = z. Thus, the set
of coloring is

{(x, y, z) ∈ G× G× G : (xy−1)5 = 1, ((xy−1)3xz−1)2 = 1}.

Justification:
(yx−1)4y = x =⇒ (xy−1)5 = 1,

(xy−1)3x = yx−1y =⇒ (xy−1)5 = 1, and

(xy−1)3xz−1(xy−1)3x = z =⇒ ((xy−1)3xz−1)2 = 1.

In Figure 13, the right-hand image (B) shows the relations at the crossings resulting from the
binary operations, which give x = y, zx−1z = y, and z = z. Thus, the set of coloring is

{(x, x, z) ∈ G× G× G : (zx−1)2 = 1}.

Justification:
x = y, and

zx−1z = y =⇒ (zx−1)2 = 1.

Therefore, this coloring invariant distinguishes these two dichromatic links. To explain this,
let G = Z10 be the additive finite cyclic group of order 10; then S1 = {(x, y, z) ∈ Z10 × Z10 ×
Z10 : 5x = 5y, 3x− y− 2z = 0}, and S2 = {(x, y, z) ∈ Z10 × Z10 × Z10 : x = y, 2x = 2z}.
Therefore, |S1| = 100, and |S2| = 20; we leave the calculations for the reader.

Example 7. Consider the following two dichromatic links. Let G be a group, and Q = {x ∈ G : x2 = 1} with
the operations x B1 y = yxy and x B2 y = x. See Figure 14 for reference, where the numbers 1 and 2 represent
the colors of the components in the dichromatic links.

Figure 14. The dichromatic links A and B in Example 7, respectively.
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In Figure 14, the left-hand image (A) shows the relations at the crossings resulting from the binary
operations, which give xyx = xy(x3y)3x, xyx3yx = y, yxzxy = z, and xzx = yzy. Thus, the set of
coloring is

{(x, y, z) ∈ G× G× G : (x3y)3 = 1, xyx3yxy−1 = 1, yxzxyz−1 = 1, xzxy−1z−1y−1 = 1}.

Justification:
xyx = xy(x3y)3x =⇒ (x3y)3 = 1,

xyx3yx = y =⇒ xyx3yxy−1 = 1,

yxzxy = z =⇒ yxzxyz−1 = 1 and

xzx = yzy =⇒ xzxy−1z−1y−1 = 1

In Figure 14, the right-hand image (B) shows the relations at the crossings resulting from the
binary operations, which give zyz = x, zxz = y and z = z. Thus, the set of coloring is

{(x, y, z) ∈ G× G× G : zyzx−1 = 1, zxzy−1 = 1}.

Justification:
zyz = x =⇒ zyzx−1 = 1, and

zxz = y =⇒ zxzy−1 = 1.

Therefore, this coloring invariant distinguishes these two dichromatic links. To explain this,
let G = Z4 be the additive finite cyclic group of order 4, and Q = {x ∈ Z4 : x2 = 1} = {0, 2},
then S1 = {(x, y, z) ∈ Q × Q × Q : 9x + 3y = 0, 5x + y = 0, 2x + 2y = 0, 2x = 2y} =

{(0, 0, 0), (0, 0, 2), (2, 2, 0), (2, 2, 2)}, and S2 = {(x, y, z) ∈ Q×Q×Q : 2x + y + 2z = 0, x + 2y + 2z =

0} = {(0, 0, 0), (0, 0, 2)}. Therefore, |S1| = 4, and |S2| = 2.

5. Conclusions

Our idea is that we extend the notion of an involutory quandle (or kei) from regular links to
dichromatic links, and define a new algebraic structure for two-component dichromatic links. We call
this structure a dikei. It results from the generalized Reidemeister moves representing dichromatic
isotopy. We give several examples on dikei, and we could distinguish many two-component
dichromatic links that are isotopic as without colors. This evidently provides the power of our
structure as it is not affected by the symmetry in the pairs of links in the examples. We failed to
distinguish some dichromatic links, as we think that there are other concrete examples satisfying the
dikei axioms, and this is definitely to be investigated in future research.
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